- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 1 (2004), pp. 1-24.
Published online: 2004-01
Cited by
- BibTex
- RIS
- TXT
A polynomial preserving gradient recovery method is proposed and analyzed for bilinear element under quadrilateral meshes. It has been proven that the recovered gradient converges at a rate $O(h^{1+\rho})$ for $\rho = min(\alpha, 1)$, when the mesh is distorted $O(h^{1+\alpha})$ ($\alpha > 0$) from a regular one. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam.OA-2004-1101}, url = {http://global-sci.org/intro/article_detail/ijnam/963.html} }A polynomial preserving gradient recovery method is proposed and analyzed for bilinear element under quadrilateral meshes. It has been proven that the recovered gradient converges at a rate $O(h^{1+\rho})$ for $\rho = min(\alpha, 1)$, when the mesh is distorted $O(h^{1+\alpha})$ ($\alpha > 0$) from a regular one. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact.