arrow
Volume 18, Issue 5
Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution

Qin Li, Pengxin Liu & Hanxin Zhang

Commun. Comput. Phys., 18 (2015), pp. 1417-1444.

Published online: 2018-04

Export citation
  • Abstract

The method of mapping function was first proposed by Henrick et al. [J. Comput. Phys. 207:542-547 (2005)] to adjust nonlinear weights in [0,1] for the fifth-order WENO scheme, and through which the requirement of convergence order is satisfied and the performance of the scheme is improved. Different from Henrick's method, a concept of piecewise polynomial function is proposed in this study and corresponding WENO schemes are obtained. The advantage of the new method is that the function can have a gentle profile at the location of the linear weight (or the mapped nonlinear weight can be close to its linear counterpart), and therefore is favorable for the resolution enhancement. Besides, the function also has the flexibility of quick convergence to identity mapping near two endpoints of [0,1], which is favorable for improved numerical stability. The fourth-, fifth- and sixth-order polynomial functions are constructed correspondingly with different emphasis on aforementioned flatness and convergence. Among them, the fifth-order version has the flattest profile. To check the performance of the methods, the 1-D Shu-Osher problem, the 2-D Riemann problem and the double Mach reflection are tested with the comparison of WENO-M, WENO-Z and WENO-NS. The proposed new methods show the best resolution for describing shear-layer instability of the Riemann problem, and they also indicate high resolution in computations of double Mach reflection, where only these proposed schemes successfully resolved the vortex-pairing phenomenon. Other investigations have shown that the single polynomial mapping function has no advantage over the proposed piecewise one, and it is of no evident benefit to use the proposed method for the symmetric fifth-order WENO. Overall, the fifth-order piecewise polynomial and corresponding WENO scheme are suggested for resolution improvement.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-18-1417, author = {Qin Li, Pengxin Liu and Hanxin Zhang}, title = {Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution}, journal = {Communications in Computational Physics}, year = {2018}, volume = {18}, number = {5}, pages = {1417--1444}, abstract = {

The method of mapping function was first proposed by Henrick et al. [J. Comput. Phys. 207:542-547 (2005)] to adjust nonlinear weights in [0,1] for the fifth-order WENO scheme, and through which the requirement of convergence order is satisfied and the performance of the scheme is improved. Different from Henrick's method, a concept of piecewise polynomial function is proposed in this study and corresponding WENO schemes are obtained. The advantage of the new method is that the function can have a gentle profile at the location of the linear weight (or the mapped nonlinear weight can be close to its linear counterpart), and therefore is favorable for the resolution enhancement. Besides, the function also has the flexibility of quick convergence to identity mapping near two endpoints of [0,1], which is favorable for improved numerical stability. The fourth-, fifth- and sixth-order polynomial functions are constructed correspondingly with different emphasis on aforementioned flatness and convergence. Among them, the fifth-order version has the flattest profile. To check the performance of the methods, the 1-D Shu-Osher problem, the 2-D Riemann problem and the double Mach reflection are tested with the comparison of WENO-M, WENO-Z and WENO-NS. The proposed new methods show the best resolution for describing shear-layer instability of the Riemann problem, and they also indicate high resolution in computations of double Mach reflection, where only these proposed schemes successfully resolved the vortex-pairing phenomenon. Other investigations have shown that the single polynomial mapping function has no advantage over the proposed piecewise one, and it is of no evident benefit to use the proposed method for the symmetric fifth-order WENO. Overall, the fifth-order piecewise polynomial and corresponding WENO scheme are suggested for resolution improvement.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.150215.250515a}, url = {http://global-sci.org/intro/article_detail/cicp/11074.html} }
TY - JOUR T1 - Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution AU - Qin Li, Pengxin Liu & Hanxin Zhang JO - Communications in Computational Physics VL - 5 SP - 1417 EP - 1444 PY - 2018 DA - 2018/04 SN - 18 DO - http://doi.org/10.4208/cicp.150215.250515a UR - https://global-sci.org/intro/article_detail/cicp/11074.html KW - AB -

The method of mapping function was first proposed by Henrick et al. [J. Comput. Phys. 207:542-547 (2005)] to adjust nonlinear weights in [0,1] for the fifth-order WENO scheme, and through which the requirement of convergence order is satisfied and the performance of the scheme is improved. Different from Henrick's method, a concept of piecewise polynomial function is proposed in this study and corresponding WENO schemes are obtained. The advantage of the new method is that the function can have a gentle profile at the location of the linear weight (or the mapped nonlinear weight can be close to its linear counterpart), and therefore is favorable for the resolution enhancement. Besides, the function also has the flexibility of quick convergence to identity mapping near two endpoints of [0,1], which is favorable for improved numerical stability. The fourth-, fifth- and sixth-order polynomial functions are constructed correspondingly with different emphasis on aforementioned flatness and convergence. Among them, the fifth-order version has the flattest profile. To check the performance of the methods, the 1-D Shu-Osher problem, the 2-D Riemann problem and the double Mach reflection are tested with the comparison of WENO-M, WENO-Z and WENO-NS. The proposed new methods show the best resolution for describing shear-layer instability of the Riemann problem, and they also indicate high resolution in computations of double Mach reflection, where only these proposed schemes successfully resolved the vortex-pairing phenomenon. Other investigations have shown that the single polynomial mapping function has no advantage over the proposed piecewise one, and it is of no evident benefit to use the proposed method for the symmetric fifth-order WENO. Overall, the fifth-order piecewise polynomial and corresponding WENO scheme are suggested for resolution improvement.

Qin Li, Pengxin Liu and Hanxin Zhang. (2018). Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution. Communications in Computational Physics. 18 (5). 1417-1444. doi:10.4208/cicp.150215.250515a
Copy to clipboard
The citation has been copied to your clipboard