Commun. Comput. Chem., 5 (2017), pp. 78-85.
Published online: 2018-10
Cited by
- BibTex
- RIS
- TXT
Based on density functional theory (DFT), the adsorption of atomic and molecular hydrogen and nitrogen on pyrite ${\rm FeS}_2 $ (100) surface was studied. Both atomic ${\rm N}$ and ${\rm N}_2$ molecule prefer to adsorb on the top Fe site. The adsorption of atomic ${\rm N}$ on the surface of ${\rm FeS}_2$ (100) is more stable than ${\rm N}_2.$ Adsorption energy calculation shows that the adsorption stability weakens with the increase of the ${\rm N}$ atom coverage. Hydrogen adsorption differs quite a lot with that of nitrogen adsorption. It is found that atomic ${\rm H}$ could stably adsorbs on ${\rm FeS}_2$ (100) surface at the top Fe site, while ${\rm H}_2$ molecule is quite difficult to adsorb on pyrite ${\rm FeS}_2$ (100) surfaces. The adsorption stability of atomic hydrogen sharply weakens as the ${\rm H}$ coverage increases.
}, issn = {2617-8575}, doi = {https://doi.org/10.4208/cicc.2017.v5.n3.3 }, url = {http://global-sci.org/intro/article_detail/cicc/12746.html} }Based on density functional theory (DFT), the adsorption of atomic and molecular hydrogen and nitrogen on pyrite ${\rm FeS}_2 $ (100) surface was studied. Both atomic ${\rm N}$ and ${\rm N}_2$ molecule prefer to adsorb on the top Fe site. The adsorption of atomic ${\rm N}$ on the surface of ${\rm FeS}_2$ (100) is more stable than ${\rm N}_2.$ Adsorption energy calculation shows that the adsorption stability weakens with the increase of the ${\rm N}$ atom coverage. Hydrogen adsorption differs quite a lot with that of nitrogen adsorption. It is found that atomic ${\rm H}$ could stably adsorbs on ${\rm FeS}_2$ (100) surface at the top Fe site, while ${\rm H}_2$ molecule is quite difficult to adsorb on pyrite ${\rm FeS}_2$ (100) surfaces. The adsorption stability of atomic hydrogen sharply weakens as the ${\rm H}$ coverage increases.