- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The unsteady incompressible Navier-Stokes equations are discretized in space and studied on the fixed mesh as a system of differential algebraic equations. With discrete projection defined, the local errors of Crank Nicholson schemes with three projection methods are derived in a straightforward manner. Then the approximate factorization of relevant matrices are used to study the time accuracy with more detail, especially at points adjacent to the boundary. The effects of numerical boundary conditions for the auxiliary velocity and the discrete pressure Poisson equation on the time accuracy are also investigated. Results of numerical experiments with an analytic example confirm the conclusions of our analysis.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8897.html} }The unsteady incompressible Navier-Stokes equations are discretized in space and studied on the fixed mesh as a system of differential algebraic equations. With discrete projection defined, the local errors of Crank Nicholson schemes with three projection methods are derived in a straightforward manner. Then the approximate factorization of relevant matrices are used to study the time accuracy with more detail, especially at points adjacent to the boundary. The effects of numerical boundary conditions for the auxiliary velocity and the discrete pressure Poisson equation on the time accuracy are also investigated. Results of numerical experiments with an analytic example confirm the conclusions of our analysis.