- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider a modified alternating positive semidefinite splitting preconditioner for solving the saddle point problems arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current model. The eigenvalue distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are studied for both simple and general topology. Numerical results demonstrate the effectiveness of the proposed preconditioner when it is used to accelerate the convergence rate of Krylov subspace methods such as GMRES.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2006-m2020-0037}, url = {http://global-sci.org/intro/article_detail/jcm/19379.html} }In this paper, we consider a modified alternating positive semidefinite splitting preconditioner for solving the saddle point problems arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current model. The eigenvalue distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are studied for both simple and general topology. Numerical results demonstrate the effectiveness of the proposed preconditioner when it is used to accelerate the convergence rate of Krylov subspace methods such as GMRES.