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Abstract. In this paper, we propose two hexagonal Fourier-Galerkin methods for the
direct numerical simulation of the two-dimensional homogeneous isotropic decaying
turbulence. We first establish the lattice Fourier analysis as a mathematical founda-
tion. Then a universal approximation scheme is devised for our hexagonal Fourier-
Galerkin methods for Navier-Stokes equations. Numerical experiments mainly con-
centrate on the decaying properties and the self-similar spectra of the two-dimensional
homogeneous turbulence at various initial Reynolds numbers with an initial flow field
governed by a Gaussian-distributed energy spectrum. Numerical results demonstrate
that both the hexagonal Fourier-Galerkin methods are as efficient as the classic square
Fourier-Galerkin method, while provide more effective statistical physical quantities
in general.
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1 Introduction

The study of two-dimensional homogeneous isotropic decaying turbulence presents sev-
eral interests, because of not only its applications to geophysics and astrophysics, but
also the basic understanding to hydrodynamic turbulence. Far from being a simplified
version of the three-dimensional problem, two-dimensional turbulence presents a rich
panorama of new phenomena [3]. There are many remarkable characteristics in 2D tur-
bulence fields, such as coherent structures [1, 13, 19], inverse energy cascade and direct
enstrophy cascade [2,14,15]. The inverse energy cascade indicates that the energy is trans-
ferred in the inviscid limit from small scales to large scales instead of from large scales
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to small scales as in the three dimensions. While the enstrophy exhibits a direct cascade
process as energy cascade in 3D. The double cascade makes the study of 2D turbulence
even more complicated and challenging than that in 3D.

The Navier-Stokes equation for the two-dimensional turbulence may be written in
the velocity-vorticity form

∂ω

∂t
+∇·(uω)=ν∆ω, (1.1)

ω=∇×u, ∇·u=0, (1.2)

where the kinematic viscosity ν can be interpreted as the reciprocal of the Reynolds num-
ber. Let ψ be the stream function. Then

u=(∂x2ψ,−∂x1ψ), ω=−∆ψ and ∇·(uω)=
∂ψ

∂x2

∂ω

∂x1
− ∂ψ

∂x1

∂ω

∂x2
.

Thus, the Navier-Stokes equation for the two-dimensional turbulence can also be written
as the stream function-vorticity equation,

∂ω

∂t
+

∂ψ

∂x2

∂ω

∂x1
− ∂ψ

∂x1

∂ω

∂x2
=ν∆ω,

−∆ψ=ω.

Owing to (1.2), the Jacobian can be reformulated as ∇·(uω) = ∂x2∂x1(u
2
2−u21)−(∂2x2−

∂2x1)(u1u2), which allows an efficient algorithm for the fast evaluation.
Navier-Stokes equation in two dimensions has the appealing feature to be less de-

manding on a computational level than the three-dimensional case, allowing to reach
relatively high Re numbers in direct numerical simulation (DNS). As a powerful tool,
DNS provides some useful theory check and inspires the deeper thoughts of the statisti-
cal theory. The spectral method has been becoming very popular in the research of highly
accurate numerical simulations since the pioneerwork of Orszag and Patterson [21]. DNS
of 2D turbulence followed an explosive trend in the early stage with an increasing res-
olution from 2562 to 40962 or even higher [2, 4, 5, 11, 18, 23]. Up to the present, DNS of
2D homogeneous isotropic decaying turbulence are usually been carried out with a mil-
lennial resolution using variants of Fourier spectral or pseudospectral methods with the
tensorial Fourier basis functions {ei(k1x1+k2x2)}−n/2≤k1,k2≤n/2−1 subject to periodic bound-
ary conditions [5, 18, 23].

From a general view, the classic Fourier basis functions are just samples of the com-
plex exponential eiξ·x on the rectangular lattice Z

2 in the frequency space, i.e, with the
wave vectors ξ=k∈Z

2. Nevertheless, they actually form a complete orthogonal system
on the Voronoi cell {x∈R

2 :−π≤x1,x2≤π} of the dual lattice 2πZ
2 in the physical space,

which can represent the solution of (1.1)-(1.2) by a Fourier series with its coefficients to
be determined. Inspired by the success of the plane-wave method in quantum physics,
one can also choose a proper lattice L∗ (e.g. 2πA−1

Z
2 with certain nonsingular matrix A)
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in the frequency space such that {eiκ·x :κ∈L∗} form a complete orthogonal system on the
Voronoi cell Ω of the dual lattice L (e.g., AZ

2). Then a Fourier spectral method analogue
to the well-known plane wave method on Ω can be established.

Among various admissible lattices, the hexagonal lattice is undoubtedly one of the
most favorable choices. It has been known for decades that isotropically band-limited
signals are sampled 13.4% more efficiently by hexagonal lattices than by rectangular lat-
tices [22]. And it was also shown that the processing algorithms for hexagonal systems
are similarly 25-50% more efficient than those for rectangular systems with the same fre-
quency resolution [20]. These advantages initiate us to adopt the hexagonal lattice in
frequency space and propose the hexagonal Fourier spectral methods which may pro-
mote the efficiency of the classic rectangular Fourier spectral methods both theoretically
and numerically.

As it can be predicted, the evaluation of the nonlinear term is themain difficulty in the
implementation process of our new methods since it dominates the whole time expense.
Generally speaking, a computational cost in O(n4) arithmetic operators is required in a
direct computation. To conquer this difficulty, we follow the idea in a classic Fourier-
Galerkin spectral method. At first, a discrete Fourier analysis and the corresponding
hexagonal fast Fourier transform (FFT) are introduced, which actually give an efficient
routine for the transformation between the function values in the physical space and the
Fourier coefficients corresponding to the frequency space. Then a fast algorithm in a com-
putational complexity of O(n2 logn) is devised for the nonlinear Jacobian term through
the convolution formula and our FFTs developed.

In all, the primary goal of this paper is to propose the hexagonal Fourier spectral
methods and develop their corresponding fast implementation algorithms with a poten-
tial promotion in efficiency. In the sequel, we shall concentrate ourselves to prove the
effectiveness and efficiency of our new Fourier spectral methods with a series of numeri-
cal experiments appeared in the recent physical study on the DNS of the 2D homogenous
isotropic turbulence. We would like to emphasize that all our experiments here are car-
ried out only to recover some interesting results in a classic DNS study by the rectangular
Fourier-Galerkin method, without any intention of new mechanism exploration or new
phenomena discovery.

The paper is organized as follows. In the next section we present some background
materials on planar lattices, Fourier analysis and fast Fourier transform, which set up a
mathematical foundation to our further study. Both the dual and the uniform hexagonal
Fourier-Galerkin spectral methods are proposed in a unified framework in Section 3 for
the DNS of the 2D homogeneous isotropic turbulence. Efficient implementation features,
including initial conditions and the fast evaluation of the nonlinear term, are described in
details. The performances of our new methods in CPU and GPU environments are also
analyzed. Section 4 is then devoted to a numerical comparison between our new meth-
ods and the classic Fourier spectral method for the study on the decay of homogeneous
isotropic turbulence at both low Reynolds numbers and high Reynolds numbers. The
self-similar behaviors of the energy and the enstrophy spectra are examined numerically
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in Section 5 through our Fourier methods proposed. Finally, conclusions and remarks are
drawn in Section 6.

2 Mathematical foundation

2.1 Planar lattices and Fourier series

A planar lattice is a discrete subgroup of R
2 which represents a regular, periodic array of

points in the plane. One can specify each planar lattice L with a nonsingular matrix A
such that

L=AZ
2=

{
Ak : k∈Z

2
}
.

In this case, A is called a generator matrix of the lattice L. Any plane lattice has a dual
lattice (reciprocal lattice) L∗ given by

L∗=
{
2πx∈R

2 : xty∈Z, ∀y∈L
}
,

where xt denotes the transpose of x, and xty=x·y is the usual Euclidean inner product of
x and y. The generatormatrix of the dual lattice of AZ

2 is A∗:=2πA−t, i.e, (AZ
2)∗=A∗

Z
2

[16].
A bounded domain Ω⊂R

2 is said to (strictly) title the plane R
2 with the lattice L if

∑
κ∈L

χΩ(x+κ)=1, ∀x∈R
2,

where χΩ denotes the characteristic function of Ω. We write this as Ω+L=R
2, and call

such an Ω a primitive cell (fundamental domain) of L. There is no unique way to choose
a primitive cell. The parallelogram

{
Ax : x∈ [1,0)2

}
is an obvious primitive cell of AZ

2;
however, such a primitive cell does not necessarily reveal the underlying symmetry of
the lattice in which it is embedded. Fortunately, the Wigner-Seitz cell (Voronoi cell) gives
a common choice for a primitive cell with the fully symmetry of the given lattice. A
Wigner-Seitz cell about a lattice point is the region which is closer to that point than any
other lattice points. Hereafter, whenever Ω is used as a Wigner-Seitz cell of a lattice L, we
fix it as the primitive Wigner-Seitz cell of L about 0, i.e.,

Ω+L=R
2, and |x|=min

y∈L
|x−y| ∀x∈Ω.

It is worthy to note that the area of a primitive cell Ω is uniquely determined by the
lattice L itself. This invariant, independent of the choice of cell, is denote by |L|. For a
given lattice L=AZ

2, |Ω|= |det(A)|= |L|.
Square lattice. Taking S := 2πI as the generator matrix, one obtains the square lattice
SZ

2 which serves as a simple cubic lattice in the plane. The Wigner-Seitz cell of SZ
2 is

ΩS :=[−π,π)2, meanwhile the parallelepiped primitive cell [0,2π)2 may also be conven-
tionally used. The dual lattice of SZ

2 is exactly the integer lattice Z
2 with the Wigner-

Seitz cell Ω∗
S=[− 1

2 ,
1
2 )

2.
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Figure 1: The square lattice (left), the hexagonal lattice (center) and the dual hexagonal lattice (right). The
polygonal regions are the Wigner-Seitz cells about the origin.

Hexagonal lattice. Taking

H :=

(√
3r 0

−r 2r

)

with r>0 as the generator matrix, one obtains the hexagonal lattice HZ
2, whose Wigner-

Seitz cell is the regular hexagon ΩH :=
{
x∈R

2 :−r≤
√
3
2 x1± 1

2x2,x2< r
}
. Explicitly,

H∗=
π√
3r

(
2 1

0
√
3

)
.

Thus the dual lattice H∗
Z

2 is a dual hexagonal lattice, whose Wigner-Seitz cell is Ω∗
H :=

{
x∈R

2 :− π√
3r
≤

√
3
2 x2± 1

2x1,x1<
π√
3r

}
. In the current paper, we shall fix r= 4

√
4
3π to ensure

|ΩH |= |ΩS|=4π2 and |Ω∗
H |= |Ω∗

S|=1.

Tiling and Fourier analysis are closely related (cf. [12]) due to the following theorem.

Theorem 2.1 (Fuglede [12]). Let Ω be a bounded domain in R
2 and L be a lattice of R

2. Then
Ω+L=R

2 if and only if
{

φκ(x)=eiκ
tx :κ∈L∗

}
is an orthonormal basis,

〈φ,φκ〉=
1

|Ω|
∫∫

Ω
φ(x)φκ(x)dx=δ,κ, ,κ∈L∗. (2.1)

A point x is said to be congruent to y∈R
2 with respect to the lattice L if x∈ y+L.

Further a function f defined on R
2 is called periodic with respect to L if and only if

f (x) = f (y) for any x∈ y+L and y∈R
2. If no confusion would arise, we simply call f

periodic.

Let Ω be any primitive cell of the lattice L. Assume f is a periodic function with
respect to L, which is square-integrable on Ω. Then f has the following Fourier series,

f (x)= ∑
κ∈L∗

f̂κφκ(x), f̂κ = 〈 f ,φκ〉=
f̂ (κ)

|Ω| , (2.2)



26 H. Li / J. Math. Study, 47 (2014), pp. 21-46

where f̂ is the Fourier transform of fχΩ,

f̂ (ξ)=
∫∫

R2
f (x)χΩ(x)e

−iξtxdx=
∫∫

Ω
f (x)e−iξtxdx.

2.2 Discrete Fourier transform

Up to present, we have used the lattice L and its dual lattice L∗ to determine the integral
domain Ω in physical space and the wavenumber κ ∈ L∗ in the reciprocal (frequency)
space, which finally set up a Fourier analysis. To establish a discrete Fourier analysis, we
take a series of lattices L̂n, then choose a proper primitive cell Ω̂n of L̂n to make a finite
set of wavenumbers κ∈ Ω̂n∩L∗ in the reciprocal space, and use the dual Lattice L̂∗n to set
up the quadrature/interpolation nodes z∈Ω∩ L̂∗n in the physical space.

Theorem 2.2 ([16]). Let Ω be a primitive cell of L=AZ
2. Assume B is a non-singular matrix

such that all entries of BtA are integer. Then for any L̂n=2πnBZ
2 with positive integer n,

1

N ∑
z∈Ω∩L̂∗n

eiκ
tz=

{
1, κ∈L∗∩ L̂n,

0, κ∈L∗\ L̂n,
(2.3)

where N :=card(Ω∩ L̂∗n)= |det(nBtA)|.

Further let Ω̂n be the Wigner-Seitz cell of the lattice L̂n. Denote by Υn = Ω∩ L̂∗n the
set of nodes in physical space and by Υ̂n= Ω̂n∩L∗ the set of wave numbers in reciprocal
space. Then it is easy to verify card(Υ̂n)=card(Υn)=N. We define the following forward
and backward discrete Fourier transform (DFT),

f̃κ =
1

N ∑
z∈Υn

f (z)e−iκtz, κ∈ Υ̂n, (2.4)

f (z)= ∑
κ∈Υ̂n

f̃κe
+iκtz, z∈Υn. (2.5)

Then the discrete Fourier coefficient f̃κ provides a spectral approximation to the Fourier

coefficient f̂κ for any κ∈ Υ̂n,

f̃κ
(2.2)
=

1

N ∑
z∈Υn

∑
∈L∗

f̂e
i(−κ)tz (2.3)= ∑

∈κ+L̂n

f̂, κ∈L∗. (2.6)

DFT on square lattices. Let L=SZ
2 and L̂n=n(SZ

2)∗=nZ
2. Then Ω=ΩS and Ω̂n=

nΩ∗
S=[− n

2 ,
n
2 )

2 are the Wigner-Seitz cells of L and L̂n, respectively. Now the lattice DFT
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(-π ,-π )/(- n2 ,-
n

2 ) (π ,-π )/( n2 ,-
n

2 )

(π ,π )/( n2 ,
n

2 )(-π ,π )/(- n2 ,
n

2 )

(-n

2
,-n

2
) (n

2
,-n

2
)

(n

2
,n

2
)(-n

2
,n

2
)

(0, 0) (n, 0)

(n, n)(0, n)

Figure 2: The set of nodes/wavenumbers 2π
n ΛS

n/ΛS
n in physical/reciprocal space (left), the index set ΛS

n =

Z
2∩[− n

2 ,
n
2 )

2 (center) and the congruence index set Λn=Z
2∩[0,n)2 (right) in the classic DFT.

in (2.4)-(2.5) is reduced to

f̃k=
1

n2 ∑
j∈ΛS

n

f ( 2πj
n )e−

2πikt j
n , k∈ΛS

n,

f ( 2πj
n )= ∑

k∈ΛS
n

f̃ke
2πikt j

n , j∈ΛS
n.

where ΛS
n :=Z

2∩[− n
2 ,

n
2 )

2= Υ̂n=
n
2π Υn. Owing to the periodicity, this square lattice DFT

coincides with the classic DFT up to a permutation, such that it can be efficiently evalu-
ated in O(n2 logn) arithmetic operations through the classic FFT.

DFT on dual hexagonal lattices. Let L= HZ
2 and L̂n = nH∗

Z
2. Take Ω = ΩH and

Ω̂n=nΩ∗
H=

{
ξ∈R

2 :− πn√
3r
≤

√
3
2 ξ2± 1

2ξ1,ξ1<
πn√
3r

}
as the Wigner-Seitz cells of the lattice L

and L̂n, respectively. The DFT on dual hexagonal lattices is then defined as follows

f̃H∗k=
1

n2 ∑
j∈Γn

f ( 1nHj)e−
2πikt j

n , k∈ Γ̂n,

f ( 1nHj)= ∑
k∈Γ̂n

f̃H∗ke
2πikt j

n , j∈Γn,

where Γn :=
{
k∈Z

2 :−n≤2k1+k2,2k2+k1,k2−k1<n
}
=
{
k∈Z

2 : 1nHk∈ΩH

}
, and Γ̂n :={

k∈Z
2 :−n≤2k1−k2,2k2−k1,k2+k1<n

}
=
{
k∈Z

2 :H∗k∈nΩ∗
H

}
. The DFT on dual hexag-

onal lattices coincides with the classic DFT up to a permutation, thus can be efficiently
evaluated through classic FFT just as the DFT on square lattices.

DFT on uniform hexagonal lattices. Let L=HZ
2 and L̂n=

πn
r2
HZ

2. Take Ω=ΩH , and

Ω̂= πn
r2

ΩH as their Wigner-Seitz cells. Now the matrix

N=(
n

2r2
H)tH=

(
2n −n
−n 2n

)
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(- n3 ,-
n

3 )

( n3 ,-
2n
3 )

( 2n3 ,-
n

3 )

( n3 ,
n

3 )

(- n3 ,
2n
3 )

(- 2n3 ,
n

3 )

(0, 0) (n, 0)

(n, n)(0, n)

Figure 3: The set of wavenumbers nΩ∗
H∩H∗

Z
2=

{
H∗k : k∈ Γ̂n

}
in reciprocal space (left), the index set Γ̂n

(middle) and its congruent index set Λn (right side). The congruence relation of the index sets provides a
storage scheme for the discrete Fourier coefficients.

(- n3 ,-
2n
3 )

( n3 ,-
n

3 )

( 2n3 ,
n

3 )

( n3 ,
2n
3 )

(- n3 ,
n

3 )

(- 2n3 ,-
n

3 )

(0, 0) (n, 0)

(n, n)(0, n)

Figure 4: The set of quadrature/interpolation nodes ΩH∩n−1HZ
2=

{
n−1Hk :k∈Γn

}
(left side), index set

Γn (middle) and its congruent index set Λn (right side). The congruence relation of the index sets provides a
storage scheme for the function values in physical space.

has integer entries, and the index set ΛH
n :=

{
k∈Z

2 :−n≤ k1,k2,k1+k2≤n−1
}
=
{
k∈Z

2 :

H∗k∈ πn
r2

ΩH

}
=
{
k∈Z

2 : r2

πnH
∗k∈ΩH

}
. Then the DFT on uniform hexagonal lattices takes

the following form

f̃H∗k=
1

3n2 ∑
j∈ΛH

n

f ( r2

πnH
∗ j)e−2πijtN−1k, k∈ΛH

n ,

f ( r2

πnH
∗ j)= ∑

k∈ΛH
n

f̃H∗ke
+2πijtN−1k, j∈ΛH

n ,

for which the hexagonal FFT is designed by a generalized Cooley-Tukey algorithm based
the periodicity matrix factorization

N=nI

(
2 −1
−1 2

)
.

The hexagonal FFT is decomposed into three classic FFTs of size n×n, a series of twid-
dle factor multiplications and a data permutation, which can be fulfilled eventually in
O(n2 logn) arithmetic operations [9, 17, 24].



H. Li / J. Math. Study, 47 (2014), pp. 21-46 29

(-n, 0)

(-n, n) (0, n)

(n, 0)

(n,-n)(0,-n)

(-n, 0) (n, 0) (2n, 0)

(-n, n) (0, n) (2n, n)

Figure 5: The set of nodes/wavenumbers ΩH∩ r2

πnH
∗
Z

2=
{

r2

πnH
∗k :k∈ΛH

n

}
/πn

r2
ΩH∩H∗

Z
2=

{
H∗k :k∈ΛH

n

}

in physical/reciprocal space (left), the index set ΛH
n (center) and its congruent index set ΠH

n =Z
2∩[−n,2n−

1]×[0,n−1].

3 Hexagonal Fourier-Galerkin methods

In this section, we shall propose a lattice Fourier spectral method and its implementation
for the two-dimensional homogeneous isotropic turbulence. This lattice Fourier spectral
method serves a canonical framework for both the hexagonal Fourier spectral methods
and the classic square Fourier spectral method.

3.1 Fourier-Galerkin approximation schemes

Let Ω and Ω̂n be the Wigner-Seitz cell of the lattice L= AZ
2 in the physical space and

the lattice L̂n= 2πnBZ
2 in the reciprocal space, respectively. Assume all entries of BtA

are integer so that a discrete Fourier analysis can be established. Denote Υ̂n=Ω̂n∩L∗ and
N=card(Υ̂n).

The semi-discrete Fourier-Galerkin spectral approximation for the direct numerical
simulation of 2-dimensional turbulence is to find

ω(x,t)= ∑
κ∈Υ̂◦

n

ω̂κ(t)φκ(x)

such that

dω̂κ(t)

dt
+ Ĵκ(t)=−ν|κ|2 ω̂κ(t), κ∈ Υ̂n, (3.1)

where Ĵκ is the Fourier coefficient of ∇·(uω) with respect to the wave-number κ,

Ĵκ = ̂[∇·(uω)]κ =−κ1κ2
̂(u22−u21)κ

+(κ2
2−κ2

1)(̂u1u2)κ,

(̂u1)κ =
iκ2
|κ|2 ω̂κ, (̂u2)κ =− iκ1

|κ|2 ω̂κ.
(3.2)
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Specifically, Ĵ0=[∇̂·(uω)]0=0.
As for time integration, we propose the third-order semi-implicit Adams-Bashforth

(AB3) scheme,

1

∆t

3

∑
l=0

am−lω̂
m−l
κ +

3

∑
l=1

bm−l Ĵ
m−l
κ =−ν|κ|2 ω̂m

κ , m≥3, κ∈ Υ̂n,

where a0=
11
6 , a1=−3, a2=

3
2 , a3=− 1

3 , and b1=3,b2=−3,b3=1. And the time step ∆t is
small enough to match the CFL constraint.

Two types of hexagonal Fourier-Galerkin methods are proposed in this paper for the
direct numerical simulation of the two-dimensional homogeneous isotropic turbulence.

Dual hexagonal Fourier-Galerkin method (Method I). Let L=HZ
2 and Ω=ΩH . Fur-

ther take L̂n=nH∗
Z

2 and Ω̂n=nΩ∗
H . Then (3.1) is reduced to the dual hexagonal Fourier-

Galerkin method for the HZ
2-periodic problem of (1.1)-(1.2) with Υ̂n=

{
H∗k :k∈ Γ̂n

}
.

Uniform hexagonal Fourier-Galerkin method (Method II). Let L=HZ
2 and Ω=ΩH .

Meanwhile we take L̂n=
πn
r2
HZ

2 and Ω̂n=
πn
r2

ΩH . Then (3.1) is reduced to the uniform

hexagonal Fourier-Galerkinmethod for the HZ
2-periodic problem of (1.1)-(1.2) with Υ̂n={

H∗k :k∈ΛH
n

}
.

Besides, we shall compare the hexagonal Fourier-Galerkin methods with the classic

square Fourier-Galerkin method (Method III). The later one is just enforced by setting
L=SZ

2, L̂n=nZ
2 and Ω̂n=−[ n2 ,

n
2 )

2 such that Υ̂n=ΛS
n, which is commonly used for the

numerical study on homogeneous turbulence.

3.2 Initial conditions

Taking the Fourier transform on (1.2), we have

iξ1û2(ξ)−iξ2û1(ξ)= ω̂(ξ), iξ1û1(ξ)+iξ2û1(ξ)=0,

which gives

û(ξ)=(û1(ξ),û2(ξ))
t=

ω̂(ξ)

i|ξ|2 (−ξ2,ξ1)
t.

Thus, by applying the Parseval’s theorem on the formula of the kinetic energy, one ob-
tains

E=
1

2|Ω|
∫∫

Ω
|u(x)|2dx= 1

8π2|L|
∫∫

R2
|û(ξ)|2dξ=

1

2|L|
∫∫

R2

|ω̂(ξ)|2
|2πξ|2 dξ.

By using the polar coordinates ξ=(kcosθ,ksinθ)t, one further derives

E=
∫ ∞

0

[ 1

8π2k|L|
∫ 2π

0

∣∣ω̂(kcosθ,ksinθ)
∣∣2dθ

]
dk :=

∫ ∞

0
E(k)dk,
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where E(k) = 1
8π2k|L|

∫ 2π
0

∣∣ω̂(kcosθ,ksinθ)
∣∣2dθ is the energy spectrum of wave number

magnitude k. Suppose ω̂ is isotropic (axisymmetric), i.e, |ω̂(ξ)|=|ω̂(|ξ|,0)| for any ξ∈R
2.

Then

E(k)=
1

4πk|L|
∣∣ω̂(κ)

∣∣2 (2.2)=
|L|
4πk

∣∣ω̂κ

∣∣2, |κ|= k.

We specify initial conditions for our flow field by assuming an energy spectrum of
wave number magnitude k of the general form

E(k,t=0)=
(2s+1)s+1

2s+1Γ(s+1)
ū20k

−1
c

(
k

kc

)2s+1

exp

[
−(s+

1

2
)

(
k

kc

)2
]
, s≥0. (3.3)

The initial vorticity field ω0 is generated in frequency space with random phases and
with amplitude corresponding to (3.3), i.e.,

ω̂0,κ =

(
4π|κ|E(|κ|,0)

|L|

)1/2

exp(2πiζ),

with ζ a different uniform deviate for each κ subject to the requirement of complex con-
jugate symmetry of the Fourier components.

Given the initial energy spectrum E(k,0), a numerical simulation is uniquely identi-
fied by its Reynolds number R(t) at t=0, where the Reynolds number at time t is defined
by

R(t)=
ū(t)l̄(t)

ν
, ū= 〈u2〉1/2, ω̄= 〈ω2〉1/2, l̄= ū/ω̄, (3.4)

hereafter we use the notations 〈·2〉 for 〈·,·〉. In the case of the initial energy spectrum (3.3),
one has

ū(0)= ū0, ω̄(0)=

√
2s+2

2s+1
ū0kc, l̄(0)=

√
2s+1

2s+2
k−1
c , R(0)=

√
2s+1

2s+2

ū0
kcν

. (3.5)

3.3 Spectral coefficients of Jacobian

Owing to (3.2), to compute the Fourier coefficients Ĵκ of the Jacobian, it is pivotal to deter-
mine the Fourier coefficients of product of two functions u,v∈Hn=

{
φκ :κ∈ Υ̂n

}
. Owing

to the discrete orthogonality (2.3), the Fourier coefficients (̂uv)κ,κ∈Υ̂n :=Ω̂n∩L∗ are given
by the following convolution sum,

ŵκ =(̂uv)κ = ∑
∈Υ̂n

ûv̂κ−. (3.6)
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As we know, the direct summation implied by (3.6) takes O(n4) arithmetic operators.
This is prohibitively expensivewhen comparedwith pseudospectral approximation. How-
ever, the aliasing relation (2.6) enables us to use the transformmethod to evaluate (3.6) in
O(n2 logn) operations [6]. The key to this method is the de-aliasing technique by using
FFTs with the lattice L̂m=2πmBZ

2 rather than L̂n=2πnBZ
2 just as in a Cartesian case [6],

where m≥ 3/2n. We now give a short description. First extend the Fourier coefficients
according to

ũκ =

{
ûκ, κ∈ Υ̂n,

0, κ∈ Υ̂m\Υ̂n,
ṽκ =

{
v̂κ, κ∈ Υ̂n,

0, κ∈ Υ̂m\Υ̂n.

Next evaluate u(z),v(z),z∈Υm=Ω∩ L̂∗m through backward FFTs,

u(z)= ∑
κ∈Υ̂m

ũκe
2πiκtz, v(z)= ∑

κ∈Υm

ṽκe
2πiκtz,

and get the function values w(z)=u(z)v(z),z∈Υm. Further by a forward FFT, we obtain
the discrete Fourier coefficients

w̃κ =
n2

m2N ∑
z∈Υm

w(z)e−2πiκtz, κ∈ Υ̂m.

Now ŵκ = w̃κ for any κ∈ Υ̂n, and we derive the Fourier coefficients (̂uv)κ,κ∈ Υ̂n in three
FFTs.

As the Jacobian (3.2) is concerned, one mainly needs two backward FFTs to get the

function values of u1 and u2, and two forward FFTs to get the discrete coefficients ˜(u22−u21)κ

and (̃u1u2)κ, κ∈ Υ̂m, which only amount up to O(m2 logm) arithmetic operations.

3.4 Performance analysis

Numerical experiments are performed in a heterogeneous system equipped with GPU
devices. Each node has a dual Hexacore Intel X5660 CPU (12M Cache, 2.80GHz, 6.40
GT/s Intel QPI) and 32GB Memory. Each node is connected with Nvidia Tesla M2070
GPU (1.15GHz, 448 cores, 6GB 1.5GHz DDR5 Memory). For classic FFTs, the FFTW Li-
brary 3.0 is adopted in CPU programs, while the CUFFT Library 4.0 is used in GPU pro-
grams. CUFFT has a FFTW compatible data layouts but is optimized only for the input
data size n=2a3b5c7d in each direction.

We show in this section the performance of the hexagonal Fourier-Galerkin methods
for the two-dimensional homogeneous turbulence with a total resolution N= 642,1282,
2562, ··· ,40962. As a comparison, the performance of the classic square Fourier-Galerkin
method is also demonstrated. Recall that n =

√
N for both the dual hexagonal and

classic square Fourier-Galerkin methods (resp. Method I and III), while we use n ≈
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√
N/3 to match the factorization constraint n= 2a3b5c7d. More explicitly, we set n=

36(2232),75(3152),147(203172),··· ,2352(233172) in the uniform hexagonal Fourier-Galerkin
method (Method II) for N=64,128,256,··· ,4096 such that 1−3n2/N≈5.08%,−3.00%,1.08%,
··· ,1.08%, respectively.

The algorithm described in Section 3.3 with m=3/2n, which is usually referred to as
the 3/2-rule for de-aliasing, is adopted for the evaluation of the Fourier coefficients of the
nonlinear Jacobian term. To avoid the expensive, time-consuming data transfer between
the host (CPU) memory and the devise (GPU) memory in the GPU programs, we would
like to keep the entire datum residing on the devise memory all over the time.

At first, the average elapsed time per time step in the CPU programs for Method I, II
and III are reported in Table 1, respectively. Roughly speaking, the elapsed time for the
Jacobian calculation takes more than 80% of the total elapsed time, so that the total time
expense is dominated by the cost of FFTs for the computation of the Jacobian (also refer
to Fig. 6). Another obvious observation is that Method II becomes more efficient as the
resolution increases, and it is about 2 times faster than other methods for N≥40962. This
is due to our hexagonal FFT algorithms, which decompose the entire FFT into 3 small
classic FFTs, and thus make full use of CPU cache to improve the hit rate of memory
access. We also find that time cost forMethod I is only slightly higher than that ofMethod
III, since Method I uses the same classic FFT as Method III, and differs from Method III
only in a less regular data structure (refer to Figs. 2-4), which finally results in a slowdown
in the program speed.

Figure 6: The elapsed time for the Jacobian evaluation per time step in comparison to the total elapsed time
in three methods with different resolutions on CPU (left), and M2070 GPU (right).

Moreover, we present the average elapsed time per time step for the GPU programs
in Table 2. Significant acceleration has been demonstrated in comparison to the corre-
sponding CPU programs. For a high resolution N=40962, a 45-fold speedup is obtained
for Method I, and even higher speedup (49x) for Method III. However, the GPU perfor-
mance of Method II is relatively low owing to the complicated non-uniform data struc-
ture and the corresponding conditional branches. On a conditional branch where the
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Table 1: The elapsed time (ms) for CPU programs.

N 642 1282 2562 5122

Method Jacobian Total Jacobian Total Jacobian Total Jacobian Total

I 1.08 1.13 6.42 6.64 20.0 20.8 97.3 104.

II 1.38 1.75 6.08 7.34 24.2 29.2 115. 136.

III 0.90 0.94 5.34 5.56 18.9 19.5 93.7 99.4

N 10242 20482 40962 81922

Method Jacobian Total Jacobian Total Jacobian Total Jacobian Total

I 501. 531. 3.03E+3 3.34E+3 2.16E+4 2.29E+4 9.62E+4 1.01E+5

II 542. 625. 2.28E+3 2.60E+3 1.08E+4 1.21E+4 4.23E+4 4.73E+4

III 472. 504. 3.00E+3 3.30E+3 2.14E+4 2.19E+4 8.42E+4 1.01E+5

Table 2: The elapsed time (ms) for GPU programs.

N 642 1282 2562 5122

Method Jacobian Total Jacobian Total Jacobian Total Jacobian Total

I 0.179 0.226 0.411 0.500 1.62 2.02 6.43 7.97

II 0.456 0.480 0.883 0.910 2.72 2.76 1.15 11.6

III 0.163 0.191 0.340 0.423 1.38 1.76 5.60 7.11

N 10242 20482 40962 81922

Method Jacobian Total Jacobian Total Jacobian Total Jacobian Total

I 24.7 30.8 95.7 122. 424. 504. - -

II 40.8 40.9 152. 153. 636. 637. - -

III 21.5 27.4 83.3 107. 365. 444. - -

threads diverge in which path to take, the threads taking different paths have to run se-
rially. In spite of the serious performance degradations caused by thread divergence,
Method II still attains a speedup about 20 times on the Nvidia Tesla M2070 GPU.

We shall conclude this sectionwith Fig. 7, which indicates the Gflops output decreases

Figure 7: Gflops statistics for three kinds of Fourier-Galerkin spectral methods versus different scale N.
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evidently in our CPU programs – especially in those for Method I and Method III, as
N increases. Fortunately, however, there is a continuing uptrend in the Gflops output
in the GPU programs as the resolution N increases, which partially demonstrates that
GPU implementation of our Fourier-Galerkin methods has a better scalability and thus
is adequate for the DNS of 2-D homogeneous isotropic decaying turbulence.

4 Decay of homogeneous isotropic turbulence

4.1 Decay at low Reynolds numbers

We first consider the evolution of the flow field at relatively low initial Reynolds num-
bers. Chasnov postulated the existence of a critical initial Reynolds number above which
the Reynolds number of the turbulence increases asymptotically, and below which it de-
creases to small values eventually attaining the final period of decay [8].

Just as in [8], we define the logarithmic derivative in time of the energy and enstrophy
as follows,

p=
dln〈u2〉
dlnt

=−2νt
〈ω2〉
〈u2〉 , q=

dln〈ω2〉
dlnt

=−2νt
〈(∇ω)2〉
〈ω2〉 . (4.1)

The advantage of the above definition is obvious — the logarithmic derivatives are just
the power-law exponents if the energy and enstrophy decay as power laws in time. More-
over, we shall use the following normalized time

τ=
∫ t

0
dt〈ω2〉1/2, (4.2)

which can be considered a measure of the number of eddy turnover times undergone by
the flow at time t. The normalized time τ best represents the time interval over which
one expects significant changes in the power-law exponent.

Numerical results are first reported for the energy and enstrophy decay of the dual
hexagonal Fourier-Galerkinmethod (Method I) and the uniform hexagonal Fourier-Galerkin
method (Method II) with initial Reynolds number R(0) = 8 and spatial resolution N=
20482. The logarithmic derivatives p and q, are plotted versus τ in Fig. 8, in the left
and the middle columns for Method I and Method II, respectively. It is obvious that,
at large times, p and q approach −2 and −3, respectively, and the final period of decay
solution [7, 8]

〈u2〉∝B2(νt)
−2, 〈ω2〉∝B2(νt)

−3,

is approached asymptotically in two hexagonal Fourier spectral methods. To make a
deep comparison, we plot the logarithmic derivatives p and q of the classic square Fourier-
Galerkin method (Method III) in the right column. The plots of two hexagonal Fourier-
Galerkin methods agree well with those of the classic Fourier-Galerkin method, so that
no significant differences can be observed.
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Figure 8: Evolution of the logarithmic derivative of the energy (p) and enstrophy (q) for R(0)=8 with N=20482.
Left: Method I – the dual hexagonal Fourier-Galerkin method; middle: Method II – the uniform hexagonal
Fourier-Galerkin method; right: Method III – the classic square Fourier-Galerkin method.
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Figure 9: Time evolution of the Reynolds number R for R(0)=14,15.73 and 18 with N=20482. Left: Method
I; middle: Method II; right: Method III.

Next, we consider some larger initial Reynolds numbers. The numerical experiments
are performed corresponding to kc=300, ū0=1 and R(0)=14,15.73,18 in spatial resolution
N= 20482. Just as in the classic square Fourier-Galerkin method, the numerical results
presented in Fig. 9 demonstrate the existence of a critical Reynolds number Rc ≈ 15.73
in the two hexagonal Fourier-Galerkin methods such that for R(0)< Rc the Reynolds
number decays monotonically in time and for R(0)>Rc the Reynolds number decreases
initially, and then increases asymptotically.

Results for the logarithmic derivatives of the energy and enstrophy with R(0) = Rc

versus τ are shown in Fig. 10 which yield an approximate power-law decay of the energy
as t−1, and an approximate enstrophy decay as t−2. An analytical derivation of these
power-law exponents in [8] gives

〈u2〉= 1

2
νR′2

c t
−1, 〈ω2〉= 1

4
R′2
c t

−2, (4.3)

where R′
c ≈ 12.5 is a time-independent constant which the Reynolds number R(t) ap-

proaches at large times. The energy and enstrophy decay for R(0) = 15.73 is compared
to the analytical prediction (4.3). The simulation results of each Fourier-Galerkin method
and analytical solution are in good agreement at large times.
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Figure 10: Evolution of the logarithmic derivative of the energy (p) and enstrophy (q) for R(0)=14,15.73,18

with N=20482. left: Method I; middle: Method II; right: Method III.
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Figure 11: Time evolution of the energy and enstrophy for R(0)= 15.73 with N= 20482. The straight lines
indicate the analytic prediction in (4.3). Left: Method I; middle: Method II; right: Method III.

4.2 Decay at high Reynolds numbers

When R(0)>Rc, the Reynolds number R(t) increases asymptotically, and some unique
similarity states exist since all flows with initial Reynolds numbers greater than Rc pre-
sumably approach infinite Reynolds numbers as t→∞.

We present in this subsection the results of direct numerical simulations of two-dimen-
sional turbulence decay using the uniform hexagonal Fourier-Galerkin methods with the
spatial resolution N=40962 and sufficiently small time step ∆t such that the small scales
of the turbulence are adequately resolved. The initial energy spectrum is chosen with
ū0= 1 and with kc ranging from 600,512,400,256,128,64,32 to 16 as the initial Reynolds
number increases from 32,64,128,256,512,1024,2048 to 4096. Numerical results are com-
pared with those derived from the classic square Fourier-Galerkin method.

The time evolution of the kinetic energy, enstrophy and palinstrophy, normalized us-
ing ū0, v̄0 and l̄0, for the different values of R(0) are shown in Figs. 12-14. Numerical
results of all the hexagonal and square Fourier-Galerkin methods state clearly that the
energy and enstrophy decay monotonically in time, while the palinstrophy grows ini-
tially and finally decays after reaching its peak. The predictions by different numerical
experiments agree well with the theoretical analysis in [8].
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Figure 12: Time evolution of the kinetic energy for R(0) = 32,64, ··· ,4096 with N= 40962. Left: Method I;
middle: Method II; right: Method III.
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Figure 13: Time evolution of the enstrophy for R(0)=32,64, ··· ,4096 with N=40962. Left: Method I; middle:
Method II; right: Method III.
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Figure 14: Time evolution of the palinstrophy for R(0) = 32,64, ··· ,4096 with N= 40962. Left: Method I;
middle: Method II; right: Method III.

The logarithmic derivative of the energy p, plotted in Fig. 15, is observed to be an
increasing function of the initial Reynolds number, which reveals that the energy decay
becomes less steep with increasing initial Reynolds numbers. This observation is also
rather obvious from the energy decay itself in Fig. 12.

Further, different qualitative behaviours of p are found in [8] for low and high initial
Reynolds numbers. For R(0)≤ 256, a rapid initial decay of the energy is observed in
Fig. 12, which subsequently becomes less steep as time evolves due to the increasing
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Figure 15: Time evolution of the logarithmic derivative of the energy (p) for R(0) = 32,64, ··· ,4096 with

N=40962. Left: Method I; middle: Method II; right: Method III.
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Figure 16: Time evolution of the logarithmic derivative of the enstrophy q for R(0) = 32,64, ··· ,4096 with

N=40962. Left: Method I; middle: Method II; right: Method III.

Reynolds number of the turbulence. This means p decreases to a minimum and then
increases in time, just as shown in Fig. 15. However, the flows with high initial Reynolds
number (R(0)≥512) are nearly inviscid in somuch that the energy, Figs. 12 and 15, decays
very little over the times simulated. Moreover, the magnitude of p is quite small, and the
slow decrease of p in time implies that the energy decay is steepening as time evolves.

Meanwhile, no universal decay exponent of the enstrophy, Fig. 16, at large times for
all initial Reynolds numbers greater than Rc is observed. However, as Chasnov discov-
ered, the long-time decay exponent for R(0)> 1024 appears to change only slightly and
the asymptotic decay law for these large Reynolds numbers behaves approximately as
t−0.8. Besides, since the energy dissipation is proportional to the enstrophy, the change in
the qualitative behaviour of the logarithmic derivative of the energy coincides with the
power-law exponent of the enstrophy increasing from less than to greater than negative
one.

Finally, we emphasise that both plots of the two hexagonal Fourier-Galerkin methods
are almost identical to those of the classic square Fourier-Galerkin method, except for the
logarithmic derivative of the enstrophy in Fig. 16, where slight differences are observed
among the three types of spectral methods.
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5 Self-similar energy/enstrophy spectra

5.1 Self-similar energy spectra

The energy spectrum E(k,t) of two-dimensional turbulence is found to decay self-similarly,
i.e., without change of shape.

A self-similar decay of the entire spectrum occurs for the critical initial Reynolds num-
ber R(0) = Rc. The time evolution of the dimensionless energy spectrum E(k)/ū20 l̄0 for
R(0)= 15.73 versus dimensionless wave number kl̄0 for τ = 0,5,10, ··· ,35 is first plotted
in Fig. 17. To validate the self-similar decay of the energy spectrum, we define the self-
similar energy spectrum Ê(k̂) using the quantities in (3.4) [8],

E(k,t)= ū2 l̄ Ê(k̂), k̂= kl̄, (5.1)

and then plot Ê(k̂) versus k̂ in Fig. 18. A near-perfect collapse of Ê(k̂) at the different times
is observed in each plot in Fig. 18, which indicates a self-similar decay of the spectrum
over all wavenumber. The characteristic spectrum E(k,t) = B2(t)k3 is quite obvious at
low wave numbers in the plots of the uniform hexagonal Fourier-Galerkin methods as
well as that of the classic square Fourier-Galerkin method. While a careful comparison
indicates that the uniform hexagonal Fourier-Galerkin method (Method II) gives us the
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Figure 17: Evolution of the normalized energy spectrum at time τ = 0,5,10, ··· ,35 with R(0) = 15.73 with

N=40962.
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Figure 18: Rescaling of the energy spectrum of Fig. 17 with N=40962.
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Figure 19: The energy spectrum at time t=0,10,20, ··· ,120 for R(0)=64 with N=40962.
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Figure 20: Rescaling of the energy spectra in Fig. 19 with N=40962.

most ideal plot. Moreover, an analytic prediction of the low wavenumber coefficient of
the spectrum for R(0)=Rc in [8] gives

B2(t)=ν3R′2
c t,

which indicates substantial nonlinear backscatter of energy from small-to-large scale even
for this low Reynolds number turbulence.

We further examine the time evolution of the energy spectra for flows with large ini-
tial Reynolds number R(0)>Rc. The time evolution of the spectra for R(0)=64,256, and
4096 are shown in Fig. 19, Fig. 21 and Fig. 23, respectively. For a better validation of the
self-similar energy spectrum, the self-similar spectra obtained using (5.1) are plotted in
Figs. 20, 22 and 24, immediately below the corresponding figure for the spectra evolution.
It appears from the reasonable collapse of the spectra at different times that the decay of
two-dimensional turbulence at large Reynolds number is also self-similar in the energy
containing scales.

In Figs. 20, 22 and 24, we have plotted as a dashed line the expected k3 low wave
number behavior for two-dimensional turbulence. Moreover, Batchelor pointed that the
energy spectrum in fully developed turbulence will acquire the self-similar E(k) ∝ k−3

over the so-called “inertial range”, i.e., wavenumbers k extending from the “energy-
containing” scale wavenumber k0 to the viscous scale wavenumber kν∼ν−1/2. An inertial
subrange appears to have developed in Figs. 20 and 22 for R(0)= 256 and R(0)= 2048,
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Figure 21: The energy spectrum at time t=0,10,20, ··· ,120 for R(0)=256 with N=40962.
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Ê
(k̂

)
k̂

k̂
-3

k̂
3

Figure 22: Rescaling of the energy spectra in Fig. 21 with N=40962.
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Figure 23: The energy spectrum at time t=0,10,20, ··· ,120 for R(0)=4096 with N=40962.
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Figure 24: Rescaling of the energy spectra in Fig. 23 with N=40962.
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which is slightly steeper than the predicted k−3 behavior. In particular, when the initial
Reynolds number increases to R(0)=4096, this inertial subrange (in Fig. 24) developed in
the two hexagonal Fourier-Galerkin methods perfectly matches the predicted k−3 inertial
subrange behaviour for two-dimensional turbulence.

5.2 Self-similar enstrophy spectra

Batchelor [2] predicted that the enstrophy spectrum in fully developed turbulencewill ac-
quire the self-similar form Ω(k)∝χ2/3k−1 (with χ=ν〈|∇ω|2〉) over a range of wavenum-
bers k extending from the “energy-containing” scales, say around wavenumber k0, to the
viscous scales, say around kν∼ν−1/2, i.e., over the range k0≪k≪kν, the so-called “inertial
range”. Batchelor’s theory of two-dimensional turbulence is concluded by assuming that
there is a finite, non-zero enstrophy dissipation χ in the limit of infinite R. This theory has
been successful in describing certain aspects of numerical simulations at high Reynolds
numbers. However, Dritschel et al. [10] found that the enstrophy dissipation in fact van-
ishes for flows with finite vorticity, and the non-zero enstrophy dissipation assumption
is not true. After a careful observation together with a mathematical analysis of vanish-
ing χ, Dritschel finally made a simple modification of Batchelor’s theory by replacing the
enstrophy spectrum χ2/3k−1 with 〈ω2〉k−1(lnR)−1.

We take the initial condition (3.3) with s=7/2, kc=
√
32/π and ū0=1 such that

E(k)=

√
2π2

107520
k8exp

[
−8π(k/8)2

]
,

which peaks at kc≈3.2 and is more than 1036 times smaller by k=32. Such a spectrum is
already peaked at low wavenumbers, no significant inverse energy cascade takes place
over the short duration of our simulations.

The viscosity is chosen so that the approximate viscous wavenumber occurs at 3/4 of
the maximum effective wavenumber n/2 in the classic square Fourier-Galerkin method,
i.e., ν=4π/(3n/8)2. This choicewas found to ensure a finite initial vorticitywith ‖ω(0)‖∞

≈4π and adequate dissipation at high wavenumbers to resolve the statistics of 〈(∆ω)2〉
and other fine-scale quantities.

Numerical experiments have been performed with the spatial resolution N= 40962,
and the initial Reynolds number R(0)=5.55×104 (in view of (3.5)) using the two hexago-
nal Fourier-Galerkin methods. These resolutions are high enough to examine the nature
of dissipation in two-dimensional turbulence. Numerical results are, once again, com-
pared with those of the classic Fourier-Galerkin method.

Since the behaviour of the enstrophy dissipation depends on the palinstrophy evo-
lution, we first concentrate on the palinstrophy spectra, which are shown in Fig. 25. In-
creasingly, a range close to the classical k1 spectrum develops at low wavenumbers. The
spectrum has filled out completely by the palinstrophy peak, and afterward the spec-
trum at moderate to high wavenumbers decays exponentially while preserving its basic
shape. It is meaningful to say that the turbulence is “fully developed” by the time the
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Figure 25: Palinstrophy spectra k2Ω(k,t) for N=40962 at t=0 and at times when the palinstrophy is half its

peak value (and growing), at its peak, and half its peak (and decaying). A prediction of k1 is shown as a dashed
line. Left: Method I; middle: Method II; right: Method III.
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Figure 26: The scaled enstrophy spectra Ω(k)lnR/〈ω2〉 at the peak enstrophy dissipation time for N=10242

(grey thin), N=20482 (thin) and N=40962 (thick). A reference slope of k−1 is shown as a dashed line.
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Figure 27: The scaled enstrophy spectra Ω(k)lnR/〈ω2〉 at the final time for N=10242 (grey thin), N=20482

(thin) and N=40962 (thick). A reference slope of k−1 is shown as a dashed line.

palinstrophy reaches its maximum. Fig. 25 exhibits no obvious distinction between the
palinstrophy evolutions of the three cases. While the spectrum at low wavenumbers is
much closer to the reference k1 slop in the plot for Method II.

Further the scaled enstrophy spectra Ω(k)lnR/〈ω2〉 at the peak enstrophy dissipa-
tion time and the final time for N= 10242,20482 and 40962 have been shown in Fig. 26
and Fig. 27, respectively. The curves collapse together over the common inertial ranges.
An interpretation of this phenomena is that dissipation is playing an increasingly benign
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role as R→∞. And the 〈ω2〉(klnR)−1 enstrophy spectrum reflects that a fixed amount
of enstrophy must spread itself ever more thinly across a widening inertial range as the
Reynolds number grows. Once again, there is only a slight difference between the simula-
tion results of the three kinds of Fourier-Galerkin spectral methods. Meanwhile, Method
II provides us a slop of the enstrophy spectra over the “inertial range” closer to k−1, which
demonstrates the modified self-similarity theory of Dritschel.

6 Conclusion

We have proposed two hexagonal Fourier-Galerkin spectral methods for the direct nu-
merical simulation of the two-dimensional homogeneous isotropy freely-decaying tur-
bulence to obtain an even better sampling/approximation efficiency to the band lim-
ited/isotropic functions in comparison to the classic rectangular Fourier spectral method.
As the soul of the implementation of the approximation scheme, an efficient algorithm
for evaluating the de-aliased Fourier coefficients of the nonlinear term is well designed.
By adopting some variants of FFTs, our new Fourier spectral methods preserve the high
efficiency of the classic Fourier spectral method; and a higher performance can even
be attained in our methods. Numerical experiments show that our hexagonal Fourier-
Galerkin spectral methods acquire a slightly better statistical results in general than those
of the classic rectangular Fourier spectral method, which are in agreement with the corre-
sponding physical theories. Anyway, hexagonal Fourier-Galerkin spectral methods pro-
vide alternative choices for the DNS of the two-dimensional isotropy turbulence indeed.
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