TY - JOUR T1 - Oscillation Theory of $h$-Fractional Difference Equations AU - Li , Fanfan AU - Han , Zhenlai JO - Journal of Nonlinear Modeling and Analysis VL - 1 SP - 105 EP - 113 PY - 2021 DA - 2021/04 SN - 3 DO - http://doi.org/10.12150/jnma.2021.105 UR - https://global-sci.org/intro/article_detail/jnma/18780.html KW - $h$-deference equations, Oscillation, Fractional. AB -
In this paper, we initiate the oscillation theory for $h$-fractional
difference equations of the form
where $_a∆^α_h$ is the Riemann-Liouville $h$-fractional difference of order $α$, $\mathbb{T}^a_h :$={$a + kh, k ∈ \mathbb{Z}^+ $∪{0}}, and $a ≥ 0$, $h > 0$. We study the oscillation of $h$-fractional difference equations with Riemann-Liouville derivative, and obtain
some sufficient conditions for oscillation of every solution. Finally, we give an
example to illustrate our main results.