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Abstract

For large and sparse saddle point problems, Zhu studied a class of generalized local

Hermitian and skew-Hermitian splitting iteration methods for non-Hermitian saddle point

problem [M.-Z. Zhu, Appl. Math. Comput. 218 (2012) 8816–8824 ]. In this paper, we

further investigate the generalized local Hermitian and skew-Hermitian splitting (GLHSS)

iteration methods for solving non-Hermitian generalized saddle point problems. With

different choices of the parameter matrices, we derive conditions for guaranteeing the con-

vergence of these iterative methods. Numerical experiments are presented to illustrate the

effectiveness of our GLHSS iteration methods as well as the preconditioners.
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1. Introduction

Consider the following two-by-two block linear systems of the form

[

A B∗

−B C

] [

x

y

]

=

[

f

g

]

, (1.1)

where A ∈ Cn×n, B ∈ Cm×n, C ∈ Cm×m, x, f ∈ Cn, y, g ∈ Cm with m ≤ n. B∗ denotes the

conjugate transpose of the matrix B.

The two-by-two block linear system (1.1) is often called as a generalized saddle point problem

with C 6= O and a saddle point problem with C = O, which is important and arises in a

large number of scientific and engineering applications, such as the field of computational fluid

dynamics [17], mixed finite element approximations of elliptic partial differential equations

[10], restrictively preconditioned conjugate gradient methods [26, 28], interior point methods in

constrained optimization [7]. For more applications or a comprehensive survey one can refer to

[9].

As is known, there are two kinds of methods to solve the linear systems: direct methods

and iterative methods. Direct methods are widely employed when the size of the coefficient

matrix is not too large, and are usually regarded as the robust methods. However, frequently,

matrices A and B are large and sparse, so iterative methods, such as Uzawa type methods
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[3, 6, 11, 12, 13, 15, 16, 19, 20, 22, 23, 31], HSS-type iteration methods [1, 2, 4, 5, 27], as well as pre-

conditioned Krylov subspace iteration methods [14, 18], become more attractive than direct

methods for solving the systems (1.1). In the case of A being a Hermitian positive definite, a

large amount of efficient methods as well as their numerical properties have been studied in the

literature. Bai et al. [2] established the Hermitian and skew-Hermitian splitting (HSS) iteration

method and a class of preconditioned Hermitian and skew-Hermitian splitting (PHSS) iteration

method [5] for general non-Hermitian linear system, which naturally result in the HSS-type

iteration methods for solving the non-Hermitian(generalized) saddle point problems, i.e., the

case of A being non-Hermitian. For example, Benzi and Golub [8] directly applied the HSS it-

eration technique to the non-Hermitian (generalized) saddle point problems. A preconditioned

Hermitian and skew-Hermitian (PHSS) method for solving saddle point problem (1.1) was fur-

ther presented by Bai et al. [5] and the accelerated Hermitian and skew-Hermitian (AHSS)

splitting methods by Bai and Golub [1]. The more HSS-type iteration methods can be found

in [21, 24, 25, 30]. Recently, Jiang et al. [21] proposed a local Hermitian and skew-Hermitian

splitting (LHSS) iteration method and a modified LHSS iteration method (MLHSS) for the

non-Hermitian saddle point problems with matrix C = O by adding the proper parameter ma-

trices to the Hermitian and skew-Hermitian parts of A and (2,2) zero block matrix in the split

matrices, respectively. Furthermore, Zhu [32] investigated a generalized local Hermitian and

skew-Hermitian splitting method (GLHSS) by adding one more parameter matrix to the (2,1)

position in the first matrix of the splitting. These iteration methods can be applied to solve

the non-Hermitian generalized saddle point problems with the restriction condition that C is

Hermitian positive semi-definite by transforming the case of C 6= O into its equivalent form

of C = O. These mean that these methods are not appropriate for solving the non-Hermitian

generalized saddle point problems with C being Hermitian positive definite. To bridge this gap,

in this paper we use the same parameter matrices strategy as in [32] and propose a general-

ized local Hermitian and non-Hermitian splitting iteration method (still called GLHSS method)

for the non-Hermitian generalized saddle point problems with the matrix C being Hermitian

positive definite. The convergence properties are also discussed.

The rest of the paper is organized as follows. Section 2 gives the GLHSS iteration method for

non-Hermitian generalized saddle point problems and the convergence properties are discussed

under certain conditions for the case C being a special Hermitian positive definite. In Sections

3, we derive several algorithms by different choices of the parameter matrices. We simply

describe the effectiveness of the GLHSS splitting presented in this paper as a preconditioner

for preconditioned Krylov subspace methods such as GMRES method in Section 4. Section 5

provides some numerical experiments to illustrate our theory and some concluding remarks are

given in Section 6.

2. The GLHSS Iteration Methods

Let A = H+S be the Hermitian and skew-Hermitian splitting of A in which H = 1
2 (A+A∗)

and S = 1
2 (A−A∗) are the Hermitian and skew-Hermitian parts of A, respectively. A is called

an non-Hermitian positive definite matrix if H = 1
2 (A + A∗) is positive definite, or simply, A

is positive definite. In particular, A is called being Hermitian dominant if ‖H‖ > ‖S‖. From
now on, unless otherwise stated, we always assume that the matrix A is positive and Hermitian

dominant.

For the coefficient matrix in the two-by-two linear system (1.1), we make the following
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special splitting of :

[

A B∗

−B C

]

=

[

Q1 +H 0

−B +Q3 Q2

]

−
[

Q1 − S −B∗

Q3 Q2 − C

]

, (2.1)

where the matrix B ∈ Cm×n is of full row-rank, Q1 ∈ Cn×n is a Hermitian positive semi-

definite matrix, C ∈ Cm×m and Q2 ∈ Cm×m are Hermitian positive definite matrices, and

Q3 ∈ Cm×n is an arbitrary matrix. Under these assumptions, the coefficient matrix of system

(1.1) is nonsingular ( see [8] ) and the non-Hermitian generalized saddle point problem (1.1)

has an unique solution. A generalized local Hermitian and skew-Hermitian (GLHSS) splitting

iteration method can be derived by this special splitting as follows

[

Q1 +H 0

−B +Q3 Q2

] [

xn+1

yn+1

]

=

[

Q1 − S −B∗

Q3 Q2 − C

] [

xn

yn

]

+

[

f

g

]

. (2.2)

The GLHSS iteration method (2.2) can be equivalently described as the following compu-

tational process:

Algorithm 2.1. (GLHSS iteration method) Let H = 1
2 (A + A∗) and S = 1

2 (A − A∗)

be respectively the Hermitian and skew-Hermitian parts of A. Assume that Q1 ∈ Cn×n

is a Hermitian positive semi-definite matrix, Q2 ∈ Cm×m is a Hermitian positive definite

matrix, and Q3 ∈ Cm×n is an arbitrary matrix. Given initial vector
(

xT
0 yT0

)T ∈ Cn+m.

For n = 0, 1, 2, · · · until the iteration sequence {
(

xT
n yTn

)T } converges to the solution of the

non-Hermitian generalized saddle point problem (1.1), compute

{

xn+1 = xn + (Q1 +H)−1(f −Axn −B∗yn),

yn+1 = yn +Q−1
2 ((B −Q3)xn+1 +Q3xn − Cyn + g).

(2.3)

To deduce convergence properties of GLHSS iteration (2.3), we now consider the spectral

radius, that is ρ(T ), of the iteration matrix T of the GLHSS method (2.3). The iteration matrix

of the GLHSS iteration is given by

T =

[

Q1 +H 0

−B +Q3 Q2

]−1 [
Q1 − S −B∗

Q3 Q2 − C

]

. (2.4)

It is known that the GLHSS iteration method (2.3) converges if and only if ρ(T ) < 1.

Before investigating the conditions for ρ(T ) < 1 holds, we now describe some characters of

eigenvalues and eigenvectors of the iteration matrix T .

Lemma 2.1. Let A be non-Hermitian positive definite and B be of full row rank. If λ is an

eigenvalue of the iteration matrix T defined in (2.4), then λ 6= 1.

Proof. Let λ be an eigenvalue of T and (u∗, v∗)∗ be its corresponding eigenvector, where

u ∈ Cn and v ∈ Cm. Then we have:

[

Q1 − S −B∗

Q3 Q2 − C

] [

u

v

]

= λ

[

Q1 +H 0

−B +Q3 Q2

] [

u

v

]

,

or equivalently,
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{

[(λ− 1)Q1 + λH + S]u+B∗v = O,

[(λ− 1)Q3 − λB]u + [(λ− 1)Q2 + C]v = O.
(2.5)

If λ = 1, then (2.5) is reduced into

{

Au +B∗v = O,

−Bu+ Cv = O.

Since the coefficient matrix

[

A B∗

−B C

]

is nonsingular, the eigenvector (u∗, v∗)∗ is zero vector.

This is a contradiction. �

Lemma 2.2. ([21]) If S is a skew-Hermitian matrix, then i · S (i is the imaginary unit) is a

Hermitian matrix and u∗Su is a purely imaginary number or zero for all u ∈ C
n.

Lemma 2.3. Assume A is non-Hermitian positive definite and Hermitian dominant, and B is

of full row rank. If (u∗, v∗)∗ is an eigenvector of the iteration matrix T corresponding to the

eigenvalue λ, then u 6= 0. Furthermore, if A is Hermitian dominant and v = 0, then |λ| < 1.

Proof. If (u∗, v∗)∗ is an eigenvector corresponding to the eigenvalue λ of the iteration matrix

T , then u 6= 0. In fact, if u = 0, then B∗v = 0. Since B∗ is of full column rank, B∗v = 0 implies

v = 0, which contradicts the assumption that (u∗, v∗)∗ is an eigenvector.

If v = 0, from (2.5) we have

{

(λH + S + (λ− 1)Q1)u = 0,

((1 − λ)Q3 + λB)u = 0.
(2.6)

Since u 6= 0, we can define

λ = a+ ib, α =
u∗Hu

u∗u
> 0, − β =

u∗iSu

u∗u
, γ =

u∗Q1u

u∗u
≥ 0,

where i is imaginary unit. Then from the first equation in (2.6), we have

(a+ bi)α+ iβ + (a+ bi− 1)γ = 0.

Note that α > 0 and γ ≥ 0, it then follows that:

a =
γ

α+ γ
≥ 0, b =

−β

α+ γ
.

Since the non-Hermitian matrix A is Hermitian dominant, we have |β| < |α| which immediately

results in the following conclusion:

|λ| = |a+ bi| =
√

β2 + γ2

(α+ γ)2
< 1.

This completes the proof of this lemma. �
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Lemma 2.4. ([29]) Both roots of the complex quadratic equation λ2+φλ+ϕ = 0 have modulus

less than one if and only if |φ− φϕ|+ |ϕ|2 < 1, where φ denotes the conjugate complex of φ.

The following theorem gives the conditions for guaranteeing the convergence of the GLHSS

method. For completeness, this theorem includes the result for C = 0 given in [32] as a special

case.

Theorem 2.1. Assume A be a non-Hermitian matrix with the positive definite Hermitian part

H = 1
2 (A + A∗) and the skew-Hermitian part S = 1

2 (A − A∗). Let the matrix B have full row

rank, Q1 be Hermitian positive semi-definite, Q2 be Hermitian positive definite, and Q3 ∈ Cm×n

be such that B∗Q−1
2 Q3 is Hermitian. Assume (u∗, v∗)∗ is an eigenvector of the matrix T with

u ∈ Cn and v ∈ Cm corresponding to the eigenvalue λ. Denote by

α =
u∗Hu

u∗u
, −β =

u∗i · Su
u∗u

, γ =
u∗Q1u

u∗u
,

η =
u∗B∗Q−1

2 Bu

u∗u
, τ =

u∗B∗Q−1
2 Q3u

u∗u
.

Then we have the following conclusions:

1. When C = 0 [32], the GLHSS method is convergent if α, β, γ, η, τ satisfy the following

condition:

0 ≤ η ≤ 2(α− τ)((α − τ)(α + τ + 2γ)− β2)

(α− τ)2 + β2
. (2.7)

2. When C is Hermitian positive definite, we can choose Q2 = 1
δ
C with δ 6= 0 a real constant,

i.e., C = δQ2, and then the GLHSS method is convergent if α, β, γ, η and τ satisfy one

of the following conditions:

(a) If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b) If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c) If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = E2 + (1 − δ)2β2; (2.8a)

Y = 2E[EF − (δ − 1)β2] + 2(1− δ)β2[G− F (δ − 1)]; (2.8b)

Z = [FE − (δ − 1)β2]2 + [G− F (δ − 1)]2β2 − [GE − (δ − 1)2β2]2; (2.8c)

E = α− τ + δγ; F = (δ − 1)α+ (δ − 2)γ − τ ; (2.8d)

G = α+ τ − (δ − 2)γ; and 0 < δ < 2. (2.8e)
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Proof. The conclusion for the case C = 0, its proof can be found in [32]. So we just need

to prove the case C = δQ2 with δ 6= 0. Let λ be an eigenvalue of T and (u∗, v∗)∗ be the

corresponding eigenvector. From (2.5), we have
{

(λH + S + (λ− 1)Q1)u+B∗v = 0,

((1− λ)Q3 + λB)u = ((λ− 1)Q2 + C)v,

which, instead of C by C = δQ2, becomes that
{

(λH + S + (λ− 1)Q1)u+B∗v = 0,

((1− λ)Q3 + λB)u = (λ− 1 + δ)Q2v.
(2.9)

If λ = 1− δ, then the Eq. (2.9) leads to
{

(δ(Q1 +H)−A)u = B∗v,

(δQ3 + (1− δ)B)u = 0,

or equivalently,
{

u ∈ null(δQ3 + (1− δ)B),

v = (B(H +Q1)
−1B∗)−1(δB −B(Q1 +H)−1A))u.

Here, null(·) is used to represent the null space of the corresponding matrix. If λ 6= 1− δ, from

the second equality in (2.9), we have

v =
1

λ+ δ − 1
Q−1

2 ((1− λ)Q3 + λB)u. (2.10)

Substituting the expression (2.10) of vector v into the first equation in (2.9), we have

(

λH + S + (λ− 1)Q1

)

u+
1− λ

λ+ δ − 1
B∗Q−1

2 Q3u+
λ

λ+ δ − 1
B∗Q−1

2 Bu = 0. (2.11)

If Bu = 0, then the equality (2.11) reduces to the following form

(

λH + S + (λ− 1)Q1

)

u+
1− λ

λ+ δ − 1
B∗Q−1

2 Q3u = 0.

And then multiplying both sides of above equality from left with u∗

u∗u
, we obtain the following

equation
u∗(λH + S + (λ− 1)Q1)u

u∗u
= 0.

Now using the same techniques as the proof of Lemma 2.3, we can easily know that |λ| < 1.

If Bu 6= 0, which means that η > 0. Multiplying both sides of equality (2.11) from left with
u∗

u∗u
and then rearranging it as the quadratical equation in λ, we have

λ2 +
η − α− 2γ + δα+ δγ − τ + βi

α+ γ
λ+

τ + γ − δγ + (δ − 1)βi

α+ γ
= 0. (2.12)

Now, according to Lemma 2.4, we known that both roots of the complex Eq. (2.12) satisfy

|λ| < 1 if and only if
∣

∣

∣

∣

η − α− 2γ + δα+ δγ − τ + βi

α+ γ
− η − α− 2γ + δα+ δγ − τ − βi

α+ γ
· τ + γ − δγ + (δ − 1)βi

α+ γ

∣

∣

∣

∣

+

∣

∣

∣

∣

τ + γ − δγ + (δ − 1)βi

α+ γ

∣

∣

∣

∣

2

< 1. (2.13)
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Through a more complicated process of computations, the inequality (2.13) can be finally

simplified as the follow equivalent form

Xη2 + Y η + Z < 0, (2.14)

where X , Y and Z are taken as in (2.8). The conclusions in part 2 of Theorem 2.1 now easily

follow from (2.14). This completes the proof. �

3. Several Algorithms

Under the assumption of Theorem 2.1, the generalized iterative method (2.3) leads to dif-

ferent iterative methods with different choices of the matrices Q1,Q2 and Q3. In this section,

we always assume C = δQ2 (δ 6= 0) and present some special GLHSS iteration methods which

are stated in three parts depending on the three cases Q3 = 0, Q3 = tB and Q3 = −tQ2B. The

parameters α, β, γ, η and τ are same as those in Theorem 2.1.

Case I: Q3 = 0. In this case, the GLHSS iterative scheme (2.3) becomes

{

xn+1 = xn + (Q1 +H)−1(f −Axn −B∗yn),

yn+1 = yn +Q−1
2 (Bxn+1 − Cyn + g).

(3.1)

Algorithm 3.1. Under the assumption of Theorem 2.1, if Q1 = 0,Q2 = µIm, then the

GLHSS method (3.1) becomes the following iteration method:

{

xn+1 = xn +H−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
(Bxn+1 − Cyn + g),

(3.2)

and the method (3.2) is convergent provided that α, β, η satisfy one of the following condi-

tions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = α2 + (1− δ)2β2,

Y = 2α(δ − 1)(α2 − β2) + 4αβ2δ(1− δ)2,

Z = (δ − 1)2(α2 − β2) + 4α2β2δ2(1− δ)2 − [α2 − (δ − 1)2β2]2.
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Algorithm 3.2. Under the assumption of Theorem 2.1, if Q1 = ωIn, Q2 = µIm, then the

GLHSS method (3.1) becomes the following iteration method:

{

xn+1 = xn + (ωIn +H)−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
(Bxn+1 − Cyn + g),

(3.3)

and the method (3.3) is convergent provided that α, β, η satisfy one of the following condi-

tions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = (α+ δω)2 + (1 − δ)2β2,

Y = 2(α+ δω)[(α+ δω)(δα− α+ δω − 2ω)− (δ − 1)β2]

+ 2(1− δ)β2(2α− δα− δω + 2ω)δ,

Z = [(δα− α+ δω − 2ω)(α+ δω)− (δ − 1)β2]2 + (2α− δα− δω + 2ω)2δ2β2

− [(α− δω + 2ω)(α+ δω)− (δ − 1)2β2]2.

Algorithm 3.3. Under the assumption of Theorem 2.1, if Q1 = ωH, Q2 = µIm, then the

GLHSS method (3.1) becomes the following iteration method:

{

xn+1 = xn + 1
1+ω

H−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
(Bxn+1 − Cyn + g),

(3.4)

and the method (3.4) is convergent provided that α, β, η satisfy one of the following condi-

tions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;
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(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = (δωα+ α)2 + (1− δ)2β2,

Y = 2(δωα+ α)[(δωα + α)(δα − α+ (δ − 2)ωα)− (δ − 1)β2]

+ 2(1− δ)β2(2α− δα− δωα+ 2ωα)δ − (((δ − 1) + (δ − 2)ω)α)(δ − 1)],

Z = [(δα− α+ (δωα− 2ωα)(δωα+ α)− (δ − 1)β2]2

+ (2α− δα− δωα+ 2ωα)2δ2β2

− [(α− δωα− 2ωα)(δωα+ α)− (δ − 1)2β2]2.

Case II: Q3 = tB, t 6= 0. In this case, the GLHSS iterative scheme (2.3) becomes

{

xn+1 = xn + (Q1 +H)−1(f −Axn −B∗yn),

yn+1 = yn +Q−1
2 ((1 − t)Bxn+1 + tBxn − Cyn + g).

(3.5)

Algorithm 3.4. Under the assumption of Theorem 2.1, if Q1 = 0, Q2 = µIm, then the

GLHSS method (3.5) becomes the following iteration method:

{

xn+1 = xn +H−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
((1 − t)Bxn+1 + tBxn − Cyn + g),

(3.6)

and the method (3.6) is convergent provided that α, β, η satisfy one of the following condi-

tions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = (α − tη)2 + (1− δ)2β2,

Y = 2(α− tη)[(α − tη)(δα − α− tη)− (δ − 1)β2] + 2(1− δ)β2(2α− δα+ tη)δ,

Z = [(δα− α− tη)(α − tη)− (δ − 1)β2]2 + (2α− δα+ tη)2δ2β2

− [α2 − t2η2 − (δ − 1)2β2]2.



Generalized Local Hermitian and Skew-Hermitian Splitting Iteration Methods 321

Algorithm 3.5. Under the assumption of Theorem 2.1, if Q1 = ωIn, Q2 = µIm, then the

GLHSS method (3.5) becomes the following iteration method:

{

xn+1 = xn + (ωIn +H)−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
((1 − t)Bxn+1 + tBxn − Cyn + g),

(3.7)

and the method (3.7) is convergent provided that α, β, η satisfy one of the following condi-

tions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = (α− tη + δω)2 + (1− δ)2β2,

Y = 2(α− tη + δω)[(α− tη + δω)(δα− α+ δω − 2ω − tη)− (δ − 1)β2]

+ 2(1− δ)β2(2α− δα− δω + 2ω + tη)δ,

Z = [((δ − 1)α+ (δ − 2)ω − tη)(α − tη + δω)− (δ − 1)β2]2

+ (2α− δα− δω + 2ω + tη)2δ2β2 − [(α+ tη − δω + 2ω)(α− tη + δω)− (δ − 1)2β2]2.

Algorithm 3.6. Under the assumption of Theorem 2.1, if Q1 = ωH, Q2 = µIm, then the

GLHSS method (3.5) becomes the following iteration method:

{

xn+1 = xn + 1
1+ω

H−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
((1 − t)Bxn+1 + tBxn − Cyn + g),

(3.8)

and the method (3.8) is convergent provided that α, β, η satisfy one of the following condi-

tions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;
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(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = ((δω + 1)α− tη)2 + (1− δ)2β2,

Y = 2(δωα+ α− tη)[(δωα+ α− tη)(δα − α+ (δ − 2)ωα− tη)− (δ − 1)β2]

+ 2(1− δ)β2(2α− δα− δωα+ 2ωα+ tη)δ,

Z = [(δα− α+ (δ − 2)ωα− tη)(δωα+ α− tη)− (δ − 1)β2]2 + (2α− δα− δωα

+ 2ωα+ tη)2δ2β2 − [(α− (δ − 2)ωα+ tη)(δωα+ α− tη)− (δ − 1)2β2]2.

Case III: Q3 = −tQ2B, t 6= 0. In this case, the GLHSS iterative scheme (2.3) becomes

{

xn+1 = xn + (Q1 +H)−1(f −Axn −B∗yn),

yn+1 = yn +Q−1
2 (Bxn+1 − Cyn + g) + tB(xn+1 − xn).

(3.9)

Algorithm 3.7. Under the assumption of Theorem 2.1, if Q1 = 0, Q2 = µIm, then the

GLHSS method (3.9) becomes the following iteration method:

{

xn+1 = xn +H−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
(Bxn+1 − Cyn + g) + tB(xn+1 − xn),

(3.10)

and the method (3.10) is convergent provided that α, β, η satisfy one of the following con-

ditions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = (α+ tη)2 + (1− δ)2β2,

Y = 2(α+ tη)[(α + tη)(δα − α+ tη)− (δ − 1)β2] + 2(1− δ)β2δ(2α− δα− tη),

Z = [(δα − α+ tη)(α+ tη)− (δ − 1)β2]2 + (2α− δα− tη)2δ2β2

− [α2 − t2η2 − (δ − 1)2β2]2.
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Algorithm 3.8. Under the assumption of Theorem 2.1, if Q1 = ωIn,Q2 = µIm, then the

GLHSS method (3.9) becomes the following iteration method:

{

xn+1 = xn + (ωIn +H)−1(f − Axn −B∗yn),

yn+1 = yn + 1
µ
(Bxn+1 − Cyn + g) + tB(xn+1 − xn),

(3.11)

and the method (3.11) is convergent provided that α, β, η satisfy one of the following

conditions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then

0 ≤ η ≤ −Y +
√△

2X
,

where

X = (α+ δω + tη)2 + (1− δ)2β2,

Y = 2(α+ δω + tη)[(α+ δω + tη)(δα− α+ δω − 2ω + tη)− (δ − 1)β2]

+ 2(1− δ)β2(2α− δα− δω + 2ω − tη)δ,

Z = [(δα− α+ δω − 2ω + tη)(α+ δω + tη)− (δ − 1)β2]2

+ (2α− δα− δω + 2ω − tη)2δ2β2 − [(α− δω + 2ω − tη)(α + δω + tη)− (δ − 1)2β2]2.

Algorithm 3.9. Under the assumption of Theorem 2.1, if Q1 = ωH, Q2 = µIm, then the

GLHSS method (3.9) becomes the following iteration method:

{

xn+1 = xn + 1
1+ω

H−1(f −Axn −B∗yn),

yn+1 = yn + 1
µ
(Bxn+1 − Cyn + g) + tB(xn+1 − xn),

(3.12)

and the method (3.12) is convergent provided that α, β, η satisfy one of the following con-

ditions

(a). If Z = 0 and Y < 0, then

0 ≤ η ≤ −Y

X
;

(b). If Z > 0, △ = Y 2 − 4XZ > 0 and −Y
2X > 0, then

−Y −√△
2X

≤ η ≤ −Y +
√△

2X
;

(c). If Z < 0 and △ = Y 2 − 4XZ > 0, then
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0 ≤ η ≤ −Y +
√△

2X
,

where

X = (α + tη + δωα)2 + (1 − δ)2β2,

Y = 2(α+ tη + δωα)[(α + tη + δωα)(αδ − α+ δωα− 2ωα+ tη)− (δ − 1)β2]

+ 2(1− δ)β2(2α− αδ − δωα+ 2ωα− tη)δ,

Z = [(αδ − α+ δωα− 2ωα+ tη)(α+ tη + δωα)− (δ − 1)β2]2

+ (2α− αδ − δωα+ 2ωα− tη)2δ2β2

− [(α− δωα+ 2ωα− tη)(α+ tη + δωα)− (δ − 1)2β2]2.

4. Preconditioner for Preconditioned Krylov Subspace Methods

The generalized local Hermitian and skew-Hermitian splitting (2.1) also provides a class of

preconditioners for preconditioned Krylov subspace methods, especially for the preconditioned

GMRES method. If we write the GLHSS splitting (2.1) as A = M−N , then M can be used as

a preconditioner for GMRES [24] or any other non-Hermitian Krylov method. The convergence

rate of the preconditioned GMRES method depends on the particular choice of the parameters

and parameter matrices. How to find the values of the parameters and the parameter matrices

that optimize the rate of convergence appears to be a difficult problem in general. In fact, in

practice the convergence rate depends, to a large extent, on the size, shape, and location of

the entire spectrum of the preconditioned matrix M−1A. So in this paper we also illustrate

the spectrum distribution of the preconditioned matrix M−1A by numerical experiments and

show the effectiveness of GLHSS splitting (2.1) as a preconditioner for preconditioned GMRES

method (PGMRES). The restarted PGMRES(m) algorithm with restart parameter m is used.

Comparing with restarted GMRES(m) method for original system, the computational results

of PGMRES(m) are much better than those without preconditioning, see Tables 5.5-5.6 and

Figure 5.1-5.3.

5. Numerical Results

In this section, we use the numerical example to illustrate the theoretical results and show

the effectiveness of the GLHSS preconditioning matrix for solving non-Hermitian generalized

saddle point problem in the sense of iteration step (denoted as “IT”), elapsed CPU time in

seconds (denoted as “CPU” ), and relative residual error (denoted as “RES”) defined by

RES :=

√

‖ f −Ax(k) −BT y(k) ‖22 + ‖ g +Bx(k) − Cy(k) ‖22
√

‖ f ‖22 + ‖ g ‖22
.

We consider the non-Hermitian generalized saddle point-type matrix

A =

[

A B∗

−B C

]

, (5.1)
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where the sub-matrices A = νA1 + N , N has only two diagonal lines of nonzero which start

from the 2nd and the nth columns, i.e.,

N =









































0 −1 0 · · · 0 −1 0 · · · 0

0 0 −1 · · · 0 0 −1
. . . 0

0 0 0 −1 0 · · · 0
. . . 0

...
. . .

. . .
. . .

. . .
. . . · · · . . . −1

0 · · · 0 0 0 −1 0 · · · 0

0 0 · · · 0 0 0 −1 0
...

0 0 0 · · · 0 0 0 −1 0
...

. . .
. . .

. . . 0
. . . 0

. . . −1

0 · · · 0 0 0 · · · 0 0 0









































,

A1 =

[

I ⊗ T 0

0 I ⊗ T + I ⊗ T

]

∈ R
2p2

×2p2

,

B =

[

I ⊗ F

F ⊗ I

]

∈ R
p2

×2p2

, C = I ∈ R
p2

×p2

,

where T = 1
h2 tridiag(−1, 2,−1) ∈ Rp×p, F = 1

h
tridiag(−1, 1, 0) ∈ Rp×p with ⊗ being the

Kronecker product symbol, h = 1
p+1 the discretization meshsize. We set m = p2 and n = 2p2,

hence, the total number of variables is m+ n = 3p2.
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Fig. 5.1. The eigenvalue distribution of original matrix A for the Example.

In our computations, all runs are implemented in MATLAB (version 7.11.0.584 (R2010b))

with a machine precision 10−16 on a personal computer with AMD Athlon(tm) II P360 Dual-

core Processor 2.30 GHZ, 2.00GB memory and are started from the initial vector (xT
0 , y

T
0 )

T =

0, and terminated if the current iteration satisfies either RES< 10−5 or the number of the

prescribed iteration κmax = 1000 are exceed, and choose the right-hand side vector of (f∗, g∗)∗

such that the exact solution of the saddle point problem is (x∗, y∗)∗ = (1, 1, · · · , 1)∗.
Firstly, we use GLHSS method (Case I, II, III) with different choices of ω, µ and t to solve

the example. Numerical results are listed in the following Tables 5.1–5.4 for ν = 1 and ν = 10,
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Table 5.1: Numerical results for GLHSS iteration methods for Cases I, II and III for example for p = 4

and p = 8 (ν = 1).

p = 4 p = 8

Case (ω , µ t ) IT RES CPU (ω , µ t ) IT RES CPU

3.1 (-,1.58,-) 8 5.2217×10−6 0.0045 (-,1.52,-) 8 6.6737×10−6 0.0122

I 3.2 (0.01,1.93,-) 10 6.8236×10−6 0.0034 (0.01,1.92,-) 11 6.7401×10−6 0.0303

3.3 (0.01,1.91,-) 10 5.4244×10−6 0.0039 (0.01,1.90,-) 11 5.8429×10−6 0.0340

3.4 (-,1.78,0.1) 9 8.4398×10−6 0.0038 (-,1.72,0.1) 10 3.4360×10−6 0.0141

II 3.5 (0.1,1.76,0.1) 9 9.6860×10−6 0.0039 (0.01,1.71,0.1) 10 3.4173×10−6 0.0195

3.6 (0.1,1.84,0.1) 11 2.7887×10−6 0.0039 (0.01,1.88,0.1) 11 4.9835×10−6 0.0269

3.7 (-,1.98,0.01) 11 3.8979×10−6 0.0037 (-,1.97,0.01) 11 9.1160×10−6 0.0194

III 3.8 (0.01,1.99,0.01) 11 3.8334×10−6 0.0031 (0.01,1.96,0.01) 11 9.0274×10−6 0.0271

3.9 (0.01,2.00,0.01) 12 4.8221×10−6 0.0032 (0.01,2.01,0.01) 13 6.9002×10−6 0.0290

0.6 0.8 1
−0.02

−0.01

0

0.01

0.02
(a) ω =0 and µ =1.52, t=0

real

im
ag

in
ar

y

0.8 0.85 0.9 0.95 1
−0.02

−0.01

0

0.01

0.02
(b) ω = 0.01 and µ =1.92, t=0

real

im
ag

in
ar

y

0.8 0.85 0.9 0.95 1
−0.02

−0.01

0

0.01

0.02
(c)ω = 0.01 and µ =1.90, t=0

real

im
ag

in
ar

y

0.8 0.85 0.9 0.95 1
−0.02

−0.01

0

0.01

0.02
(d)ω = 0 and µ =1.97, t=0.01

real

im
ag

in
ar

y

0.8 0.85 0.9 0.95 1
−0.02

−0.01

0

0.01

0.02
(e)ω = 0.01 and µ =1.96, t=0.01

real

im
ag

in
ar

y

0.8 0.85 0.9 0.95 1
−0.02

−0.01

0

0.01

0.02
(f)ω = 0.01 and µ =2.01, t=0.01

real

im
ag

in
ar

y

Fig. 5.2. The eigenvalue distributions of the preconditioned matrix with different values of ω,µ,and

different values t for Example when p = 8(ν = 1).

respectively. We use IT, CPU and RES to represent the number of iteration steps, the elapsed

CPU time in seconds and the norm of absolute residual vectors, respectively. In tables, “ − ”

means that the parameter does not exist or equal to zero in the corresponding algorithm.
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Table 5.2: Numerical results for GLHSS iteration methods for Cases I, II and III for example for p = 16

and p = 24 (ν = 1).

p = 16 p = 24

Case (ω , µ t ) IT RES CPU (ω , µ t ) IT RES CPU

3.1 (-,1.48,-) 8 6.5461×10−6 0.1777 (-,1.46,-) 8 5.6505×10−6 1.2210

I 3.2 (0.01,1.89,-) 11 8.1172×10−6 0.2498 (0.01,1.88,-) 11 7.1306×10−6 1.7314

3.3 (0.01,1.87,-) 11 7.3241×10−6 0.2574 (0.01,1.86,-) 11 6.5565×10−6 1.7288

3.4 (-,1.67,0.1) 10 5.0526×10−6 0.1000 (0.01,1.67,0.1) 10 5.3432×10−6 1.6021

II 3.5 (0.01,1.67,0.1) 10 5.0045×10−6 0.2232 (0.01,1.67,0.1) 10 5.3046×10−6 1.5108

3.6 (0.01,1.85,0.1) 11 6.5935×10−6 0.2436 (0.01,1.84,0.01) 11 6.0437×10−6 1.7362

3.7 (-,1.95,0.01) 12 4.8680×10−6 0.2738 (-,1.93,0.01) 11 9.1951×10−6 1.7278

III 3.8 (0.01,1.95,0.01) 12 4.8504×10−6 0.2771 (0.01,1.93,0.01) 11 9.1713×10−6 1.7413

3.9 (0.01,2.02,0.01) 11 4.7504×10−6 0.3343 (0.01,2.02,0.01) 14 4.7670×10−6 2.7965

Table 5.3: Numerical results for GLHSS iteration methods for Cases I, II and III for example for p = 4

and p = 8 (ν = 10).

p = 4 p = 8

Case (ω , µ t ) IT RES(10−6) CPU (ω , µ t ) IT RES(10−6) CPU

3.1 (-,1.047,-) 4 5.5532 0.0013 (-,1.038,-) 4 3.9182 0.0056

I 3.2 (0.01,1.085,-) 5 4.7400 0.0012 (0.01,1.059,-) 5 4.4439 0.0089

3.3 (0.01,1.061,-) 5 7.4353 0.0013 (0.01,1.057,-) 5 8.4388 0.0175

3.4 (-,0.989,0.1) 5 8.3550 0.0020 (-,0.988,0.1) 5 8.9873 0.0058

II 3.5 (0.1,0.988,0.1) 5 8.4672 0.0030 (0.01,0.988,0.1) 5 8.9870 0.0184

3.6 (0.1,0.924,0.1) 6 3.0743 0.0016 (0.01,1.050,0.1) 5 1.3628 0.0129

3.7 (-,1.083,0.01) 5 1.1023 0.0012 (-,1.083,0.01) 5 1.2616 0.0193

III 3.8 (0.01,1.083,0.01) 5 1.0972 0.0019 (0.01,1.083,0.01) 5 1.2588 0.0059

3.9 (0.01,1.082,0.01) 5 6.8068 0.0019 (0.01,1.086,0.01) 5 7.4575 0.0077

Table 5.4: Numerical results for GLHSS iteration methods for Cases I, II and III for example for p = 16

and p = 24 (ν = 10).

p = 16 p = 24

Case (ω , µ t ) IT RES(10−6) CPU (ω , µ t ) IT RES(10−6) CPU

3.1 (-,1.030,-) 4 2.3429 0.0750 (-,1.027,-) 4 1.6334 0.5173

I 3.2 (0.01,1.035,-) 4 6.5195 0.2498 (0.01,1.033,-) 4 4.7400 0.4942

3.3 (0.01,1.057,-) 5 7.2760 0.1021 (0.01,1.058,-) 5 6.1734 0.7008

3.4 (-,0.987,0.1) 5 8.0385 0.1046 (0.01,0.987,0.1) 5 7.1068 0.6839

II 3.5 (0.01,0.098,0.1) 5 8.0370 0.1017 (0.01,0.987,0.1) 5 7.1059 0.6941

3.6 (0.01,1.049,0.1) 5 1.2454 0.1063 (0.01,1.048,0.01) 5 1.1058 0.6856

3.7 (-,1.085,0.01) 5 1.1497 0.0971 (-,1.089,0.01) 5 1.0263 0.6835

III 3.8 (0.01,1.086,0.01) 5 1.1479 0.0977 (0.01,1.088,0.01) 5 1.0254 0.6718

3.9 (0.01,1.091,0.01) 5 5.8563 0.0983 (0.01,1.094,0.01) 5 4.6635 0.7142

In Tables 5.5 and 5.6 , we list the implemented results on IT, RES and CPU of GMRES(20)

and PGMRES(20) when they are applied to solve the above-mentioned numerical problem.

The numbers outside of brackets denote outer iteration numbers and inside the inner iteration

numbers of GMRES(m) or PGMRES(m), respectively. From these numerical results, we can

see that PGMRES(20) with GLHSS preconditioner possesses much less iteration steps and CPU

time than GMRES(20) without any preconditioner. This means that GLHSS splitting can act

as an efficient preconditioner for solving the non-Hermitian saddle point problems by GMRES
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Fig. 5.3. The eigenvalue distributions of the preconditioned matrix with different values of ω,µ,and

different values t for Example when p = 16(ν = 10).

Table 5.5: Numerical results for GMRES(20) and PGMRES(20) (ν = 1).

p = 4 p = 8 p = 16 p = 24

IT CPU IT CPU IT CPU IT CPU

GMRES(20) 2(17) 0.0665 6(18) 0.2054 16(2) 0.9428 22(1) 2.3828

PGMRES(20)-3.1 1(7) 0.0241 1(7) 0.0638 1(8) 0.1594 1(8) 0.1850

PGMRES(20)-3.2 1(7) 0.0291 1(7) 0.0455 1(7) 0.1502 1(7) 0.2697

PGMRES(20)-3.3 1(7) 0.0138 1(7) 0.0495 1(7) 0.1414 1(7) 0.2951

PGMRES(20)-3.4 1(7) 0.0252 1(8) 0.0562 1(8) 0.0806 1(8) 0.1945

PGMRES(20)-3.5 1(7) 0.0262 1(8) 0.0542 1(8) 0.0759 1(8) 0.1905

PGMRES(20)-3.6 1(8) 0.0297 1(8) 0.0258 1(7) 0.1446 1(7) 0.1721

PGMRES(20)-3.7 1(7) 0.0280 1(7) 0.0438 1(7) 0.1633 1(8) 0.1965

PGMRES(20)-3.8 1(7) 0.0294 1(7) 0.0429 1(7) 0.1478 1(8) 0.1928

PGMRES(20)-3.9 1(7) 0.0434 1(7) 0.0480 1(7) 0.0767 1(7) 0.1711

method without preconditioners.

Fig. 5.1 shows the eigenvalue distributions of the original coefficient matrices with ν = 1
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Table 5.6: Numerical results for GMRES(20) and PGMRES(20) (ν = 10).

p = 4 p = 8 p = 16 p = 24

IT CPU IT CPU IT CPU IT CPU

GMRES(20) 2(9) 0.0541 3(9) 0.1068 59(16) 4.7053 118(14) 26.1735

PGMRES(20)-3.1 1(3) 0.0130 1(3) 0.0267 1(4) 0.0869 1(4) 0.1404

PGMRES(20)-3.2 1(4) 0.0881 1(4) 0.0412 1(4) 0.0404 1(4) 0.1102

PGMRES(20)-3.3 1(4) 0.0175 1(5) 0.0271 1(4) 0.0806 1(4) 0.0969

PGMRES(20)-3.4 1(5) 0.0816 1(5) 0.0146 1(5) 0.0498 1(5) 0.1135

PGMRES(20)-3.5 1(5) 0.0096 1(5) 0.0339 1(7) 0.0726 1(5) 0.2283

PGMRES(20)-3.6 1(5) 0.0204 1(4) 0.0273 1(4) 0.0785 1(5) 0.1243

PGMRES(20)-3.7 1(4) 0.0178 1(4) 0.0314 1(4) 0.0414 1(4) 0.0959

PGMRES(20)-3.8 1(4) 0.0178 1(4) 0.0273 1(4) 0.0842 1(4) 0.1067

PGMRES(20)-3.9 1(3) 0.0144 1(4) 0.0261 1(4) 0.0401 1(4) 0.1050

and ν = 10 respectively. Fig. 5.2 and Fig. 5.3 show the eigenvalue distributions of the

preconditioned matrices with GLHSS preconditioner and different parameters for the above

example. From these figures we can see that the eigenvalues of all preconditioned matrices

become more clustered.

6. Conclusion

In this work, we extend the generalized local Hermitian and skew-Hermitian splitting iter-

ation methods for the non-Hermitian saddle point problems to the non-Hermitian generalized

saddle point problems. The convergence of new GLHSS method is discussed and the conver-

gence conditions are given out. Numerical examples show the effectiveness of our method.

In particular, our GLHSS splitting can act as an efficient preconditioner for Krylov subspace

methods such as GMRES method. The parameters in our experiments are chosen randomly. So

how to derive or choose the optimal parameters in the GLHSS method for the non-Hermitian

generalized saddle point problems still need further study.
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