- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Linear Finite Element Approximations for the Timoshenko Beam and the Shallow Arch Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-20-15,
author = {Cheng , Xiao-Liang and Xue , Wei-Min},
title = {Linear Finite Element Approximations for the Timoshenko Beam and the Shallow Arch Problems},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {1},
pages = {15--22},
abstract = {
In this paper we discuss the linear finite element approximations for the Timoshenko beam and the shallow arch problems with shear dampening and reduced integration. We derive directly the optimal order error estimates uniformly with the small thickness parameter, without relying on the theory of saddle point problems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8895.html} }
TY - JOUR
T1 - Linear Finite Element Approximations for the Timoshenko Beam and the Shallow Arch Problems
AU - Cheng , Xiao-Liang
AU - Xue , Wei-Min
JO - Journal of Computational Mathematics
VL - 1
SP - 15
EP - 22
PY - 2002
DA - 2002/02
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8895.html
KW - Timoshenko beam, Shallow arch, Shear dampening, Reduced integration.
AB -
In this paper we discuss the linear finite element approximations for the Timoshenko beam and the shallow arch problems with shear dampening and reduced integration. We derive directly the optimal order error estimates uniformly with the small thickness parameter, without relying on the theory of saddle point problems.
Cheng , Xiao-Liang and Xue , Wei-Min. (2002). Linear Finite Element Approximations for the Timoshenko Beam and the Shallow Arch Problems.
Journal of Computational Mathematics. 20 (1).
15-22.
doi:
Copy to clipboard