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Abstract

In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover-

lapping multisplitting iterative method for the linear systems when the coefficient matrix is

either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are

implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti-

mization models are parallelly treated in m different processors. The convergence theories

are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri-

cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate

the nonoverlapping multisplitting iterative method.
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1. Introduction and Preliminaries

A multisplitting of a nonsingular matrix A ∈ Rn×n, as introduced in [12], is a collection of

triples of n× n matrices (Mi, Ni, Ei)
m
i=1(m ≤ n, a positive integer) with

• A = Mi −Ni, i = 1, · · · ,m;

• Mi nonsingular, i = 1, · · · ,m;

• for i = 1, · · · ,m, the weighting matrices Ei = diag(e
(i)
1 , · · · , e

(i)
n ) being diagonal with

nonnegative entries

e
(i)
j =

{

e
(i)
j > 0, for j ∈ Ni,

0, for j 6∈ Ni,
j = 1, · · · , n,
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such that
∑m

i=1 Ei = I (the n × n identity matrix), where Ni, i = 1, · · · ,m are nonempty

subsets of N ,N = {1, · · · , n} satisfying N =
⋃m

i=1 Ni, see also [4]. Then the (parallel linear)

multisplitting iterative method for solving the linear system of equations

Ax = b (1.1)

is

Mix
(k)
i = Nix

(k−1) + b, i = 1, · · · ,m; k = 1, · · · , (1.2)

x(k) =

m
∑

i=1

Eix
(k)
i . (1.3)

In particular, the above method is called a nonoverlapping multisplitting iterative method

if Ni1 ∩ Ni2 = ∅ (i1 6= i2).

Subsequently, many authors studied the above technique for the cases where A is an M -

matrix, an H-matrix or a symmetric positive definite matrix respectively, we refer to [1,4,6,9,

11,13,17] and the references therein. The idea of minimizing the norm of either the error or

the residual so that the numerically optimal value of the iteration parameter is determined,

first introduced in [2], used to compute a numerically optimal relaxation parameter for the

successive overrelaxation (SOR) iteration methods for solving the system of linear equations.

Based on the standard quadratic programming technique, the authors of this paper and their

collaborators [14,15] seem to be the first to introduce the auto-optimal weighting matrices

E
(k)
i , i = 1, · · · ,m; k = 1, · · · for parallel multisplitting iterative methods. The self-adaptive

weighting matrices enable more approximate to the exact solution for k-step iteration. These

methods, however, just as introduced in [14] and [15], only one processor of the multiprocessor

system to compute the global optimization model at every iteration step, the other m− 1 pro-

cessors must be in the waiting state until one of all these processors has finished its optimization

task.

As is well known, one of the best accelerated methods is the Chebyshev semi-iteration, in

which the optimum parameter ω is obtained by the Chebyshev polynomial. The one most recent

result may be found the quasi-Chebyshev accelerated (QCA) method to convergent splitting

iteration proposed in [16]. The method is, in spirit, analogous to the Chebyshev semi-iteration

but the optimum parameter ω is generated by optimization model for solving the linear sys-

tems. These motivated us to accelerate the parallel multisplitting iterative method, resulting

in a parallel quasi-Chebyshev accelerated (abbreviated as PQCA) method to the nonoverlap-

ping multisplitting iterative method for the linear systems when the coefficient matrices are

H-matrices or symmetric positive definite matrices. To make full use of the efficiency of a mul-

tiprocessor system and overcome the drawbacks of those methods in [14,15], we further divide

the global optimization model into m sub-models and hence, the parallel computing is achieved

in this paper.

The PQCA method determines the optimum parameters α(i), i = 1, · · · ,m through mini-

mizing either the l2-norm of the residual when the coefficient matrix of (1.1) is a symmetric

positive definite matrix, or the l1-norm of the residual when the coefficient matrix of (1.1) is

an H-matrix, at each step of their iterates, at each processor of multiprocessor system, with a

reasonably extra cost. In actual computations, that shows better numerical behaviors than the

Method in [9] for both the symmetric positive definite matrix and the H-matrix. Numerical

experiments show that the new PQCA method is feasible, efficient and robust for solving large

sparse system of linear equations (1.1).
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In this study, we first give some notations and preliminaries in Section 1, and then the

parallel quasi-Chebyshev acceleration method is put forward in Section 2, the convergence of

the PQCA method are established in Section 3. Finally, numerical results are given in Section 4

to show the effectiveness of this new acceleration to the nonoverlapping multisplitting iterative

method.

Here are some essential notations and preliminaries. Rn×n is used to denote the n × n

real matrix set, and Rn the n-dimensional real vector set. AT denotes the transpose sample

of the matrix A, and xT the transpose sample of the vector x. 〈A〉 represents the comparison

(Ostrowski) matrix of the matrix A, and |A| stand for the absolute matrix of the matrix A. A

matrix A ∈ Rn×n is called real symmetric positive definite, if for all x ∈ Rn, x 6= 0, it holds

that xTAx > 0. The l-step stationary multisplitting of a nonsingular matrix A is denoted by

(Mi, Ni, l, Ei)
m
i=1, where l is the number of local iteration (see [9]).

A = M −N is called a splitting of the matrix A ∈ Rn×n if M ∈ Rn×n is nonsingular, the

splitting is convergent if ρ(M−1N) < 1. If A is symmetric positive definite and MT + N is

positive definite, then we call the splitting A = M −N to be a P -regular splitting (see [5]).

In what follows, the matrix A = (aij) ∈ Rn×n is called a strictly diagonally dominant matrix

if and only if

|ajj | >
n
∑

i=1

i6=j

|aij |, j = 1, · · · , n.

Definition 1.1 ([5]). The matrix A is an H-matrix if there exists a positive diagonal matrix

D such that the matrix DA is a strictly diagonally dominant matrix.

Property 1.2 ([5]). The matrix A is an H-matrix if and only if 〈A〉 is an M -matrix.

Definition 1.3 ([7]). Suppose that A is an H-matrix. Let A = M − N , which is called an

H-compatible splitting if 〈A〉 = 〈M〉 − |N |.

2. Parallel Quasi-Chebyshev Acceleration Method

In this section, we establish the parallel quasi-Chebyshev accelerated method applied to the

nonoverlapping multisplitting iterative method in cases that the coefficient matrix A ∈ Rn×n

of the system of linear equations (1.1) is an H-matrix or a symmetric positive definite matrix.

In fact, the foregoing nonoverlapping variant of a multisplitting iteration as follows:

A = Mi −Ni, i = 1, · · · ,m; (2.1)

Ei = diag(e
(i)
1 , · · · , e(i)n ), (2.2)

with

e
(i)
j =

{

1, for j ∈ Ni,

0, for j 6∈ Ni,
j = 1, · · · , n.

Assume that the cardinal numbers of those sets Ni, i = 1, · · · ,m are ni, we then have n1 +

· · ·+ nm = n. By introducing

Ti = M−1
i Ni, i = 1, · · · ,m,

the iteration matrix of kth step

Tk =

m
∑

i=1

EiM
−1
i Ni =

m
∑

i=1

EiTi. (2.3)
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Method 2.1 (PQCA method)

Given a precision ǫ > 0 and an initial point x(0,0). For k = 0, 1, 2, · · · until the iteration

sequence {x(k,0)}∞k=0 convergence,

• Step 1. For t = 1, · · · , l, compute in parallel the vectors x
(k,t)
ni

= (x
(k,t)
i1 , · · · , x

(k,t)
ini

)T ∈ Rni

by

Mix
(k,t)
i = Nix

(k,t−1)
i + b, i = 1, · · · ,m

in ith processor. Here, x
(k,t)
i = (x

(k,t)
i1 , · · · , x

(k,t)
in )T ∈ Rn.

• Step 2. For i = 1, · · · ,m, let

x(i) = ((x(k,l)
n1

)T , · · · , (α(i)(x(k,l)
ni

− x(k,l−2)
ni

) + x(k,l−2)
ni

)T , · · · , (x(k,l)
nm

)T )T ∈ Rn.

For i = 1, · · · ,m, compute in parallel the approximate solutions of α(i) by the following

optimization problems:

(a) when A is a symmetric positive definite matrix

min
α(i)

1

2
(x(i))TAx(i) − (x(i))T b, i = 1, · · · ,m; (2.4)

(b) when A is an H-matrix

min
α(i)

||Ax(i) − b||1, i = 1, · · · ,m. (2.5)

We denote the solutions of (2.4) (or (2.5)) by ᾱ(i) and then

x̄ni
= (ᾱ(i)(x(k,l)

ni
− x(k,l−2)

ni
) + x(k,l−2)

ni
)T ∈ Rni , i = 1, · · · ,m.

• Step 3. Let x(k+1,0) = argmin
x

1
2x

TAx − xT b or x(k+1,0) = argmin
x

‖Ax − b‖1 with

x ∈ {x̄, x(k,l)}, where

x(k,l) = ((x(k,l)
n1

)T , · · · , (x(k,l)
nm

)T )T ∈ Rn,

x̄ = ((x̄n1 )
T , (x̄n2)

T · · · , (x̄nm
)T )T ∈ Rn.

• Step 4. If ||Ax(k+1,0) − b|| ≤ ǫ, stop; otherwise, k ⇐ k + 1, goto Step 1.

Remark 2.1. In fact, the exact solutions of the quadratic programming models (2.4) are as

follows:

ᾱ(i) =
(

(X
(i)
k,l)

TAiiX
(i)
k,l

)−1

(X
(i)
k,l)

T
(

bni
−
∑

j 6=i

AijX
(j)
k,l

)

, i = 1, · · · ,m, (2.6)

where X
(i)
k,l = (x

(k,l)
ni

− x
(k,l−2)
ni

) ∈ Rni .

To avoid the tedious computation of ((X
(i)
k,l)

TAiiX
(i)
k,l)

−1, however, we can use the inexact

line search to find the approximations of ᾱ(i), i = 1, · · · ,m.

A remark that is similar to Remark 2.1 can also be stated for the quadratic programming

models (2.5).
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In ith processor, the cost of each iterate of Method 2.1 is approximately l[2nni+(ni−1)2]+

2nni +2ni − 1 and that of the Method in [9] is l[2nni+ (ni − 1)2], then the cost of Method 2.1

is about

1 +
2nni + 2ni − 1

l[2nni + (ni − 1)2]

times of that of the Method in [9]. Particularly, the times is about

1 +
2n2m+ 2nm−m2

l[(2m+ 1)n2 − 2mn+m2]
≈ 1 +

2m

(2m+ 1)l
,

when ni = n/m and n is reasonably large.

The average speed-up of a linear parallel iterative method, as defined in [3], is

Sm =
Ws ×Ns

Wp ×Np

, (2.7)

where Wp = max1≤i≤m{wi} represents the maximum work of m processors of a linear parallel

iterative method and Ws the work of the corresponding linear serial iterative method at each

iterate step, Np and Ns denote their iteration step number respectively under the unified

precision. Thus,

Sm

S′
m

=
N ′

p{l[2nni0 + (ni0 − 1)2] + 2nni0 + 2ni0 − 1}

Np{l[2nni0 + (ni0 − 1)2]}
, ni0 = max

1≤i≤m
{ni} (2.8),

with Sm and S′
m are the average speed-up of the Method in [9] and Method 2.1, respectively.

Hence, Method 2.1 is more efficient than the Method in [9] if and only if Sm/S′
m < 1.

Specially, if ni = n/m, i = 1, · · · ,m (say), then (2.8) can be written as

Sm

S′
m

≈
[(2m+ 1)l + 2m]N ′

p

[(2m+ 1)l]Np

. (2.9)

3. Convergence Analysis

This section is devoted to study the convergence theories for Method 2.1 under the reasonable

assumptions.

Lemma 3.1([8, Theorem 2.4]). Let A be a symmetric positive definite matrix. Then A =

M −N is a P -regular splitting if and only if there exists a positive real number r such that

‖A
1
2TA− 1

2 ‖2 ≤ r < 1.

Lemma 3.2. Let A = Mi−Ni, i = 1, · · · ,m be m P -regular splittings of the symmetric positive

definite matrix A and Ei = diag(0, · · · , 0, Ii, 0, · · · , 0) with Ii, i = 1, · · · ,m be ni × ni identity

matrices. If ‖A
1
2M−1

i NiA
− 1

2 ‖2 = ri, i = 1, · · · ,m and

l > −
1

ln r
ln
(

m
∑

i=1

||A
1
2EiA

− 1
2 ||2

)

,

where r = max1≤i≤m ri, then the splitting A = P − Q induced by the stationary multisplitting

(Mi, Ni, l, Ei)
m
i=1 is a P -regular splitting.
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Proof. For Method 2.1, it follows, as in [9], that the iteration matrix is

T = P−1Q =

m
∑

i=1

Ei(M
−1
i Ni)

l. (3.1)

Similar to the proof of Theorem 2.1 in [9], we have

‖A
1
2TA− 1

2 ‖2 ≤ max
i

‖A
1
2M−1

i NiA
− 1

2 ‖l2 ·
m
∑

i=1

‖A
1
2EiA

− 1
2 ‖2

≤
m
∑

i=1

‖A
1
2EiA

− 1
2 ‖2max

i
rli < 1.

Thus, Lemma 3.1 implies that A = P −Q is a P -regular splitting. �

Remark 3.1. In [9], the nonstationary multisplitting parallel iterative method with general

weighting matrices is convergent when s(i, k) is large enough. Here, we give the lower bound

of stationary iteration number l for nonoverlaping multisplitting iterative method. In fact, this

result can straightforwardly employ the nonstationary iteration number s(i, k), introduced in

[9], to obtain an analogs. Since our study focused on parallel quasi-Chebyshev acceleration,

only the stationary multisplitting parallel iterative method is discussed.

Theorem 3.3. Let (Mi, Ni, l, Ei)
m
i=1 be a stationary multisplitting of the symmetric positive

definite matrix A and it satisfies the assumptions of Lemma 3.2. Then {x(k,0)} generated by

Method 2.1 converges to the unique solution x∗ of the linear system (1.1).

Proof. From Lemma 3.2, the splitting A = P −Q induced by the stationary multisplitting

(Mi, Ni, l, Ei)
m
i=1 is a P -regular splitting. Let ǫ(k,0) = x(k,0) − x∗. Then it holds that

ǫ(k,l) = T ǫ(k,0), (3.2)

where T =
∑m

i=1 Ei(M
−1
i Ni)

l = P−1Q. On the other hand, (2.4) are equivalent to the following

models in kth iteration,

min
α(i)

1

2
(x(i) − x∗)

TA(x(i) − x∗), i = 1, · · · ,m.

Therefore by noting that Method 2.1, we have

(ǫ(k+1,0))TAǫ(k+1,0) ≤ (ǫ(k,l))TAǫ(k,l). (3.3)

It follows from (3.2) and (3.3) that

‖A
1
2 ǫ(k+1,0)‖2 ≤ ‖A

1
2 ǫ(k,l)‖2 ≤ ‖A

1
2T ǫ(k,0)‖2

= ‖A
1
2TA− 1

2A
1
2 ǫ(k,0)‖2 ≤ ‖(A

1
2TA− 1

2 )‖2‖A
1
2 ǫ(k,0)‖2

≤ · · ·

≤ ‖A
1
2TA− 1

2 ‖k2‖A
1
2 ǫ(0,0)‖2.

By noting Lemmas 3.1 and 3.2, there exists a positive real number θ such that

‖A
1
2TA− 1

2 ‖2 ≤ θ < 1.
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Thus, we obtain

lim
k→∞

(ǫ(k+1,0))TAǫ(k+1,0) = 0,

which is alternatively equivalent to

lim
k→∞

ǫ(k+1,0) = 0.

This completes the proof of the theorem. �

Lemma 3.4. Let A = M −N be an H-compatible splitting of the strictly diagonally dominant

matrix A. Then

||NM−1||1 < 1. (3.4)

Proof. We know that 〈A〉 = 〈M〉 − |N | from the definition of H-compatible splitting.

Hence, M = (mij) ∈ Rn×n is a strictly diagonally dominant matrix. Let e = (1, · · · , 1)T . From

Property 1.4, it holds that

||NM−1||1 ≤ |||N |〈M〉−1||1 = max
1≤i≤n

|(eT |N |〈M〉−1)i|.

Let eT |N |〈M〉−1 = xT , where xT = (x1, · · · , xn). We then have

eT |N | = xT 〈M〉. (3.5)

Let xi0 = max
1≤i≤n

{xi} and N = (nij) ∈ Rn×n. (3.5) implies that

n
∑

j=1

|nji0 | = mi0i0xi0 −
∑

j 6=i0

mji0xj ≥
(

mi0i0 −
∑

j 6=i0

mji0

)

xi0 ,

which yields

xi0 ≤

n
∑

j=1

|nji0 |

mi0i0 −
∑

j 6=i0

mji0

. (3.6)

By noting the splitting 〈A〉 = 〈M〉 − |N | of the strictly diagonally dominant matrix 〈A〉 is an

H-compatible splitting, it holds that the right hand side of (3.6) is bounded in (0, 1). We have

obtained the lemma. �

Lemma 3.5. Let A = M − N be an H-compatible splitting of the H-matrix A. Then there

exists a positive diagonal matrix D such that

||DNM−1D−1||1 < 1. (3.7)

Proof. Because A is an H-matrix, there is a positive diagonal matrix D such that DA is a

strictly diagonally dominant matrix. It follows that,

〈DA〉 = 〈DM〉 − |DN |. (3.8)

Let 〈DA〉 = Ā, 〈DM〉 = M̄, |DN | = N̄ . Then

Ā = M̄ − N̄
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is a regular splitting of the strictly diagonally dominant matrix Ā. From Lemma 3.4, we know

that ||N̄M̄−1||1 < 1. Hence,

||DNM−1D−1||1 = ||N̄M̄−1||1 < 1, (3.9)

which completed the proof. �

Theorem 3.6. Let A = Mi − Ni, i = 1, · · · ,m be m splittings of the H-matrix A and Ei =

diag(0, · · · , 0, Ii, 0, · · · , 0) with Ii, i = 1, · · · ,m be ni × ni identity matrices. If the splitting

A = P−Q induced by the stationary multisplitting (Mi, Ni, l, Ei)
m
i=1 is an H-compatible splitting,

then {x(k,0)} generated by Method 2.1 converges to the unique solution x∗ of the linear system

(1.1).

Proof. Let ǫ(k,0) = x(k,0) − x∗, we obtain

ǫ(k,l) = T ǫ(k,0),

where T =
∑m

i=1 Ei(M
−1
i Ni)

l = P−1Q. Let D be a positive diagonal matrix so that DA is

strictly diagonally dominant. From (2.5), analogously to Theorem 3.3 we can obtain that

||DAǫ(k+1,0)||1 ≤ ||DAǫ(k,l)||1 = ||DATǫ(k,0)||1 = ||DATA−1D−1D · Aǫ(k,0)||1

≤ ||DATA−1D−1||1||DAǫ(k,0)||1 = ||D(ATA−1)D−1||1||DAǫ(k,0)||1

= ||D(QP−1)D−1||1||DAǫ(k,0)||1

≤ r||DAǫ(k,0)||1 ≤ · · · ≤ rk+1||DAǫ(0,0)||1, (3.10)

where r = ||DQP−1D−1||1. By noting Lemma 3.5 it is easy to know that r < 1 and

lim
k→∞

||Aǫ(k+1,0)||1 = 0, thus we obtain

lim
k→∞

ǫ(k+1,0) = 0. (3.11)

We have completed the proof of this theorem. �

4. Numerical Experiments

In this section, numerical examples are given to illustrate the effectiveness of the PQCA

to the nonoverlapping multisplitting iterative method (Method 2.1). We compare Method 2.1

and the Method in [9] in the senses of the iteration step (denoted as IT) and the total CPU

time (denoted as CPU) in second. Moreover, parallel speed-up (denoted as SP) are listed in

the following numerical tables. Here, the SP is defined to be the ratio of the parallel quasi-

Chebyshev acceleration to the nonoverlapping multisplitting iterative method, i.e.,

SP =
CPU of the Method in [9]

CPU of the Method 2.1 (PQCA)
.

In our implementations, all programs are performed in MATLAB with machine precision

10−32. And all our tests are started from zero vector, the right-hand side b = (1, · · · , n)T and

the iteration is terminated once the current iterations x(k,0) obey

‖b−Ax(k,0)‖

‖b‖
< 10−6,
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or the stopping criterion is not satisfied after 30000 iteration steps.

In our tests, the experimentally found optimal parameters α(i), i = 1, · · · ,m are obtained

according to the Nelder-Mead simplex method (see [10]). When these optimal parameters are

approximated to their true solutions under the given precision or the numbers of iteration steps

are up to the maximum number of function evaluations allower (denoted as kopt), we get the

experimentally found optimal parameters α(i), i = 1, · · · ,m.

Example 4.1. Consider the nine-point difference equations from discretizing the Possion

equations, the resulted system of linear equations (1.1) are of the form

Ax = b, (4.1)

where

A =

















Ds Bs

Bs Ds Bs

. . .
. . .

. . .

Bs Ds Bs

Bs Ds

















p×p

∈ Rn×n, n = ps,

with Ds = tridiag(−4, 20,−4) ∈ Rs×s, and Bs = tridiag(−1,−4,−1) ∈ Rs×s.

Here and in the sequel, we use µ = [p3 ] to denote the integer part of the number p

3 and

t = µs.

We implement Method 2.1 with respect to different kopt and the Method in [9] by the

following three block splittings to solve the system of linear equations (4.1) in parallel processors,

that is:

• (a) the first splitting is taken to be N1 = M1 − A and M1 = diag(M
(1)
11 ,M

(1)
22 ) ∈ Rn×n,

where

M
(1)
11 =











Ds

Bs Ds

. . .
. . .

Bs Ds











µ×µ

∈ Rt×t,

M
(1)
22 = diag(Ds, Ds, · · · , Ds) ∈ R(n−t)×(n−t);

• (b) the second splitting is taken to be N2 = M2 −A and M2 = diag(M
(2)
11 ,M

(2)
22 ,M

(2)
33 ) ∈

Rn×n, where

M
(2)
11 = diag(Ds, Ds, · · · , Ds) ∈ Rt×t,

M
(2)
22 =











Ds

Bs Ds

. . .
. . .

Bs Ds











µ×µ

∈ Rt×t,

M
(2)
33 = diag(Ds, Ds, · · · , Ds) ∈ R(n−2t)×(n−2t);
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• (c) the third splitting is taken to be N3 = M3 − A and M3 = diag(M
(3)
11 ,M

(3)
22 ) ∈ Rn×n,

where

M
(3)
11 = diag(Ds, Ds, · · · , Ds) ∈ R2t×2t,

M
(3)
22 =











Ds

Bs Ds

. . .
. . .

Bs Ds











ν×ν

∈ R(n−2t)×(n−2t),

with ν = p− 2µ.

In the following Table 4.1, we list the experimentally solved (4.1), IT,CPU and SP, with

respect to different n.

Table 4.1 The comparisons of computational results for Example 4.1.

n Method Method 2.1

in [9] kopt=5 kopt=10 kopt=12 kopt=15

3600 IT 2676 995 722 698 702

CPU(s) 24.1675 16.5949 12.3783 12.1213 12.0575

SP 1 1.5 2.0 2.0 2.0

6400 IT 4660 1741 1278 1223 1231

CPU(s) 73.8825 49.8373 38.0831 37.0892 37.3659

SP 1 1.5 1.9 2.0 2.0

10000 IT 7185 2697 1991 1937 1928

CPU(s) 170.7108 119.4169 87.4981 88.9020 91.2372

SP 1 1.4 2.0 1.9 1.9

14400 IT 10257 3878 2920 2856 2856

CPU(s) 375.5195 242.1399 192.8085 194.1088 196.5161

SP 1 1.6 1.9 1.9 1.9

19600 IT 13877 5272 3991 3949 3855

CPU(s) 697.1244 462.2743 352.3912 357.6036 350.9744

SP 1 1.5 2.0 1.9 2.0

25600 IT 18039 6885 5271 5182 5116

CPU(s) 1587.5 1067.4 845.5334 847.6758 872.7531

SP 1 1.5 1.9 1.9 1.8

32400 IT 22747 8700 6704 6623 6547

CPU(s) 2759.9 1808.7 1420.8778 1451.4 1499.9

SP 1 1.5 1.9 1.9 1.8

40000 IT 28004 10753 8317 8165 8084

CPU(s) 4189.2 2283.1 2117.2 2094.8 2145.7

SP 1 1.5 2.0 2.0 2.0

Example 4.2. Consider the generalized convection-diffusion equations in a two-dimensional

case. The equation is

−
∂2u

∂x2
−

∂2u

∂y2
+ q · exp(x+ y) · x ·

∂u

∂x
+ q · exp(x+ y) · y ·

du

dy
= f (4.2)

with the homogeneous Dirichlet boundary condition. We use the standard Ritz-Galerkin finite

element method by P1 conforming triangular element to approximate the following continuous



294 R.P. WEN, G.Y. MENG AND C.L. WANG

solutions u = x · y · (1− x) · (1− y) in the domain Ω = [0, 1]× [0, 1], the step-sizes along both x

and y directions are the same, that is, h = 1
2m , m = 5, 6, 7. Let q = 1.

After discretization the matrix A of this equation is given by

A =

















A11 B12

C21 A22 B23

. . .
. . .

. . .

Cp−1,p−2 Ap−1,p−1 Bp−1,p

Cp,p−1 Ap,p

















∈ Rn×n,

where Ai,i, i = 1, · · · , p are s-by-s nonsymmetric matrices and BT
i,i+1 6= Ci+1,i, and n = sp =

322, 642, 1282.

We implement Method 2.1 with respect to different kopt and the Method in [9] by three

splittings in the following, analogously to Example 4.1, to solve the system of linear equations

(1.1) yielded in Example 4.2 in parallel processors, that is:

• (a) the first splitting is taken to be N1 = M1 − A and M1 = diag(M
(1)
11 ,M

(1)
22 ) ∈ Rn×n,

where

M
(1)
11 =











A11

C21 A22

. . .
. . .

Cµ,µ−1 Aµ,µ











∈ Rt×t,

M
(1)
22 = diag(Aµ+1,µ+1, Aµ+2,µ+2, · · · , Ap,p) ∈ R(n−t)×(n−t);

• (b) the second splitting is taken to be N2 = M2 −A and M2 = diag(M
(2)
11 ,M

(2)
22 ,M

(2)
33 ) ∈

Rn×n, where

M
(2)
11 = diag(A11, A22, · · · , Aµ,µ) ∈ Rt×t,

M
(2)
22 =











Aµ+1,µ+1

Cµ+2,µ+1 Aµ+2,µ+2

. . .
. . .

C2µ,µ+1 A2µ,2µ











∈ Rt×t,

M
(2)
33 = diag(A2µ+1,2µ+1, A2µ+2,2µ+2, · · · , Ap,p) ∈ R(n−2t)×(n−2t);

• (c) the third splitting is taken to be N3 = M3 −A and M3 = diag(M
(3)
11 ,M

(3)
22 ) ∈ Rn×n,

where

M
(3)
11 = diag(A11, A22, · · · , A2µ,2µ) ∈ R2t×2t,

M
(3)
22 =











A2µ+1,2µ+1

C2µ+2,2µ+1 A2µ+2,2µ+2

. . .
. . .

Cp,p−1 Ap,p











∈ R(n−2t)×(n−2t).

In the following Table 4.2, we list the experimentally solved the linear system (1.1) yielded

in Example 4.2, IT,CPU and SP, with respect to different n.
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Table 4.2 The comparisons of computational results for Example 4.2.

n Method Method 2.1

in [9] kopt=3 kopt=5 kopt=10 kopt=15

32×32 IT 949 258 313 335 311

CPU(s) 2.3971 1.1243 1.4091 1.7893 1.9108

SP 1 2.1 1.7 1.3 1.3

64×64 IT 3510 961 1173 1258 1185

CPU(s) 35.4218 17.8941 21.0246 23.6507 23.5787

SP 1 2.0 1.7 1.5 1.5

128×128 IT 13597 4406 4533 4815 4556

CPU(s) 673.8528 358.3477 371.7258 400.7144 392.9125

SP 1 1.9 1.8 1.7 1.7

From Tables 4.1 and 4.2, the numerical results show that the Method 2.1 are feasible and

efficient for solving the system of linear equations (1.1) on the multiprocessor systems. To our

surprise, we know that the speed-up of the Method 2.1 is independent of the size of the linear

systems. This shows that the Method 2.1 is much more stable.
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