- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Stochastic action integral and Lagrange formalism of stochastic Hamiltonian systems are written through construing the stochastic Hamiltonian systems as nonconservative systems with white noise as the nonconservative 'force'. Stochastic Hamilton's principle and its discrete version are derived. Based on these, a systematic approach of producing symplectic numerical methods for stochastic Hamiltonian systems, i.e., the stochastic variational integrators are established. Numerical tests show validity of this approach.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/785.html} }Stochastic action integral and Lagrange formalism of stochastic Hamiltonian systems are written through construing the stochastic Hamiltonian systems as nonconservative systems with white noise as the nonconservative 'force'. Stochastic Hamilton's principle and its discrete version are derived. Based on these, a systematic approach of producing symplectic numerical methods for stochastic Hamiltonian systems, i.e., the stochastic variational integrators are established. Numerical tests show validity of this approach.