- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The main purpose of this work is the efficient implementation of a multigrid algorithm for solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finite elements for the velocities and linear finite elements to approximate the pressure, is used to solve the problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. An appropriate multigrid method for this discretization of Navier-Stokes equations is designed, based on a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-based implementation of the method, which permits us to perform simulations with a large number of unknowns with low memory consumption and a relatively low computational cost.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/534.html} }The main purpose of this work is the efficient implementation of a multigrid algorithm for solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finite elements for the velocities and linear finite elements to approximate the pressure, is used to solve the problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. An appropriate multigrid method for this discretization of Navier-Stokes equations is designed, based on a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-based implementation of the method, which permits us to perform simulations with a large number of unknowns with low memory consumption and a relatively low computational cost.