- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
On the basis of the estimates for the regularized Green's functions with memory terms, optimal order $L^∞$-error estimates are established for the nonFickian flow of fluid in porous media by means of a mixed Ritz-Volterra projection. Moreover, local $L^∞$-superconvergence estimates for the velocity along the Gauss lines and for the pressure at the Gauss points are derived for the mixed finite element method, and global $L^∞$-superconvergence estimates for the velocity and the pressure are also investigated by virtue of an interpolation post-processing technique. Meanwhile, some useful a-posteriori error estimators are presented for this mixed finite element method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/933.html} }On the basis of the estimates for the regularized Green's functions with memory terms, optimal order $L^∞$-error estimates are established for the nonFickian flow of fluid in porous media by means of a mixed Ritz-Volterra projection. Moreover, local $L^∞$-superconvergence estimates for the velocity along the Gauss lines and for the pressure at the Gauss points are derived for the mixed finite element method, and global $L^∞$-superconvergence estimates for the velocity and the pressure are also investigated by virtue of an interpolation post-processing technique. Meanwhile, some useful a-posteriori error estimators are presented for this mixed finite element method.