
Journal of Computational Mathematics

Vol.33, No.6, 2015, 642–684.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1509-m4414

NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL
SHAPE PARAMETERS*

Yuanpeng Zhu

School of Mathematics and Statistics, Central South University, Changsha 410083, China

School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China

Email: zhuyuanpeng@csu.edu.cn

Xuli Han 1)

School of Mathematics and Statistics, Central South University, Changsha 410083, China

Email: xlhan@csu.edu.cn

Abstract

Four new trigonometric Bernstein-like basis functions with two exponential shape pa-

rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal-

ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing

the trigonometric Bézier-like curves is given. Any arc of an ellipse or a parabola can

be represented exactly by using the trigonometric Bézier-like curves. The corresponding

trigonometric Bernstein-like operator is presented and the spectral analysis shows that

the trigonometric Bézier-like curves are closer to the given control polygon than the cu-

bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new

class of trigonometric B-spline-like basis functions with two local exponential shape pa-

rameters is constructed. The totally positive property of the trigonometric B-spline-like

basis is proved. For different values of the shape parameters, the associated trigonometric

B-spline-like curves can be C2
∩ FC3 continuous for a non-uniform knot vector, and C3

or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis

functions over triangular domain is also constructed. A de Casteljau-type algorithm for

computing the associated trigonometric Bézier-like patch is developed. The conditions for

G1 continuous joining two trigonometric Bézier-like patches over triangular domain are

deduced.
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1. Introduction

Trigonometric splines and polynomials have attracted widespread interest within CAGD

(Computer Aided Geometric Design), particularly within curve design, see for example [17,29,

30, 37, 39, 45–47, 50] and the references therein. In [18–22], some quadratic and cubic trigono-

metric polynomial splines with shape parameters were shown. In [25], a class of cubic trigono-

metric Bézier curves with two shape parameters was proposed, which is an extension of the

cubic trigonometric Bézier curves with a shape parameter given in [20]. In [52], a class of

C-Bézier curves was constructed in the space span{1, t, sin t, cos t}, where the length of the in-

terval serves as shape parameter. The C-Bézier curves can exactly represent the ellipse and
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the sine curves. When the length of the interval tends to zero, the C-Bézier curves yield the

classical cubic Bézier curves. Geometric interpretation of the change of the shape parameter

for C-Bézier curves was given in [26]. In [6], it was pointed out that the critical length for

the space span{1, t, sin t, cos t} is 2π, which means that Extended Complete Chebyshev (ECC)

space for the space span{1, t, sin t, cos t} exists only on interval of length less than 2π. In [2], this

restriction was overcome by substituting ECC-space with the Canonical Complete Chebyshev

(CCC) space.

For modifications of the curve form, it is worth to study the practical methods for adjusting

curves by using tension shape parameters. In [10], a kind of variable degree polynomial splines

was constructed in the space span{1, t, (1− t)p, tq}, where p, q are two arbitrary integers greater

than or equal to 3 and used as tension shape parameters. In [31,32], this space was proved to be

a Quasi Extended Chebyshev (QEC) space and studied by using the blossom approach. Later,

in [15], the space span{1, t, t2, ..., tn−2, (1− t)p, tq} was investigated by using a direct approach

based on elementary analytic properties of the space, where p, q ≥ n+ 1 are any real numbers.

Based on the fact that the space span{1, t, t2, ..., tn−2, (1 − t)p, tq} is a QEC-space for any real

numbers p, q ≥ n − 1 and max(p, q) > n − 1, the dimension elevation process for the space

was further studied via blossom approach, see [33–36]. Recently, in [3], the totally positivity

property of the variable degree polynomial spline basis was proved within the general framework

of CCC-space. For the problems of shape preserving interpolation and approximation, the

variable degree polynomial splines show great potential applications, see [11,13,14,16]. In [54],

a kind of αβ-Bernstein-like basis with two exponential shape parameters was constructed in the

space span{1, 3t2 − 2t3, (1 − t)α, tβ}, which forms an optimal normalized totally positive basis

and includes the cubic Said-Ball basis and the cubic Bernstein basis as special cases. In [42],

by using an iterative integral method, changeable degree spline basis functions were defined.

In [44], the explicit representations of changeable degree spline basis functions were given.

In [24], five trigonometric blending functions possessing two exponential shape parameters were

constructed in the space span{1, sin t(1− sin t)
α−1

, cos t(1− cos t)
β−1

, (1− sin t)
α
, (1 − cos t)

β},
based on which a class of trigonometric B-spline-like curves with three local shape parameters

and a global shape parameter were proposed. In [27], these five trigonometric blending functions

were further extended to a general case. It was pointed out in [12] that for constructing space

curves, C2∩FC3 is a reasonable smoothness property since such continuity can ensure that the

motion of a point on the generated curves have a continuous acceleration and that the generated

curves possess continuous curvature vectors and torsion. And by using a modification of the

C4 quintic splines, a class of C2 ∩ FC3 spline curves possessing tension shape properties was

described in [12]. Based on the quartic Bernstein basis functions, a class of general quartic

spline curves with three local shape parameters was proposed in [23]. The given spline curves

can be C2 ∩GC3 continuous by fixing some values of the curves’ shape parameters.

Since tensor product Bézier patch is the direct extension of Bézier curve, we can get rect-

angular patches with shape parameters through the above mentioned new curves. However,

the Bernstein-Bézier surface over the triangular domain is not a tensor product patch ex-

actly. Therefore, we cannot get triangular surfaces with an adjustable shape through the

method of tensor product. During the last years, some researchers have put many efforts on

the establishments of new bases over triangular domain with shape parameters, see for exam-

ple [8, 43, 48, 49, 51, 53]. In [43], Shen and Wang proposed a kind of Bernstein-like basis with a

shape parameter, which was a triangular domain extension of the p-Bézier basis of order 3 given

in [39]. In [48], Wei, Shen and Wang extended the C-Bézier basis on the univariate domain
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given in [52] to a new Bézier-like basis on the triangular domain, which possess a shape param-

eter and can be used to generate some surfaces whose boundaries are arcs of ellipse. In [53],

a kind of triangular Bernstein-Bézier-type patch with three exponential shape parameters was

proposed.

The purpose of this paper is to present four new trigonometric Bernstein-like basis functions

possessing two exponential shape parameters constructed in the trigonometric function space

span{1, sin2t, (1− sin t)α, (1− cos t)β} and a new class of trigonometric Bézier-like basis over

triangular domain possessing three exponential shape parameters. The given trigonometric

Bernstein-like operator and the associated spectral analysis can help to further understand the

corresponding trigonometric Bézier-like curves. The proposed trigonometric B-spline-like curves

with two local exponential shape parameters have C2 ∩FC3 continuity at single knots and can

be C3 even C5 continuous for particular choice of the shape parameters. The exponential

shape parameters serve as tension shape parameters and have a predictable adjusting role on

the corresponding curves and patches.

The rest of this paper is organized as follows. Section 2 gives the construction and properties

of the trigonometric Bernstein-like basis functions. The corresponding trigonometric Bézier-

like curves and trigonometric Bernstein-like operator are shown. In section 3, trigonometric

B-spline-like curves with two local exponential shape parameters are presented. In section 4,

a class of trigonometric Bézier-like patch over triangular domain with three exponential shape

parameters is presented. And finally, conclusions are given in section 5.

2. Trigonometric Bernstein-like Basis Functions

2.1. Preliminaries

In this subsection, we shall give the necessary background on Extended Completed Cheby-

shev (ECC) space and Quasi Extended Chebyshev (QEC) space with special emphasis on

weight functions, blossom and Quasi Bernstein-like basis. We will merely mention very few re-

sults necessary for a good understanding for the present paper, and more details can be found

in [31–36,40].

Let I denote a given closed bounded interval [a, b], with a < b. We call function space

(u0, u1, u2, u3) a 4-dimensional ECC-space in canonical form generated by positive weight func-

tions wj ∈ C3−j(I) provided that

u0(t) = w0(t),

u1(t) = w0(t)

∫ t

a

w1(t1)dt1,

u2(t) = w0(t)

∫ t

a

w1(t1)

∫ t1

a

w2(t2)dt2dt1,

u3(t) = w0(t)

∫ t

a

w1(t1)

∫ t1

a

w2(t2)

∫ t2

a

w3(t3)dt3dt2dt1.

It is well known that 4-dimensional function space (u0, u1, u2, u3) is an ECC-space on I if

and only if for any k, 0 ≤ k ≤ 3, any nontrivial linear combination of the elements of the

subspace (u0, . . . , uk) has at most k zeros (counting multiplicities). And 4-dimensional function

space (u0, u1, u2, u3) ⊂ C2(I) is a QEC-space on I if for any nontrivial linear combination of
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the elements of the space vanishes at most three times in I, counting multiplicities as far as

possible for functions in C2(I), that is, up to three, see [33–36].

A basis (u0, u1, u2, u3) is said to be totally positive on [a, b] if, for any sequence of points

a ≤ t0 < t1 < · · · < t3 ≤ b, the collocation matrix (uj(ti))0≤i,j≤3 is totally positive, that is,

all its minors are nonnegative. For a given function space possessing totally positive basis, the

normalized optimal totally positive basis (i.e. the normalized B-basis) is a normalized totally

positive basis from which all other totally positive bases can be deduced by multiplication by

a (regular) totally positive matrix. Such normalized optimal totally positive basis is unique

and has optimal shape preserving properties, see [6], in the sense that the curves they defined

best imitate the corresponding control polygon, such as the monotonicity and convexity of the

control polygon are inherited by the curves defined by such basis, see [4].

Osculating flats allow a natural generalization of the blossoming principle. Assume the 4-

dimensional E ⊂ C2 to contain constants and to be 4-dimensional on I. Select three functions

Φ1,Φ2,Φ3 in E so that (1,Φ1,Φ2,Φ3) forms a basis of E . We set a mother-function Φ :=

(Φ1,Φ2,Φ3) : I → R
3. This function being C2 on I, for any nonnegative integer i ≤ 2, we can

consider its osculating flat of order i at x ∈ I, defined as the affine space passing through Φ(x)

and the direction of which is spanned by Φ′(x), . . . ,Φ(i)(x), i.e.,

OsciΦ(x) :=
{
Φ(x) + λ1Φ

′(x) + . . .+ λiΦ
(i)(x)

∣∣∣λ1, . . . , λi ∈ R

}
.

Choose any positive integers µ1, . . . , µr, with
∑r

i=1 µi = 3, and any pairwise distinct a1, . . . , ar
in I. Then, if ever the r osculating flats Osc3−µi

φ(ai), 1 ≤ i ≤ r, have a unique common point,

we define the blossom of Φ as the function ϕ := (ϕ1, . . . , ϕ3) : I
3 → R

3 such that

{ϕ(x1, x2, x3)} :=

r⋂

i=0

Osc3−µi
Φ(ai), (2.1)

for any 3-tuple (x1, x2, x3) which is equal to (a
[µ1]
1 , . . . , a

[µr ]
r ) up to permutation, where

(a
[µ1]
1 , . . . , a[µr ]

r ) := (a1, . . . , a1︸ ︷︷ ︸
µ1

, . . . , ar, . . . , ar︸ ︷︷ ︸
µr

).

This blossom satisfies three important properties: symmetry, diagonal property and pseudo-

affinity, see [33–36]. We want to highlight the fact that blossom exists in space E ⊂ C2 is

equivalent to that its differential space DE is an QEC-space on I, see Theorem 3.1 in [34].

For any (a, b) ∈ I2, the four points Πi(a, b) := ϕ(a[n−i], b[i]), i = 0, 1, 2, 3 are called the

Chebyshev-Bézier points of ϕ with respect to (a, b). When a = b, we have Πi(a, b) = ϕ(a[3]),

for all i = 0, 1, 2, 3. When a 6= b, the Chebyshev-Bézier points are obtained as

Π0(a, b) = Φ(a), Π3(a, b) = Φ(b),

{Πi(a, b)} = OsciΦ(a) ∩Osc3−iΦ(b), 1 ≤ i ≤ 2. (2.2)

In addition, when a 6= b, the three properties of the blossom make it possible to develop a de

Casteljau type evaluation algorithm starting from the points Πi(a, b). At the nth step of this

algorithm we can obtain the values of ϕ as affine combinations of the Chebyshev-Bézier points

Φ(x) =

3∑

i=0

B
(a,b)
i (x)Πi(a, b),

3∑

i=0

B
(a,b)
i (x) = 1, x ∈ I. (2.3)
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Due to (1,Φ1,Φ2,Φ3) being a basis of E , the affine flat spanned by the image of Φ is the

whole space R3. It follows from (2.3) that the points Π0(a, b),Π1(a, b),Π2(a, b) and Π3(a, b) are

affinely independent. In addition, the so obtained functions B
(a,b)
i , i = 0, 1, 2, 3 form a basis of

E which are called the Quasi Bernstein-like basis with respect to (a, b), see [33–36].

2.2. Construction of trigonometric Bernstein-like basis functions

In this subsection, for any real numbers α, β ∈ [2,+∞), t ∈ [0, π/2], we shall work with the

trigonometric space Tα,β := span
{
1, sin2t, (1− sin t)α, (1− cos t)β

}
. The associated mother-

function is defined as follows

Φ(t) :=
(
sin2t, (1 − sin t)

α
, (1− cos t)

β
)
, t ∈ [0, π/2]. (2.4)

In the following theorem, we shall show that the following space

DTα,β := span
{
2 sin t cos t,−α cos t(1− sin t)

α−1
, β sin t(1− cos t)

β−1
}

is a 3-dimensional QEC-space on t ∈ [0, π/2].

Theorem 2.1. For any real numbers α, β ∈ [2,+∞), the space DTα,β is a 3-dimensional QEC-

space on [0, π/2].

Proof. For any ξi ∈ R, t ∈ [0, π/2], we consider a linear combination

ξ0 [2 sin t cos t] + ξ1

[
−α cos t(1 − sin t)

α−1
]
+ ξ2

[
β sin t(1 − cos t)

β−1
]
= 0. (2.5)

For t = 0, from (2.5), we can immediately obtain ξ1 = 0. Similarly, for t = π/2, from (2.5),

we have ξ2 = 0. And finally, we have ξ0 = 0. Thus the space DTα,β is a 3-dimensional space.

We shall prove the space DTα,β is a 3-dimensional QEC-space on [0, π/2] by two steps.

Firstly, we prove that the space DTα,β is a 3-dimensional ECC space in (0, π/2). For any

t ∈ [a, b] ⊂ (0, π/2), let

u(t) =

[
− (1− sin t)α−1

sin t

]′

=
1

sin2t

[
(α − 1) sin t cos t(1− sin t)

α−2
+ cos t(1− sin t)

α−1
]
,

and

v(t) =

[
(1− cos t)

β−1

cos t

]′

=
1

cos2t

[
(β − 1) sin t cos t(1− cos t)

β−2
+ sin t(1− cos t)

β−1
]
.
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By directly computing, we get

u′(t) =
−1

sin3t

{
sin2t

[
(1− sin t)

α−1
+ (α− 1) sin t(1 − sin t)

α−2

+(α− 1)(α− 2)cos2t(1 − sin t)α−3
]
+ 2cos2t

[
(1 − sin t)α−1

+(α− 1) sin t(1 − sin t)
α−2

]}
< 0,

v′(t) =
1

cos3t

{
cos2t

[
(1− cos t)β−1 + (β − 1) cos t(1− cos t)β−2

+(β − 1)(β − 2)sin2t(1− cos t)
β−3
]
+ 2sin2t

[
(1− cos t)

β−1

+(β − 1) cos t(1− cos t)
β−2
]}

> 0.

Thus for the Wronskian of u(t) and v(t), we have

W (u, v)(t) = u(t)v′(t)− u′(t)v(t) > 0, ∀t ∈ [a, b].

For t ∈ [a, b], we define the following weight functions

w0(t) = 2 sin t cos t,

w1(t) = Au(t) +Bv(t),

w2(t) = C
W (u, v)(t)

[Au(t) + Bv(t)]
2 ,

where A,B,C are three arbitrary positive real numbers. Obviously, these weight functions wi(t)

(i = 0, 1, 2) are bounded, positive and C∞ on [a, b]. Consider the following ECC-space defined

by the weight functions wi(t) (i = 0, 1, 2)

u0(t) = w0(t),

u1(t) = w0(t)

∫ t

a

w1(t1)dt1,

u2(t) = w0(t)

∫ t

a

w1(t1)

∫ t1

a

w2(t2)dt2dt1,

after some simple computation, we can see that these functions ui(t), i = 0, 1, 2 are in fact some

linear combinations of the three functions 2 sin t cos t, −α cos t(1− sin t)α−1, β sin t(1− cos t)β−1,

which indicates that the space DTα,β is a ECC-space on [a, b]. Since [a, b] are arbitrary subin-

terval of (0, π/2), we can conclude that the space DTα,β is an ECC-space in (0, π/2).

Secondly, we further prove that the space DTα,β is also a QEC-space on [0, π/2]. For this

purpose, we need to prove that any nonzero element of the space DTα,β has at most 2 zeroes

on [0, π/2] (counting multiplicities as far as possible up to 2). Consider any nonzero function

G(t) = C0 [2 sin t cos t] + C1

[
−α cos t(1 − sin t)α−1

]
+ C2

[
β sin t(1− cos t)β−1

]
,

where t ∈ [0, π/2]. Since the space DTα,β is an ECC-space in (0, π/2), G(t) has at most two

zeroes in (0, π/2). Let us assume that the function G(t) vanishes at 0, then we have C1 = 0. In
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this case, if C2 = 0, then G(t) has a singular zero at 0 and a singular zero at π/2. If C0 = 0, it

can be easily checked that 0 is a double zero of G(t) (counting multiplicities as far as possible

up to 2). If C0C2 > 0, G(t) vanishes exactly one time at 0 and it does not vanish anywhere

on (0, π/2]. If C0C2 < 0, G(t) vanishes exactly one time at 0 and it does not vanish at π/2.

Moreover, for the following function

K(t) := 2C0 cos t+ C2β(1 − cos t)β−1, t ∈
[
0,

π

2

]
,

direct computation gives that

K ′(t) = −2C0 sin t+ C2β(β − 1) sin t(1 − cos t)β−2,

it follows thatK(t) is a monotonic function on [0, π/2]. From these together withK(0)K(π/2) =

2βC0C2 < 0, we can see that K(t) has exactly one zero in (0, π/2), thus we can immediately

conclude that G(t) = sin tK(t) (notice that C1 = 0 for the current case) has exactly one zero

in (0, π/2). Similarly, for the case that G(t) vanishes at π/2, we can also deduce that the

function G(t) has at most 2 zeroes on [0, π/2] (counting multiplicities as far as possible up to

2). Summarizing, the space DTα,β is a QEC-space on [0, π/2]. �

Since the space DTα,β is a QEC-space on [0, π/2], by Theorem 3.1 of [34] we can see that

blossom exists in Tα,β, which implies that the new space Tα,β is suited for curve design. By

Theorem 2.18 of [34], we can also know that the space Tα,β has a normalized Quasi Bernstein-

like basis on [0, π/2]. In the following theorem, we shall give the Chebyshev-Bézier points of

the mother-function Φ(t) defined in (2.4) and give the associated trigonometric Bernstein-like

basis Ti := Ti
(0,π/2) of the space Tα,β.

Theorem 2.2. For any α, β ∈ [2,+∞), the four Chebyshev-Bézier points Πi := Πi(0, π/2) of

the mother-function Φ(t) defined in (2.4) are given by

Π0 = (0, 1, 0), Π1 = (0, 0, 0), Π2 = (1, 0, 0), Π3 = (1, 0, 1). (2.6)

The four associated trigonometric Bernstein-like basis functions of the space Tα,β are given by





T0(t) = (1− sin t)α,

T1(t) = 1− sin2 t− (1− sin t)α,

T2(t) = 1− cos2 t− (1− cos t)β ,

T3(t) = (1− cos t)β .

(2.7)

And the system of functions (T0(t), T1(t), T2(t), T3(t)) forms an optimal normalized totally pos-

itive basis of the space Tα,β.

Proof. For any α, β ∈ [2,+∞), from the definition of the mother-function Φ(t), we have

Φ(0) = (0, 1, 0), Φ
(π
2

)
= (1, 0, 1),

Φ′(0) = (0,−α, 0), Φ′
(π
2

)
= (0, 0, β),

Φ′′(0) = (2, α2 − α, 0), Φ′′
(π
2

)
= (−2, 0, β2 − β).
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Thus, by simply computing, we get

Π0 = Φ(0) = (0, 1, 0), Π3 = Φ(1) = (1, 0, 1),

{Π1} = Osc1Φ(0) ∩Osc2Φ(1) = (0, 0, 0), {Π2} = Osc2Φ(0) ∩Osc1Φ(1) = (1, 0, 0).

For any t ∈ [0, π/2], from Φ(t) =
∑3

i=0 Ti(t)Πi, we have





T2(t) + T3(t) = sin2 t,

T0(t) = (1− sin t)α,

T3(t) = (1− cos t)β .

(2.8)

Thus from (2.8) together with
∑3

i=0 Ti(t) = 1, we can easily deduce the expressions of the basis

functions Ti(t), i = 0, 1, 2, 3.

It can be easily checked that the new basis has the following important end-point property:

• T0(0) = 1, and T0(t) vanishes 3 times at π/2 (counting multiplicities as far as possible up

to 3);

• T3(π/2) = 1, and T3(t) vanishes 3 times at 0 (counting multiplicities as far as possible up

to 3);

• For i = 1, 2, Ti(t) vanishes exactly i times at 0 and exactly (3− i) times at π/2.

For any α, β ∈ [2,+∞), t ∈ [0, π/2], it is obvious that Ti(t) ≥ 0 (i = 0, 3). And for T1(t),

T2(t), we have

T1(t) = 1− sin2t− (1− sin t)α ≥ 1− sin2t− (1− sin t)2 = 2 sin t(1− sin t) ≥ 0,

T2(t) = 1− cos2t− (1− cos t)β ≥ 1− cos2t− (1− cos t)2 = 2 cos t(1 − cos t) ≥ 0.

In addition, Ti(t) (i = 0, 1, 2, 3) is positive strictly in (0, π/2). Thus, by Definition 2.10 of [34],

we can know that the normalized trigonometric Bernstein-like basis (2.7) is precisely the Quasi

Bernstein-like basis of the space Tα,β. And by Theorem 2.18 of [34], we can conclude that the

normalized trigonometric Bernstein-like basis (2.7) is exactly the optimal normalized totally

positive basis of the space Tα,β restricted to [0, π/2].

For convenience, in the following discussion we will also denote the four trigonometric

Bernstein-like basis functions as Ti(t;α, β), i = 0, 1, 2, 3, or Ti(t;α), i = 0, 1, Ti(t;β), i = 2, 3.

Fig. 2.1 shows some plots of trigonometric Bernstein-like basis functions for some values of the

shape parameters.

2.3. Construction of the trigonometric Bézier-like curves

Definition 2.1. Given control points Pi (i = 0, 1, 2, 3) in R
2 or R

3. Then

T (t;α, β) =

3∑

i=0

Ti(t;α, β)Pi, t ∈ [0, π/2] , α, β ∈ [2,+∞) (2.9)

is called a trigonometric Bézier-like (TB-like for short) curve with two exponential shape pa-

rameters α and β.
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Fig. 2.1. Some plots of trigonometric Bernstein-like basis functions.

Since the trigonometric Bernstein-like basis functions given in (2.7) have the properties of

partition of unity, nonnegativity and total positivity, the corresponding TB-like curves given

in (2.9) have the properties of affine invariance, convex hull and variation diminishing, which

are crucial in curve design. For any α, β ∈ [2,+∞), direct computation gives the following

end-point property of the TB-like curve





T (0;α, β) = P0, T (π/2;α, β) = P3,

T ′(0;α, β) = α(P1 − P0), T ′(π/2;α, β) = β(P3 − P2).

T ′′(0;α, β) = (α2 − α)(P0 − P1) + 2(P2 − P1),

T ′′(π/2;α, β) = (β2 − β)(P3 − P2) + 2(P1 − P2),

T ′′′(0;α, β) = (α3 − 3α2 + α)(P1 − P0),

T ′′′(π/2;α, β) = (β3 − 3β2 + β)(P3 − P2).

(2.10)

We want to point out a fact that for any α, β ∈ (2, 3), T ′′′(t;α, β) cannot be defined in the

extremes 0 and π/2. However, in any case T ′′′(0;α, β) and T ′′′(π/2;α, β) can be defined as

limits and take those values. We want to highlight that in the following discussion, the values

of function will be always defined as limits whenever there is necessary.

The above end-point property implies that for any α, β ∈ [2,+∞), the TB-like curve has

end-point interpolation property and P0P1, P2P3 are the tangent lines of the curve at the

point P0, P3, respectively. From these, we can see that the TB-like curve has some properties

analogous to that of the classical cubic Bézier curve.



New Trigonometric Basis Possessing Exponential Shape Parameters 651

2.4. Shape control and corner cutting algorithm

For t ∈ [0, π/2], we rewrite the expression of the TB-like curve (2.9) as follows

T (t;α, β) = P1 cos
2 t+ P2 sin

2 t+ T0(t;α)(P0 − P1) + T3(t;β)(P3 − P2). (2.11)

It is obvious that T0(t;α) decreases with the increase of α for any fixed t ∈ (0, π/2), which

indicates that the generated curves move in the same direction of the edge P0−P1 as α increases.

On the contrary, as α decreases, the generated curve moves in the opposite direction to the

edge P0−P1. The shape parameter β has the similar effects on the edge P3−P2. When α or β

increases respectively, the curve tends to the point P1 or P2, respectively. And when the shape

parameters satisfy α = β, the curve moves in the same direction or the opposite direction to

the edge P2 − P1 when α increases or decreases, respectively. Thus we can see that the shape

parameters α and β serve as local tension parameters. Fig. 2.2 shows the TB-like curves with

different shape parameters.
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Fig. 2.2. The effect of the shape parameters on the TB-like curves.

Corner cutting algorithm is an efficient and stable process for computing the proposed TB-

like curves and it is formed by convex combinations. In order to develop such an algorithm, we

rewrite the TB-like curve (2.9) as the following matrix form

T (t;α, β) =
(
1− sin2t 1− cos2t

)
×
(

1− sin t sin t 0

0 1− cos t cos t

)

×




(1−sin t)α−2

1+sin t

1+sin t−(1−sin t)α−2

1+sin t
0 0

0 cos t
sin t+cos t

sin t
sin t+cos t 0

0 0 1+cos t−(1−cos t)β−2

1+cos t
(1−cos t)β−2

1+cos t


×




P0

P1

P2

P3




,

from these, we can immediately obtain a corner cutting algorithm for computing the TB-like

curves. Fig. 2.3 gives an illustration of this algorithm.

2.5. The representation of elliptic and parabolic arcs

For α = β = 2, if the control points are P0 = (x0 + a, y0), P1 = (x0 + a, y0 + b/2),

P2 = (x0 + a/2, y0 + b), and P3 = (x0, y0 + b), then the coordinates of the generated curve
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Fig. 2.3. Corner cutting algorithm.

T (t; 2, 2) are




x(t) = x0 + a cos t,

y(t) = y0 + b sin t,
t ∈ [0, π/2].

This expression shows that T (t; 2, 2) is a quarter of elliptic arc whose center locates at (x0, y0).

By constraining the parameter t on the desired interval [θ1, θ2], we can obtain an arc of an

ellipse whose starting angle and ending angle are θ1 and θ2 respectively.

Furthermore, for α = β = 2, b−a > 0, if the control points P0, P1, P2 and P3 with respective

coordinates (b, c2b
2 + c1b + c0), (b, c2b

2 + c1b + c0), ((b + a)/2, c2ab + c1(b+ a)/2 + c0), and

(a, c2a
2 + c1a+ c0), then from (2.9) we obtain

{
x(t) = (b− a) cos t+ a,

y(t) = c2[(b− a) cos t+ a]
2
+ c1 [(b− a) cos t+ a] + c0,

t ∈ [0, π/2],

which gives a segment of the parabola y = c2x
2 + c1x+ c0, x ∈ [a, b].

−1 0 1
−2

−1

0

1

2

−1 0 1
0

0.5

1

1.5

2

Fig. 2.4. The representation of elliptic and parabolic arcs.

From the above discussion, we can see that any arc of an ellipse or parabola can be repre-

sented exactly by using the proposed TB-like curves. Fig. 2.4 shows the elliptic and parabolic
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segments generated by using the TB-like curves (marked with solid blue lines).

2.6. Trigonometric Bernstein-like operator and spectral analysis

Bernstein-like operators are useful to measure the approximation properties of a vector

function space and the third greatest eigenvalue of the operators gives a rough idea of the

approximation power of the space. The distance of the third greatest eigenvalue to one gives

a measure of how close is the curve to its control polygon, see [7]. In this subsection, for any

α = β ∈ [2,+∞), we shall construct a kind of trigonometric Bernstein-like operator by using

the trigonometric Bernstein-like basis given in (2.7) and analyze the spectral properties of the

operator, which will give a rough estimation about the distance between the TB-like curve

T (t;α, α) and the corresponding control polygon.

For α ∈ [2,+∞), t ∈ [0, π/2], let

f1(t;α) =
1

α
T1(t;α) +

(
1− 1

α

)
T2(t;α) + T3(t;α), (2.12)

where Tj(t;α), j = 1, 2, 3 are the trigonometric Bernstein-like basis functions given in (2.7).

Direct computation gives that

∂f1(t;α)

∂t
= 2

(
1− 2

α

)
sin t cos t+ cos t(1− sin t)α−1 + sin t(1 − cos t)α−1 > 0,

which implies that the function f1(t) is a strictly increasing function with respect to the variable

t for any fixed α ∈ [2,+∞). Moveover, it is easy to check that f1(t) + f1(π/2 − t) = 1. From

these, we can see that the function f1(t;α) has some properties analogous to that of the identity

function I(t) = t.

It is well known that the classical Bernstein operator reproduces the constant function

f0(t) = 1 and the identity function I(t) = t. We mimic this feature by requiring that the

constructed trigonometric Bernstein-like operator reproduces the constant function f0(t) = 1

and the function f1(t;α) given by (2.12). From [1], we also call (f0, f1) a Haar pair.

Since f1 (t;α) is a strictly increasing function with respect to the variable t, and f1(0;α) = 0,

f1(π/4;α) = 1/2, we can see that for any fixed 1/α ∈ (0, 1/2], there exists a unique t∗α ∈ (0, π/4]

such that f1(t
∗
α;α) = 1/α. With these preparations, we now can give the definition of the

trigonometric Bernstein-like operator B : C[0, π/2] → Tα,α as follows

B(f) = f(0)T0(t;α) + f(t∗α)T1(t;α) + f(π/2− t∗α)T2(t;α) + f(π/2)T3(t;α), (2.13)

where f ∈ C[0, π/2].

Next, we shall give the spectral analysis on the trigonometric Bernstein-like operator B.
Obviously, we have

B(f0) = f0(t), B(f1) = f1(t;α),

which means that f0(t) and f1(t;α) are eigenfunctions corresponding to the eigenvalue λ0 =

λ1 = 1.

For α ∈ [2,+∞), t ∈ [0, π/2], the function

f2(t;α) = 1− T0(t;α) − T3(t;α) (2.14)
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satisfies f2(0;α) = f2(π/2;α) = 0 and f2(t;α) = f2(π/2− t;α), thus we have

B(f2) = f2(t
∗
α;α)T1(t;α) + f2(π/2− t∗α;α)T2(t;α)

= f2(t
∗
α;α) [T1(t;α) + T2(t;α)]

= f2(t
∗
α;α)f2(t;α),

which implies that f2(t;α) is an eigenfunction corresponding to the eigenvalue λ2,α = f2(t
∗
α;α).

In addition, for α ∈ [2,+∞), t ∈ [0, π/2], the function

f3(t;α) = T1(t;α)− T2(t;α) (2.15)

satisfies f3(0;α) = f3(π/2;α) = 0 and f3(t;α) = −f3(π/2− t;α), thus we have

B(f3) = f3(t
∗
α;α)T1(t;α) + f3(π/2− tα;α)T2(t;α)

= f3(t
∗
α;α) [T1(t;α)− T2(t;α)]

= f3(t
∗
α;α)f3(t;α),

which implies that f3(t;α) is an eigenfunction corresponding to the eigenvalue λ3,α = f3 (t
∗
α;α).

We shall further show that 0 ≤ λ3,α < λ2,α < λ1 = λ0 = 1. Firstly, it is apparent that

λ2,α = f2 (t
∗
α;α) < 1. Secondly, since t∗α ∈ (0, π/4], direct computation gives that

λ2,α − λ3,α = f2(t
∗
α;α)− f3(t

∗
α;α)

= 1− T0(t
∗
α;α)− T3(t

∗
α;α)− T1(t

∗
α;α) + T2(t

∗
α;α)

= 2T2(t
∗
α;α) > 0.

And lastly, for α ∈ [2,+∞), from Theorem 2.2, since the system of functions (T0(t;α), T1(t;α),

T2(t;α), T3(t;α)) forms a totally positive basis of the space Tα,α, for any 0 ≤ t0 < t1 < t2 <

t3 ≤ π/2, all the minor determinants of the collocation matrix (Tj(ti;α))0≤i,j≤3 are nonnegative.

Thus, for t∗α ∈ (0, π/4], we have

∣∣∣∣∣
T1 (t

∗
α;α) T2 (t

∗
α;α)

T1

(
π
4 ;α

)
T2

(
π
4 ;α

)

∣∣∣∣∣ =
[
1

2
−
(
1−

√
2

2

)α]
λ3,α ≥ 0,

which indicates that λ3,α ≥ 0. This completes the spectral analysis of the proposed trigono-

metric Bernstein-like operator B given in (2.13).

From the above discussion, we can see that λ2,α is the third greatest eigenvalue of the

trigonometric Bernstein-like operator B, and thus λ2,α gives a measure of how close is the

generated TB-like curve T (t;α, α) to its control polygon. For α = 2, it can be checked that

t∗2 = π/4 and λ2,2 = 1 − 2(1−
√
2/2)2 ≈ 0.8284. From [9], we can see that the third greatest

eigenvalue of the classical cubic Bernstein operator is λ2 = 2/3 ≈ 0.6667. These imply that for

α = 2, the corresponding TB-like curve T (t; 2, 2) is closer to the given control polygon than the

cubic Bézier curve. In general, however, the calculation of the eigenvalue λ2,α involves solving

a non-linear equation, thus it is quite hard to give the exact solution. Nevertheless, we have

lim
α→+∞

λ2,α = 1.
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Fig. 2.6. TB-like curves and variable degree polynomial Bézier curves.

Fig. 2.5 shows the comparison between the TB-like curves and the classical cubic Bézier

curves under the same control points. It can be seen that as α = β increases at the same

time, the TB-like curves will be totally closer to the control polygon than the cubic Bézier

curves. These imply that the TB-like curves can better maintain the characteristic of the

control polygon than the cubic Bézier curves.

Fig. 2.6 shows the comparison between the TB-like curves and the variable degree polynomial

Bézier curves given in [10] under the same control points. Clearly, for the same degree, the

TB-like curves (solid lines) are closer to the control polygon than the variable degree polynomial

Bézier curves (dashed lines).

Remark 2.1. For α = n ≥ 2, β = m ≥ 2, n,m ∈ Z
+, we give a conversion of the proposed
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TB-like curve T (t;n,m) to a rational Bézier curve of degree max{2n, 2m}.
By using the transformation

sin t = 2x/(1 + x2), cos t = (1− x2)/(1 + x2), x = tan(t/2), t ∈ [0, π/2],

we can rewrite the four trigonometric Bernstein-like basis functions Ti(t;n,m), i = 0, 1, 2, 3

given in (2.7) into the following rational form




T0(t;n) =
(1−x)2n

(1+x2)n ,

T1(t;n) =
(1−x2)

2
(1+x2)

n−2
−(1−x)2n

(1+x2)n ,

T2(t;m) = 4x2(1+x2)
m−2

−2mx2m

(1+x2)m ,

T3(t;m) = 2mx2m

(1+x2)m ,

(2.16)

where x = tan(t/2) ∈ [0, 1].

After some manipulations, we have

(1 + x2)n = X2nL2n, (1− x)2n = X2nL
(0)
2n ,

(1− x2)2(1 + x2)n−2 − (1 − x)2n = X2nL
(1)
2n ,

4x2(1 + x2)m−2 − 2mx2m = X2mL
(2)
2m,

2mx2m = X2mL
(3)
2m,

where X2n = (1, x, . . . , x2n), L2n = (l0, l1, . . . , l2n)
T , L0

2n = (l
(0)
0 , l

(0)
1 , . . . , l

(0)
2n )

T , L
(1)
2n = (l

(1)
0 ,

l
(1)
1 , . . . , l

(1)
2n )

T , L
(2)
2m = (l

(2)
0 , l

(2)
1 , . . . , l

(2)
2m)T and L

(3)
2m = (l

(3)
0 , l

(3)
1 , . . . , l

(3)
2m)T with

li =





C

i/2
n , i = 0, 2, 4, . . . , 2n,

0, i = 1, 3, 5, . . . , 2n− 1,

l
(0)
i =





Ci

2n i = 0, 2, 4, . . . , 2n,

−Ci
2n, i = 1, 3, 5, . . . , 2n− 1,

l
(1)
i =




C

i/2
n−2 − 2C

i/2−1
n−2 + C

i/2−2
n−2 − Ci

2n, i = 0, 2, 4, . . . , 2n,

Ci
2n, i = 1, 3, 5, . . . , 2n− 1,

l
(2)
i =






4C
i/2−1
m−2 , i = 0, 2, 4, . . . , 2m− 2,

0, i = 1, 3, 5, . . . , 2m− 1,

−2m, i = 2m.

l
(3)
i =




0 i = 0, 1, 2, . . . , 2m− 1,

2m, i = 2m,

Suppose that n ≥ m, then we have
(
1 + x2

)n−m ·
[
4x2
(
1 + x2

)m−2 − 2mx2m
]
= X2(n−m)L2(n−m) ·X2mL

(2)
2m = X2nL̃

(2)
2n ,

(
1 + x2

)n−m · 2mx2m = X2(n−m)L2(n−m) ·X2mL
(3)
2m = X2nL̃

(3)
2n ,
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where L̃
(2)
2n = (l̃

(2)
0 , l̃

(2)
1 , . . . , l̃

(2)
2n )

T and L̃
(3)
2n = (l̃

(3)
0 , l̃

(3)
1 , . . . , l̃

(3)
2n )

T with

l̃
(2)
k =

∑

i+j=k

lil
(2)
j , i = 0, 1, . . . , 2(n−m), j = 0, 1, . . . , 2m, k = 0, 1, . . . , 2n,

l̃
(3)
k =

∑

i+j=k

lil
(3)
j , i = 0, 1, . . . , 2(n−m), j = 0, 1, . . . , 2m, k = 0, 1, . . . , 2n.

Therefore, by using the following transformation formula between the power basis and the

classical Bernstein basis

X2n = B2n(x)M2n,

where B2n(x) = (b02n(x), b
1
2n(x), . . . , b

2n
2n(x)), b

i
2n(x) = Ci

2n(1− x)2n−ixi, i = 0, 1, . . . , 2n, and

{M2n}i,j =
Cj

i

Cj
2n

, i, j = 0, 1, . . . , 2n,

we can immediately rewrite the four trigonometric Bernstein-like basis functions (2.16) into the

following rational Bernstein form

(T0(t;n), T1(t;n), T2(t;m), T3(t;m)) =
B2n(x)

(
M2nL

(0)
2n ,M2nL

(1)
2n ,M2nL̃

(2)
2n ,M2nL̃

(3)
2n

)

B2n(x)M2nL2n
.

It follows that the TB-like curve T (t;n,m) can be converted into the following rational Bézier

curve of degree 2n

T (t;n,m) =
B2n(x)

(
M2nL

(0)
2n ,M2nL

(1)
2n ,M2nL̃

(2)
2n ,M2nL̃

(3)
2n

)

B2n(x)M2nL2n
(P0, P1, P2, P3)

T
. (2.17)

Similarly, for m ≥ n, we can also convert the TB-like curve T (t;n,m) into the following

rational Bézier curve of degree 2m

T (t;n,m) =
B2m(x)

(
M2mL̃

(0)
2m,M2mL̃

(1)
2m,M2mL

(2)
2m,M2mL

(3)
2m

)

B2m(x)M2mL2m
(P0, P1, P2, P3)

T
, (2.18)

where L̃
(0)
2m = (l̃

(0)
0 , l̃

(0)
1 , . . . , l̃

(0)
2m)T and L̃

(1)
2m = (l̃

(1)
0 , l̃

(1)
1 , . . . , l̃

(1)
2m)T with

l̃
(0)
k =

∑

i+j=k

lil
(0)
j , i = 0, 1, . . . , 2(m− n), j = 0, 1, . . . , 2n, k = 0, 1, . . . , 2m,

l̃
(1)
k =

∑

i+j=k

lil
(1)
j , i = 0, 1, . . . , 2(m− n), j = 0, 1, . . . , 2n, k = 0, 1, . . . , 2m.

From (2.17) and (2.18), we can see that a TB-like curve T (t;n,m) can be converted into a

special rational Bézier curve of degree max{2n, 2m}. Thus we can see that a quadratic TB-like

curve T (t; 2, 2) can be transformed to a special rational quartic Bézier curve. Fig. 2.7 gives

some figure examples concerning the comparison between the TB-like curves and the rational

cubic Bézier curves under the same control points. Although the trigonometric Bernstein-like

basis has some properties analogous to that of the rational cubic Bernstein basis, for instance

both the bases can represent exactly the elliptic and parabolic arcs, in the following discussion

we shall see that the trigonometric Bernstein-like basis has some advantages on constructing

spline curves with higher smoothness.
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Fig. 2.7. TB-like curves and rational cubic Bézier curves.

3. Trigonometric B-spline-like Basis Functions

In this section, based on the trigonometric Bernstein-like basis functions given in (2.7), we

shall construct a class of trigonometric B-spline-like basis functions with two local exponential

shape parameters.

3.1. Construction of trigonometric B-spline-like basis functions

Given knots u0 < u1 < . . . < un+4 and refer to U = (u0, u1, . . . , un+4) as a knot vector. For

i = 0, 1, . . . , n+ 3, αi, βi ∈ [2,+∞), let hi = ui+1 − ui and ti(u) = π(u − ui)/2hi, we want to

construct a class of trigonometric B-spline-like basis functions as follows

Bi(u) =






diT3 (ti;βi) , u ∈ [ui, ui+1),

∑3
j=0 ci+1,jTj (ti+1;αi+1, βi+1), u ∈ [ui+1, ui+2),

∑3
j=0 bi+2,jTj (ti+2;αi+2, βi+2), u ∈ [ui+2, ui+3),

ai+3T0 (ti+3;αi+3) , u ∈ [ui+3, ui+4),

0, u /∈ [ui, ui+4),

(3.1)
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where Tj(ti;αi, βi), j = 0, 1, 2, 3 are the trigonometric Bernstein-like basis functions given

in (2.7).

We want these trigonometric B-spline-like basis functions have C2 continuity at each knot

and form a partition of unity on the interval [u3, un+1]. From these conditions, after some

computation, we can deduce the coefficients ai, bi,j , ci,j , di as follows

γi = (αi+1 − 1)hi + (βi − 1)hi+1, λi = αi+1hi + βihi+1,

φi =
αi+1γihi

2h2
i+1

+
λi

βihi+1
, ϕi =

βi−1γi−1hi

2h2
i−1

+
λi−1

αihi−1
,

ai =
2αi−1βi−2βi−1γi−2h

2
i

µi−2
, di =

2αi+1αi+2βi+1γi+1h
2
i

µi

,

bi0 =
αihi−1

λi−1
φiai+1 +

βi−1hi

λi−1
ϕi−1di−2,

ci0 = di−1, bi1 = φiai+1, ci1 =
λi−1

αihi−1
di−1,

bi2 =
λi

βihi+1
ai+1, ci2 = ϕidi−1, bi3 = ai+1,

ci3 =
αi+1hi

λi

φi+1ai+2 +
βihi+1

λi

ϕidi−1,

where µi = 2αi+1βiγiλi+1hi+2 + αi+1αi+2βiβi+1γiγi+1hi+1 + 2αi+2βi+1γi+1λihi.

Definition 3.1. Given a knot vector U , for any real numbers αi, βi ∈ [2,+∞), with the coeffi-

cients ai, bi,j , ci,j , di given in the above expressions, the expressions (3.1) are defined to be the

associated trigonometric B-spline-like basis functions.

Remark 3.1. The trigonometric B-spline-like basis functions are constructed in the space

S := {s ∈ C2[u0, un+4] s.t. s
∣∣
[ui,ui+1] ∈ Tαi,βi

, αi, βi ∈ [2,+∞), i = 0, 1, . . . , n+ 3},

where

Tαi,βi
:= span{1, sin2ti, (1 − sin ti)

αi , (1− cos ti)
βi}.

In particular, for ui+j = ui + jh, h > 0, j = 1, 2, 3, 4 and αi+1 = αi+2 = αi+3 = βi = βi+1 =

βi+2 = 3, direct computation gives that

di =
1

10
, ci+1,0 =

1

10
, ci+1,1 =

1

5
, ci+2,2 =

4

5
, ci+3,3 =

4

5
,

bi+2,0 =
4

5
, bi+2,1 =

4

5
, bi+2,2 =

1

5
, bi+3,3 =

1

10
, ai+3 =

1

10
,
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from which we can immediately obtain the following explicit expressions of Bi(u)

Bi(u) =





1
10 (1 − cos ti)

3, u ∈ [ui, ui + h),

1
10 (1 − sin ti+1)

3 + 1
5 sin ti+1(1 − sin ti+1)(3 − sin ti+1)

+ 4
5 cos ti+1(1 − cos ti+1)(3 − cos ti+1) +

4
5 (1 − cos ti+1)

3, u ∈ [ui + h, ui + 2h),

4
5 (1− sin ti+2)

3 + 4
5 sin ti+2(1 − sin ti+2)(3 − sin ti+2)

+ 1
5 cos ti+2(1 − cos ti+2)(3 − cos ti+2) +

1
10 (1 − cos ti+2)

3, u ∈ [ui + 2h, ui + 3h),

1
10 (1 − sin ti+3)

3, u ∈ [ui + 3h, ui + 4h),

0, u /∈ [ui, ui + 4h).

For equidistant knots, we refer to the Bi(u) as a uniform basis function and refer the

knot vector U as a uniform vector. For non-equidistant knots, Bi(u) and U are called a non-

uniform basis function and a non-uniform knot vector, respectively. Fig. 3.1 shows some plots

of trigonometric B-spline-like basis functions with different shape parameters. Before further

discussion, we want to prove the following lemma, which is extremely useful for studying the

partition of unity and the continuity of the trigonometric B-spline-like basis functions.

Lemma 3.1. For all possible i ∈ Z
+, αi, βi ∈ [2,+∞), the coefficients ai, bi,j , ci,j , di have the

following properties

ai + bi0 + ci0 = 1, bi1 + ci1 = 1, bi2 + ci2 = 1,

bi3 + ci3 + di = 1, di = ci+1,0, bi+2,0 = ci+1,3, bi+2,3 = ai+3,

(
π

2hi

)
βidi =

(
π

2hi+1

)
αi+1 (ci+1,1 − ci+1,0) ,

(
π

2hi+1

)
βi+1 (ci+1,3 − ci+1,2) =

(
π

2hi+2

)
αi+2 (bi+2,1 − bi+2,0) ,

(
π

2hi+2

)
βi+2 (bi+2,3 − bi+2,2) = −

(
π

2hi+3

)
αi+3ai+3,

(
π

2hi

)2 (
β2
i − βi

)
di =

(
π

2hi+1

)2[ (
α2
i+1 − αi+1

)
ci+1,0

−
(
2 + α2

i+1 − αi+1

)
ci+1,1 + 2ci+1,2

]
,
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(
π

2hi+1

)2 [(
β2
i+1 − βi+1

)
ci+1,3 −

(
2 + β2

i+1 − βi+1

)
ci+1,2 + 2ci+1,1

]

=

(
π

2hi+2

)2 [(
α2
i+2 − αi+2

)
bi+2,0 −

(
2 + α2

i+2 − αi+2

)
bi+2,1 + 2bi+2,2

]
,

(
π

hi+2

)2 [(
β2
i+2 − βi+2

)
bi+2,3 −

(
2 + β2

i+2 − βi+2

)
bi+2,2 + 2bi+2,1

]

=

(
π

hi+3

)2 (
α2
i+3 − αi+3

)
ai+3.

Proof. From the expressions of the coefficients ai, bi,j , ci,j , di given above, it is obvious that

di = ci+1,0, bi+2,0 = ci+1,3 and bi+2,3 = ai+3. Straightforward computation gives that

bi0 =
αihi−1

λi−1
φiai+1 +

βi−1hi

λi−1
ϕi−1di−2

=
αihi−1

λi−1

(
1− 2αi+1βiγiλi−1hi−1

µi−1

)
+

βi−1hi

λi−1

(
1− 2αi−1βi−2γi−2λi−1hi

µi−2

)

= 1− ai − di−1.

Similarly, ci,3 = 1−ai+1−di. Thus we have ai+bi0+ci0 = 1 and bi3+ci3+di = 1. For bi1+ci1
and bi2 + ci2, we have

bi1 + ci1 = φiai+1 +
λi−1

αihi−1
di−1

=

(
αi+1βiγihi + 2λihi+1

2βih2
i+1

)
2αiβi−1βiγi−1h

2
i+1

µi−1
+

λi−1

αihi−1

2αiαi+1βiγih
2
i−1

µi−1

=
µi−1

µi−1
= 1,

bi2 + ci2 =
λi

βihi+1
ai+1 + ϕidi−1

=
λi

βihi+1

2αiβi−1βiγi−1h
2
i+1

µi−1
+

(
αiβi−1γi−1hi + 2λi−1hi−1

2αih2
i−1

)
2αiαi+1βiγih

2
i−1

µi−1

=
µi−1

µi−1
= 1.

Direct computation gives that

(
π

2hi+1

)
αi+1 (ci+1,1 − ci+1,0)

=

(
π

2hi+1

)
αi+1

(
λi

αi+1hi

di − di

)
=

(
π

2hi

)
βidi,
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(
π

2hi+1

)
βi+1 (ci+1,3−ci+1,2)

=

(
π

2hi+1

)
βi+1

(
αi+2hi+1

λi+1
φi+2ai+3+

βi+1hi+2

λi+1
ϕi+1di−ϕi+1di

)

=

(
π

2hi+1

)
βi+1

(
αi+2hi+1

λi+1
φi+2ai+3 −

αi+2hi+1

λi+1
ϕi+1di

)

=

(
παi+2βi+1

2λi+1

)
(φi+2ai+3 − ϕi+1di) ,

(
π

2hi+2

)
αi+2 (bi+2,1−bi+2,0)

=

(
π

2hi+2

)
αi+2

(
φi+2ai+3−

αi+2hi+1

λi+1
φi+2ai+3−

βi+1hi+2

λi+1
ϕi+1di

)

=

(
π

2hi+2

)
αi+2

(
βi+1hi+2

λi+1
φi+2ai+3 −

βi+1hi+2

λi+1
ϕi+1di

)

=

(
παi+2βi+1

2λi+1

)
(φi+2ai+3 − ϕi+1di) ,

(
π

2hi+2

)
βi+2 (bi+2,3 − bi+2,2)

=

(
π

2hi+2

)
βi+2

(
ai+3 −

λi+2

βi+2hi+3
ai+3

)
= −

(
π

2hi+3

)
αi+3ai+3.

Furthermore, we have

(
π

2hi+1

)2 [(
α2
i+1 − αi+1

)
ci+1,0 −

(
2 + α2

i+1 − αi+1

)
ci+1,1 + 2ci+1,2

]

=

(
π

2hi+1

)2 [(
α2
i+1 − αi+1

)(
1− λi

αi+1hi

)
+ 2

(
ϕi+1 −

λi

αi+1hi

)]
di

=

(
π

2hi+1

)2 [
− (αi+1 − 1)βihi+1

hi

+
βiγihi+1

h2
i

]
di =

(
π

2hi

)2 (
β2
i − βi

)
di,

(
π

2hi+2

)2 [(
β2
i+2 − βi+2

)
bi+2,3 −

(
2 + β2

i+2 − βi+2

)
bi+2,2 + 2bi+2,1

]

=

(
π

2hi+2

)2 [(
β2
i+2 − βi+2

)(
1− λi+2

βi+2hi+3

)
+ 2

(
φi+2 −

λi+2

βi+2hi+3

)]
ai+3

=

(
π

2hi+2

)2 [
−αi+3 (βi+2 − 1) hi+2

hi+3
+

αi+3γi+2hi+2

h2
i+3

]
ai+3

=

(
π

2hi+3

)2 (
α2
i+3 − αi+3

)
ai+3.
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Finally, notice that ai+3 =
(
βi+2µih

2
i+3di

)/(
αi+1µi+1h

2
i

)
, after some manipulations, we have

(
π

2hi+1

)2 [(
β2
i+1 − βi+1

)
ci+1,3 −

(
2 + β2

i+1 − βi+1

)
ci+1,2 + 2ci+1,1

]

=

(
π

2hi+1

)2 [(
β2
i+1 − βi+1

)(αi+2hi+1

λi+1
φi+2ai+3 +

βi+1hi+2

λi+1
ϕi+1di − ϕi+1di

)

+2

(
λi

αi+1hi

− ϕi+1

)
di

]

=
(π
2

)2 di
αi+1λi+1µi+1h2

ihi+1

[
αi+2βi+1 (βi+1 − 1)βi+2φi+2µih

2
i+3

−αi+1αi+2βi+1 (βi+1 − 1)ϕi+1µi+1h
2
i − αi+1βiγiλi+1µi+1

]

=−
(π
2

)2 2αi+2βi+1γi+1

µiµi+1
{αi+1αi+2αi+3βiβi+1βi+2 [(βi+1 − 1)hi+1 + (αi+2 − 1)hi+2]

+ 2αi+1αi+3βiβi+2γiγi+2λi+1 + 2αi+2αi+3βi+1 (βi+1 − 1)βi+2γi+2λihi

+2αi+1αi+2 (αi+2 − 1)βiβi+1γiλi+2hi+3} ,
(

π

2hi+2

)2 [(
α2
i+2 − αi+2

)
bi+2,0 −

(
2 + α2

i+2 − αi+2

)
bi+2,1 + 2bi+2,2

]

=

(
π

2hi+2

)2 [(
α2
i+2 − αi+2

)(αi+2hi+1

λi+1
φi+2ai+3 +

βi+1hi+2

λi+1
ϕi+1di − φi+2ai+3

)

+2

(
λi+2

βi+2hi+3
− φi+2

)
ai+3

]

=
(π
2

)2 ai+3

βi+2λi+1µihi+2h2
i+3

[
αi+1αi+2 (αi+2 − 1)βi+1ϕi+1µi+1h

2
i

−αi+2 (αi+2 − 1)βi+1βi+2φi+2µih
2
i+3 − αi+3βi+2γi+2λi+1µi

]

=−
(π
2

)2 2αi+2βi+1γi+1

µiµi+1
{αi+1αi+2αi+3βiβi+1βi+2 [(βi+1 − 1)hi+1 + (αi+2 − 1)hi+2]

+ 2αi+1αi+3βiβi+2γiγi+2λi+1 + 2αi+2αi+3βi+1 (βi+1 − 1)βi+2γi+2λihi

+2αi+1αi+2 (αi+2 − 1)βiβi+1γiλi+2hi+3} .

These imply the lemma. �

3.2. Properties of the trigonometric B-spline-like basis functions

Theorem 3.1. For all possible i ∈ Z
+, αi, βi ∈ [2,+∞), the set {B0(u), B1(u), . . . , Bn(u)} is

linearly independent on [u3, un+1].
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Proof. For ξi ∈ R (i = 0, 1, . . . , n), u ∈ [u3, un+1], let

S(u) =

n∑

i=0

ξiBi(u) = 0.

For any αi, βi ∈ [2,+∞), direct computation gives that

S(ui) = aiξi−3 + bi0ξi−2 + ci0ξi−1 = 0,

S′(ui) =
π

2hi

[
αiai(ξi−2 − ξi−3) +

βi−1di−1hi

hi−1
(ξi−1 − ξi−2)

]
= 0,

S′′(ui) =

(
π

2hi

)2 [
αi(αi − 1)ai(ξi−3 − ξi−2) +

βi−1(βi−1 − 1)di−1h
2
i

h2
i−1

(ξi−1 − ξi−2)

]
= 0,

where i = 3, 4, . . . , n+ 1. Thus we can obtain linear systems with respect to ξi−3, ξi−2, ξi−1 as

follows





aiξi−3 + bi0ξi−2 + ci0ξi−1 = 0,

αiai(ξi−2 − ξi−3) +
βi−1di−1hi

hi−1
(ξi−1 − ξi−2) = 0,

αi(αi − 1)ai(ξi−3 − ξi−2) +
βi−1(βi−1−1)di−1h

2
i

h2
i−1

(ξi−1 − ξi−2) = 0.

Since ai + bi0 + ci0 = 1, for the determinant of the coefficient matrix Di given by the above

linear systems, by adding the first and the third column to the second column respectively, we

have

|Di| =

∣∣∣∣∣∣∣∣∣

ai 1 ci0

−αiai 0 βi−1di−1hi

hi−1

αi(αi − 1)ai 0
βi−1(βi−1−1)di−1h

2
i

h2
i−1

∣∣∣∣∣∣∣∣∣

=
αiβi−1aidi−1hi

h2
i−1

[(αi − 1)hi−1 + (βi−1 − 1)hi] > 0.

Therefore, we can conclude that ξi−3 = ξi−2 = ξi−1 = 0 for i = 3, 4, . . . , n+1. These imply the

theorem. �

Theorem 3.2. The trigonometric B-spline-like basis functions (3.1) hold

n∑

i=0

Bi(u) = 1, u ∈ [u3, un+1].

Proof. For u ∈ [ui, ui+1), i = 3, 4, . . . , n, since Bj(u) = 0 for j 6= i− 3, i− 2, i− 1, i, and

Bi−3(u) = aiT0(ti;αi), Bi−2(u) =

3∑

j=0

bijTj(ti;αi, βi),

Bi−1(u) =
3∑

j=0

cijTj (ti;αi, βi) , Bi(u) = diT3 (ti;βi) ,
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Fig. 3.1. Some plots of trigonometric B-spline-like basis functions with different shape parameters.

we have

n∑

j=0

Bj(u) = aiT0(ti;αi) +

3∑

j=0

bijTj(ti;αi, βi) +

3∑

j=0

cijTj(ti;αi, βi) + diT3(ti;βi)

=

3∑

j=0

Tj(ti;αi, βi) = 1.

These imply the theorem. �

Theorem 3.3. For any αi, βi ∈ [2,+∞) , the basis functions given in (3.1) hold Bi(u) > 0,

for ui < u < ui+4.

Proof. For all possible αi, βi ∈ [2,+∞), it is obvious that the coefficients ai, bij , cij and

di are all positive numbers. Thus, from the nonnegativity of the trigonometric Bernstein-like

basis functions Tj(ti;αi, βi), j = 0, 1, 2, 3, we can immediately conclude that Bi(u) > 0 for

ui < u < ui+4. �
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In view of Theorems 3.2 and 3.3, we say that the trigonometric B-spline-like basis func-

tions (3.1) form a partition of unity and the function Bi(u) has a support on the interval

[ui, ui+4].

Theorem 3.4. For u ∈ [ui, ui+1], i = 3, 4, . . . , n, the system (Bi−3(u), Bi−2(u), Bi−1(u), Bi(u))

is a normalized totally positive basis of the space span Tαi,βi
.

Proof. For u ∈ [ui, ui+1], ti(u) = π (u− ui)/2hi, αi, βi ∈ [2,+∞), i = 3, 4, . . . , n, it can be

easily checked that

(Bi−3(u), Bi−2(u), Bi−1(u), Bi(u)) = (T0(ti;αi), T1(ti;αi), T2(ti;βi), T3(ti;βi))Hi,

where

Hi =




ai bi,0 ci,0 0

0 bi,1 ci,1 0

0 bi,2 ci,2 0

0 bi,3 ci,3 di



.

From Theorem 2.2, since the system (T0(ti;αi), T1(ti;αi), T2(ti;βi), T3(ti;βi)) is the normal-

ized optimal totally positive basis of the space Tαi,βi
, by Theorem 4.2 of [5], it is sufficient to

conclude that Hi is a nonsingular stochastic and totally positive matrix.

For any αi, βi ∈ [2,+∞), it is obvious that ai, bi,j ci,j , di > 0, for all possible i ∈ Z
+,

j = 0, 1, 2, 3. In addition, from Lemma 1, we can see that Hi is stochastic. In order to prove

that Hi is a totally positive matrix, we need to check that all its minors are nonnegative. By

directly computing, we have

∣∣∣∣∣
bi,0 ci,0

bi,1 ci,1

∣∣∣∣∣ =
βi−1ϕi−1hi

αihi−1
di−2di−1 > 0,

∣∣∣∣∣
bi,0 ci,0

bi,2 ci,2

∣∣∣∣∣ =
1

4βiλi−1hi−1h2
i+1

[
2αiβi−1γi−1λihihi+1 + αiαi+1βi−1βiγi−1γih

2
i

+2αi+1βiγiλi−1hi−1hi] ai+1di−1 +
βi−1ϕi−1ϕihi

λi−1
di−2di−1 > 0,

∣∣∣∣∣
bi,0 ci,0

bi,3 ci,3

∣∣∣∣∣ =
αiαi+1φiφi+1hi−1hi

λi−1λi

ai+1ai+2 +
1

4λi−1λihi−1hi+1
[2αiβi−1γi−1λihihi+1

+ αiαi+1βi−1βiγi−1γih
2
i +2αi+1βiγiλi−1hi−1hi]ai+1di−1

+
αi+1βi−1φi+1ϕi−1h

2
i

λi−1λi

ai+2di−2 +
βi−1βiϕi−1ϕihihi+1

λi−1λi

di−2di−1 > 0,

∣∣∣∣∣
bi,1 ci,1

bi,2 ci,2

∣∣∣∣∣ =
1

4αiβih2
i−1h

2
i+1

[
2αiβi−1γi−1λihihi+1 + αiαi+1βi−1βiγi−1γih

2
i

+2αi+1βiγiλi−1hi−1hi] ai+1di−1 > 0,



New Trigonometric Basis Possessing Exponential Shape Parameters 667

∣∣∣∣∣
bi,1 ci,1

bi,3 ci,3

∣∣∣∣∣ =
αi+1φiφi+1hi

λi

ai+1ai+2 +
1

4αiλih2
i−1hi+1

[2αiβi−1γi−1λihihi+1

+αiαi+1βi−1βiγi−1γih
2
i + 2αi+1βiγiλi−1hi−1hi

]
ai+1di−1 > 0,

∣∣∣∣∣
bi,2 ci,2

bi,3 ci,3

∣∣∣∣∣ =
αi+1φi+1hi

βihi+1
ai+1ai+2 > 0.

From these, we can easily deduce that Hi is nonsingular and all its remaining minors are

nonnegative. These imply the theorem. �

Theorem 3.5. With a non-uniform knot vector, the basis function Bi(u) is C
2 continuous for

αi, βi ∈ [2,+∞) at each of the knots. With a uniform knot vector, the basis function Bi(u) is

C3 continuous for αi+1 = βi ∈ [2,+∞) and C5 continuous for all αi = βi = 3 at each of the

knots.

Proof. Consider the continuity at the knot ui+1. For any αi, βi ∈ [2,+∞) we have

Bi(u
−
i+1) = di, Bi(u

+
i+1) = ci+1,0,

B′
i(u

−
i+1) =

(
π

2hi

)
βidi, B′

i(u
+
i+1) =

(
π

2hi+1

)
αi+1 (ci+1,1 − ci+1,0) ,

B′′
i (u

−
i+1) =

(
π

2hi

)2 (
β2
i − βi

)
di,

B′′
i (u

+
i+1) =

(
π

2hi+1

)2 [(
α2
i+1 − αi+1

)
ci+1,0 −

(
2 + α2

i+1 − αi+1

)
ci+1,1 + 2ci+1,2

]
,

B
(3)
i (u−

i+1) =

(
π

2hi

)3 (
β3
i − 3β2

i + βi

)
di,

B
(3)
i (u+

i+1) =

(
π

2hi+1

)3 (
α3
i+1 − 3α2

i+1 + αi+1

)
(ci+1,1 − ci+1,0) .

From here and Lemma 3.1, for a non-uniform knot vector, we have Bi(u
+
i+1) = Bi(u

−
i+1),

B′
i(u

+
i+1) = B′

i(u
−
i+1), B

′′
i (u

+
i+1) = B′′

i (u
−
i+1). In addition, for a uniform knot vector (that is all

hi = hi+1) and αi+1 = βi, we have di = ci+1,1 − ci+1,0, it follows that B
(3)
i (u+

i+1) = B
(3)
i (u−

i+1).

Specially, for all αi = βi = 3, direct computation gives that

B
(4)
i (u−

i+1) = −8

(
π

2hi

)4

(3di),

B
(4)
i (u+

i+1) = −8

(
π

2hi+1

)4

[3ci+1,0 − 4ci+1,1 + ci+1,2] ,

B
(5)
i (u−

i+1) = −57

(
π

2hi

)5

di,

B
(5)
i (u+

i+1) = −57

(
π

2hi+1

)5

(ci+1,1 − ci+1,0) .

For a uniform knot vector and all αi = βi = 3, we have di = ci+1,1 − ci+1,0 and 3di = 3ci+1,0 −
4ci+1,1 + ci+1,2. These together we can immediately conclude that B

(4)
i (u+

i+1) = B
(4)
i (u−

i+1)
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and B
(5)
i (u+

i+1) = B
(5)
i (u−

i+1) for a uniform knot vector and all αi = βi = 3. Thus the theorem

follows at the knot ui+1. We can deal with the continuity of the basis function Bi(u) at other

knots in the same way. �

3.3. Trigonometric B-spline-like curves

Definition 3.2. Given a knot vector U and control points Pi (i = 0, 1, . . . , n) in R
2 or R

3,

then, for n ≥ 3, u ∈ [u3, un+1], αi, βi ∈ [2,+∞),

P (u) =

n∑

j=0

Bj(u)Pj , (3.2)

is called a trigonometric B-spline-like curve with two local exponential shape parameters αi and

βi.

Obviously, for u ∈ [ui, ui+1], 3 ≤ i ≤ n, the trigonometric B-spline-like curve P (u) can be

represented by the following curve segment

P (u) =
i∑

j=i−3

Bj(u)Pj

= (aiPi−3 + bi0Pi−2 + ci0Pi−1)T0(ti;αi) + (bi1Pi−2 + ci1Pi−1)T1(ti;αi)

+ (bi2Pi−2 + ci2Pi−1)T2(ti;βi) + (bi3Pi−2 + ci3Pi−1 + diPi)T3(ti;βi), (3.3)

from which we can easily obtain the following end-point property of the curve

P (u+
i ) = aiPi−3 + bi0Pi−2 + ci0Pi−1,

P (u−
i+1) = bi3Pi−2 + ci3Pi−1 + diPi,

P ′(u+
i ) =

(
π

2hi

)[
αiai(Pi−2 − Pi−3) +

βi−1di−1hi

hi−1
(Pi−1 − Pi−2)

]
,

P ′(u−
i+1) =

(
π

2hi

)[
βidi(Pi − Pi−1) +

αi+1ai+1hi

hi+1
(Pi−1 − Pi−2)

]
,

P ′′(ui
+) =

(
π

2hi

)2 [
αi(αi − 1)ai(Pi−3 − Pi−2) +

βi−1(βi−1 − 1)di−1h
2
i

h2
i−1

(Pi−1 − Pi−2)

]
,

P ′′(u−
i+1) =

(
π

2hi

)2 [
βi(βi − 1)di(Pi − Pi−1) +

αi+1(αi+1 − 1)ai+1h
2
i

h2
i+1

(Pi−2 − Pi−1)

]
,

P (3)(ui
+) =

(
π

2hi

)3 (
α2
i − 3αi + 1

) [
αiai(Pi−2 − Pi−3) +

βi−1di−1hi

hi−1
(Pi−1 − Pi−2)

]
,

P (3)(u−
i+1) =

(
π

2hi

)3 (
β2
i − 3βi + 1

) [
βidi(Pi − Pi−1) +

αi+1ai+1hi

hi+1
(Pi−1 − Pi−2)

]
.
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Specially, for all αi = βi = 3, we have

P (4)(u+
i ) = −24

(
π

2hi

)4 [
ai(Pi−3 − Pi−2) +

di−1h
2
i

h2
i−1

(Pi−1 − Pi−2)

]
,

P (4)(u−
i+1) = −24

(
π

2hi

)4 [
di(Pi − Pi−1) +

ai+1h
2
i

h2
i+1

(Pi−2 − Pi−1)

]
,

P (5)(u+
i ) = −57

(
π

2hi

)5 [
ai(Pi−2 − Pi−3) +

di−1hi

hi−1
(Pi−1 − Pi−2)

]
,

P (5)(u−
i+1) = −57

(
π

2hi

)5 [
di(Pi − Pi−1) +

ai+1hi

hi+1
(Pi−1 − Pi−2)

]
.

Based on Theorems 3.2 and 3.3, for u ∈ [ui, ui+1], the trigonometric B-spline-like curve

P (u) lies in the convex hull of the points Pi−3, Pi−2, Pi−1 and Pi. Based on Theorem 3.4, the

trigonometric B-spline-like curve P (u) has variation diminishing property, which implies that

the proposed new trigonometric B-spline-like curve P (u) is suited for a good shape control.

Frenet continuity (FC) is often described in terms of the connection matrix, see [12, 28].

The trigonometric B-spline-like curve P (u) is FC3 at the knot ui, if




P (u+
i )

P ′(u+
i )

P ′′(u+
i )

P ′′′(u+
i )



=




1 0 0 0

0 ω11 0 0

0 ω21 ω2
11 0

0 ω31 ω32 ω3
11







P (u−
i )

P ′(u−
i )

P ′′(u−
i )

P ′′′(u−
i )



, ω11 > 0.

It was pointed out in [12] that C2 ∩ FC3 is a reasonable smoothness property for application.

From the end-point property of the trigonometric B-spline-like curve P (u), we have the following

result.

Theorem 3.6. With a non-uniform knot vector, for any αi, βi ∈ [2,+∞), the trigonometric

B-spline-like curve P (u) is C2 ∩ FC3 continuous. With a uniform knot vector, P (u) is C3

continuous for all αi+1 = βi ∈ [2,+∞) and C5 continuous for all αi = βi = 3.

Proof. Based on Theorem 3.5, we only need to prove that for any αi, βi ∈ [2,+∞), the

trigonometric B-spline-like curve P (u) is FC3 continuous for a non-uniform knot vector. In

fact, from the end-point property of the curve P (u), direct computation gives that

Pi−1 − Pi−2 =
2αi(αi − 1)aihi

π |Di|
P ′(ui) +

4αiaih
2
i

π2 |Di|
P ′′(ui),

Pi−2 − Pi−3 =
2βi−1(βi−1 − 1)di−1h

3
i

πh2
i−1 |Di|

P ′(ui)−
4βi−1di−1h

3
i

π2hi−1 |Di|
P ′′(ui),

where |Di| = αiβi−1aidi−1hi [(αi − 1)hi−1 + (βi−1 − 1)hi]
/
h2
i−1. Thus, we are able to write the
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expression of P (3)(ui
+)− P (3)(u−

i ) as the following form

P (3)(ui
+)− P (3)(u−

i )

=

(
π

2hi

)3 (
α2
i−3αi+1

) [
αiai(Pi−2−Pi−3) +

βi−1di−1hi

hi−1
(Pi−1 − Pi−2)

]

−
(

π

2hi−1

)3 (
β2
i−1 − 3βi−1 + 1

) [
βi−1di−1(Pi−1 − Pi−2) +

αiaihi−1

hi

(Pi−2 − Pi−3)

]

:= ω31P
′(ui) + ω32P

′′(ui).

These imply the theorem. �

Fig. 3.2 shows the space C2 ∩ FC3 continuous and C2 ∩ GC3 continuous curves with non-

uniform knot vector and their corresponding torsion curves. The space C2 ∩ FC3 continuous

curves are generated by using the trigonometric B-spline-like basis with all αi = βi = 2. And the

space C2∩GC3 continuous curves are constructed by using the general quartic spline proposed

in [23] with the choice of shape parameters ai = bi = 0, ci = 0.5. The control points are

xi = cos(1.5i)/(1+ 0.15i), yi = sin(1.5i)/(1+ 0.15i), zi = 1.5i, i = 0, 1, . . . , 12. The non-uniform

knot vector is generated by using the Riesenfeld method described in [38]. In order to see more

clearly the differences between the two space curves, we also give the porcupine plots of the

normalized curvature along the main normal of the two generated space curves. From Fig. 3.2,

it is observed that the space C2 ∩ FC3 continuous are of more fairness than the C2 ∩ GC3

continuous curves.

3.4. Local adjustable properties

The given spline curve P (u) provides two local shape parameters αi, βi. We can adjust the

shape of the curve by changing the values of the shape parameters. From (3.3), we can know

that shape parameters αi−1, αi, αi+1, αi+2, βi−2, βi−1, βi, βi+1 affect the curve segment P (u),

u ∈ [ui, ui+1]. Therefore, shape parameter αi affects four curve segments [ui−2, ui+2], and βi

affects four curve segments [ui−1, ui+3].

From (3.3), we can also predict the behavior of the curve P (u). As αi and βi increase,

from (3.3) we can see that the coefficients of Pi−3 and Pi decrease respectively, and the coeffi-

cients of Pi−2 and Pi−1 increase respectively. Moreover, as αi and βi increase at the same time,

then P (u) tends to the edge Pi−2Pi−1. Thus the parameters αi and βi serve to local control

tension in the curve: increasing αi and βi moves locally the curve segment P (u) (u ∈ [ui, ui+1])

toward the edge Pi−2Pi−1 of the control polygon. And as αi or βi increase respectively, P (u)

tends to the control point Pi−2 or Pi−1 respectively.

Fig. 3.3 shows open trigonometric B-spline-like curves with different shape parameters.

On the left, the figure shows the trigonometric B-spline-like curves generated by setting all

αi = βi = 2.1 (solid lines), the dashed lines generated by changing one αi to 4.2, and the

dash-dotted lines generated by changing one βi to 5.5. The right figure shows the trigonometric

B-spline-like curves generated by setting all αi = βi = 3 for solid lines, αi = βi = 2 for dashed

lines, and αi = βi = 5 for dash-dotted lines.
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(d) the torsion curves of the space C2 ∩ GC3 continous curves

Fig. 3.2. Space C2
∩ FC3 continuous and C2

∩GC3 continuous curves with non-uniform knot vector

and their corresponding torsion curves.

Fig. 3.3. Open trigonometric B-spline-like curves with uniform knot vector.

4. Trigonometric Bézier-like Basis Over Triangular Domain

Based on the trigonometric Bernstein-like basis given in (2.7), by using the method of tensor

product, we can easily construct a class of trigonometric Bézier-like patch with four shape

parameters over rectangular domain. Patch over triangular domain, however, is not a tensor

product patch exactly. These imply that we cannot extend the trigonometric Bernstein-like

basis (2.7) to the triangular domain by using the method of tensor product. In this section, we
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shall construct a new class of trigonometric Bézier-like basis over triangular domain with three

shape parameters, which is a triangular domain extension of the trigonometric Bernstein-like

basis given in (2.7).

4.1. Construction of the TB-like basis over triangular domain

Definition 4.1. Let α, β, γ ∈[2,+∞), for D =
{
(u, v, w)

∣∣u+ v + w = π
2 , u ≥ 0, v ≥ 0, w ≥ 0

}
,

the following ten functions are defined as trigonometric Bézier-like (TB-like for short) basis

functions, with three exponential shape parameters α, β and γ, over the triangular domain D:






T 3
3,0,0(u, v, w;α, β, γ) = (1− cosu)α,

T 3
0,3,0(u, v, w;α, β, γ) = (1− cos v)β ,

T 3
0,0,3(u, v, w;α, β, γ) = (1− cosw)γ ,

T 3
2,1,0(u, v, w;α, β, γ) = cosw sin v(1 − cosu)

[
1 + cosu− (1− cosu)

α−1

cosu

]
,

T 3
2,0,1(u, v, w;α, β, γ) = cos v sinw(1 − cosu)

[
1 + cosu− (1− cosu)

α−1

cosu

]
,

T 3
1,2,0(u, v, w;α, β, γ) = cosw sinu(1− cos v)

[
1 + cos v − (1− cos v)β−1

cos v

]
,

T 3
0,2,1(u, v, w;α, β, γ) = cosu sinw(1 − cos v)

[
1 + cos v − (1− cos v)

β−1

cos v

]
,

T 3
1,0,2(u, v, w;α, β, γ) = cos v sinu(1− cosw)

[
1 + cosw − (1− cosw)

γ−1

cosw

]
,

T 3
0,1,2(u, v, w;α, β, γ) = cosu sin v(1 − cosw)

[
1 + cosw − (1− cosw)

γ−1

cosw

]
,

T 3
1,1,1(u, v, w;α, β, γ) = 1−

∑
i+j+k=3,
i·j·k 6=1

T 3
i,j,k(u, v, w;α, β, γ).

(4.1)

Remark 4.1. Here, we give some hints on how to construct the TB-like basis over triangular

domain (4.1). Our starting point is to extend the four univariate trigonometric Bernstein-

like basis functions given in (2.7) to ten multi-variable basis functions over triangular do-

main such that the ten multi-variable basis functions can degenerate to the four univariate

trigonometric Bernstein-like basis functions when one of the three variables is taken as zero and

form a partition of unity. With these thoughts in mind, it is easy to construct the function

T 3
3,0,0(u, v, w;α, β, γ) and symmetrically we can obtain the formulas of T 3

0,3,0(u, v, w;α, β, γ)

and T 3
0,0,3(u, v, w;α, β, γ). Next, we shall construct the two functions T 3

2,1,0(u, v, w;α, β, γ) and

T 3
2,0,1(u, v, w;α, β, γ) at the same time. Just like the circumstance of the classical Berstein-

Bézier basis over triangular domain, when one of the three variables w is taken as zero, the

function T 3
2,1,0(u, v, w;α, β, γ) should degenerate to the univariate trigonometric Bernstein-like

basis function T2(u;α) (notice v = π/2−u) and the function T 3
2,0,1(u, v, w;α, β, γ) should vanish.

Analogously, when one of the three variables v is taken as zero, we can get a similar conclusion
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that the function T 3
2,1,0(u, v, w;α, β, γ) should vanish while the function T 3

2,0,1(u, v, w;α, β, γ)

should degenerate to the univariate trigonometric Bernstein-like basis function T2(u;α). These

give us a hint that the univariate trigonometric Bernstein-like basis function T2(u;α) should

be divided into two multi-variable functions and T 3
2,1,0(u, v, w;α, β, γ) is reasonable to pos-

sess the factor of cosw sin v while T 3
2,0,1(u, v, w;α, β, γ) is reasonable to possess the factor of

sinw cos v. From these and notice that cosu = cosw sin v + sinw cos v for u+ v +w = π/2, we

can immediately divide T2(u;α) into a pair of multi-variable functions T 3
2,1,0(u, v, w;α, β, γ) and

T 3
2,0,1(u, v, w;α, β, γ). By a similar way, we can obtain the other two pairs of multi-variable func-

tions T 3
1,2,0(u, v, w;α, β, γ), T

3
0,2,1(u, v, w;α, β, γ) and T 3

1,0,2(u, v, w;α, β, γ), T
3
0,1,2(u, v, w;α, β, γ).

And finally, considering the property of partition of unity, it is natural to obtain the formula of

T 3
1,1,1(u, v, w;α, β, γ). Readers with an interest are also recommended to see [53], where a kind

of polynomial Bernstein-Bézier-like basis over triangular domain with three exponential shape

parameters can be found.

Obviously, when one of the three variables w is taken as zero, the ten TB-like functions

T 3
i,j,k(u, v, w;α, β, γ) degenerate to the trigonometric Bernstein-like basis functions Ti(t;α, β)

(notice v = π/2 − u) given in (2.7). Thus the TB-like functions T 3
i,j,k(u, v, w;α, β, γ) are the

triangular domain extension of the the trigonometric Bernstein-like basis functions Ti(t;α, β).

Remark 4.2. For any α, β, γ ∈[2,+∞), we have

lim
u→π/2

[
1 + cosu− (1− cosu)

α−1

cosu

]
= lim

u→π/2

[
− sinu− (α− 1) sinu(1− cosu)

α−2

− sinu

]
= α.

Similarly,

lim
v→π/2

[
1 + cos v − (1− cos v)

β−1

cos v

]
= β, lim

w→π/2

[
1 + cosw − (1− cosw)

γ−1

cosw

]
= γ.

These imply that the definition of the TB-like basis functions over triangular domain given

in (4.1) is meaningful.

Specially, for m,n, l ∈ Z
+, α = 1 +m,β = 1 + n, γ = 1 + l, we have

1 + cosu− (1− cosu)
α−1

cosu
= 1 +

m∑

i=1

Ci
m(− cosu)i−1,

1 + cos v − (1 − cos v)
β−1

cos v
= 1+

n∑

j=1

Cj
n(− cos v)

j−1
,

1 + cosw − (1− cosw)
γ−1

cosw
= 1 +

l∑

k=1

Ck
l (− cosw)

k−1
.

Fig. 4.1 shows some plots of TB-like basis functions over triangular domain. The three

shape parameters take values α = β = γ = 3.5.

4.2. Properties of the TB-like basis over triangular domain

From the definition of the TB-like basis functions over triangular domain, we have the

following important properties of the basis.
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Fig. 4.1. Some plots of TB-like basis functions over triangular domain.

Theorem 4.1. The TB-like basis functions over triangular domain given in (4.1) have the

following properties:

(a) Nonnegativity. T 3
i,j,k(u, v, w;α, β, γ) ≥ 0, i, j, k ∈ N, i+ j + k = 3.

(b) Partition of unity.
∑

i+j+k=3

T 3
i,j,k(u, v, w;α, β, γ) = 1.

(c) Linear independence. The set
{
T 3
i,j,k(u, v, w;β, α, γ); i, j, k ∈ N, i+ j + k = 3

}
is linearly

independent.

(d) Symmetry. For all i, j, k ∈ N, i+ j + k = 3, we have

T 3
i,j,k(u, v, w;α, β, γ) = T 3

j,i,k(v, u, w;β, α, γ) = T 3
j,k,i(v, w, u;β, γ, α)

= T 3
i,k,j(u,w, v;α, γ, β) = T 3

k,i,j(w, u, v; γ, α, β) = T 3
k,j,i(w, v, u; γ, β, α)

Proof. We shall prove (a) and (c). The remaining cases follow obviously.

(a) For any α, β, γ ≥ 2, i, j, k ∈ N, i + j + k = 3 and i · j · k 6= 1, it is obvious that

T 3
i,j,k(u, v, w;α, β, γ) ≥ 0. Furthermore, for T 3

1,1,1(u, v, w;α, β, γ), since u + v + w = π/2,
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direct computation gives that

T 3
1,1,1(u, v, w;α, β, γ) = 1−

∑

i+j+k=3,
i·j·k 6=1

T 3
i,j,k(u, v, w;α, β, γ)

=1−
(
sin2u+ sin2v + sin2w

)
=

1

2
(cos 2u+ cos 2v + cos 2w − 1)

= cos(u + v) cos(u− v)− sin2w = cos(u− v) sinw − cos(u+ v) sinw

= [cos(u − v)− cos(u+ v)] sinw = 2 sinu sin v sinw ≥ 0.

(c) For any α, β, γ ∈ [2,+∞), ξi,j,k ∈ R (i, j, k ∈ N, i + j + k = 3), we consider a linear

combination
∑

i+j+k=3

ξi,j,kT
3
i,j,k(u, v, w;α, β, γ) = 0.

Let w = 0, we have

3∑

i=0

ξi,3−i,0Ti(u;α, β) = 0. (4.2)

Differentiate with respect to the variable u on both sides, we have

3∑

i=0

ξi,3−i,0T
′
i (u;α, β) = 0. (4.3)

For u = 0, from (4.2) and (4.3), we get linear system of equations with respect to ξ0,3,0
and ξ1,2,0 as follows

ξ0,3,0 = 0, β (ξ1,2,0 − ξ0,3,0) = 0.

Thus, we have ξ0,3,0 = ξ1,2,0 = 0. And for u = π/2, from (4.2) and (4.3), we have

ξ3,0,0 = ξ2,1,0 = 0. Similarly, ξi,0,(3−i) = ξ0,i,(3−i) = 0 for i = 0, 1, 2, 3. And finally,

ξ1,1,1 = 0. �

4.3. Triangular TB-like patch with three shape parameters

Definition 4.2. Let α, β, γ ∈[2,+∞), given control points Pij ∈ R
3 (i, j, k ∈ N, i+ j + k = 3),

and a domain triangle D =
{
(u, v, w)

∣∣u+ v + w = π
2 , u ≥ 0, v ≥ 0, w ≥ 0

}
, in which (u, v, w)

are the barycentric coordinates of the points in D. We call

R(u, v, w) =
∑

i+j+k=3

T 3
i,j,k(u, v, w;α, β, γ)Pi,j,k, (u, v, w) ∈ D, (4.4)

the trigonometric Bézier-like (TB-like for short) patch over triangular domain with three expo-

nential shape parameters α, β, γ.

From the properties of the TB-like basis functions over triangular domain, some properties of

the triangular TB-like patch, analogous to that of the triangular Bernstein-Bézier cubic patch,

can be obtained as follows:
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(a) affine invariance and convex hull property. Since the basis functions (4.1) have the proper-

ties of partition of unity and nonnegativity, these imply that the corresponding TB-like

patch (4.4) has affine invariance and convex hull property.

(b) Geometric property at the corner points. Direct computation gives that

R(π/2, v, w) = P3,0,0, R(u, π/2, w) = P0,3,0, R(u, v, π/2) = P0,0,3.

These indicate that the triangular TB-like patch interpolates at the corner points.

(c) Corner point tangent plane. Let w = π/2− u− v, we have

∂R(u,v,w)
∂u

∣∣∣
(π/2,0,0)

= α (P3,0,0 − P2,0,1) ,
∂R(u,v,w)

∂v

∣∣∣
(π/2,0,0)

= α (P2,1,0 − P2,0,1) ,

∂R(u,v,w)
∂u

∣∣∣
(0,π/2,0)

= β (P1,2,0 − P0,2,1) ,
∂R(u,v,w)

∂v

∣∣∣
(0,π/2,0)

= β (P0,3,0 − P0,2,1) ,

∂R(u,v,w)
∂u

∣∣∣
(0,0,π/2)

= γ (P1,0,2 − P0,0,3) ,
∂R(u,v,w)

∂v

∣∣∣
(0,0,π/2)

= γ (P0,1,2 − P0,0,3) .

These indicate that the tangent plane at the three corner points (π/2, 0, 0), (0, π/2, 0),

(0, 0, π/2) are the three planes spanned by the control points P3,0,0, P2,1,0, P2,0,1; P0,3,0,

P1,2,0, P0,2,1; P0,0,3, P1,0,2, P0,1,2, respectively.

(d) Boundary property. For w = 0, R(u, v, w) is just the following TB-like curve given in (2.9),

with two shape parameters α and β

R(u, π/2− u, 0) =

3∑

i=0

Pi,3−i,0Ti(u;β, α). (4.5)

Similarly, R(0, v, π/2 − v) and R(π/2 − w, 0, w) both are TB-like curves with shape pa-

rameters β, γ and α, γ, respectively. For α = β = 2, the TB-like curve (2.9) can represent

exactly elliptic and parabolic arcs, thus for α = β = γ = 2, the three boundaries of tri-

angular TB-like patch can be arcs of ellipse or parabola, respectively. Fig. 4.2 shows the

triangular TB-like patch generated by setting α = β = γ = 2. On the left, the figure shows

the triangular TB-like patch whose boundaries are two elliptic arcs and a parabolic arc

respectively. Its control points are {P3,0,0 = (0,−4, 0), P0,3,0 = (2, 0, 0), P0,0,3 = (0, 0, 1),

P2,1,0 = (1,−4, 0), P2,0,1 = (0,−4, 1/2), P1,2,0 = (2, 0, 0), P0,2,1 = (2, 0, 1/2), P1,0,2 =

(0,−2, 1), P0,1,2 = (1, 0, 1), P1,1,1 = (1,−2, 1)}. The corresponding parametric equations

of the three boundaries are: u = 0, v = −4 sinx, w = cosx; u = 2 sinx, v = 0, w = cosx;

and u = 2 cosx, v = −4 + 4cos2x,w = 0, where x ∈ [0, π/2] . On the right, the figure

shows the triangular TB-like patch with three same boundaries as a quarter of the unit

circle. The three boundaries are fitted onto the unit sphere. The associated control points

of the triangular TB-like patch are {P3,0,0 = (0, 1, 0), P0,3,0 = (1, 0, 0), P0,0,3 = (0, 0, 1),

P2,1,0 = (1/2, 1, 0), P2,0,1 = (0, 1, 1/2), P1,2,0 = (1, 1/2, 0), P0,2,1 = (1, 0, 1/2), P1,0,2 =

(0, 1/2, 1), P0,1,2 = (1/2, 0, 1), P1,1,1 = (1,−2, 1)}. The corresponding three parametric

equations of the boundaries are: u = 0, v = sinx,w = cosx; u = sinx, v = 0, w = cosx;

and u = cosx, v = sinx,w = 0, where x ∈ [0, π/2] .

(e) Shape adjustable property. Without changing the control net, we can adjust the shape of

the triangular TB-like patch conveniently by using the three exponential shape parameters
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Fig. 4.2. Triangular TB-like patches whose boundaries are arcs of ellipse or parabola.

α, β and γ. As the three exponential shape parameters increase at the same time, the

TB-like patch over triangular domain will be made close to the control net. Thus the

three exponential shape parameters α, β, γ serve as tension parameters. In addition, from

the boundary property of the triangular TB-like patch, we can see that the three shape

parameters α, β and µ have nothing to do with the boundary curves R(0, v, w), R(u, 0, w)

and R(u, v, 0), respectively. It is equivalent to say that changing the values of single one

shape parameter, one corresponding boundary curve will not change.

Fig. 4.3 shows the triangular TB-like patches and the effect on the patches by altering the

values of the shape parameters under keeping the control net.

4.4. De Casteljau-type algorithm

The classical de Casteljau algorithm is a stable and efficient process for computing the

triangular Bernstein-Bézier patch. Now we want to develop a de Casteljau-type algorithm for

computing the proposed TB-like patch given in (4.4). For this goal, for any (u, v, w) ∈ D, let

f1(u, v, w) :=
sinu cosw

(
sin2u+ sin2v + sin2w

)

cosw (sinu+ sin v)
(
sin2u+ sin2v + sin2w

)
+ sinw

(
sin2u+ sin2v

) ,

f2(u, v, w) :=
sin v cosw

(
sin2u+ sin2v + sin2w

)

cosw (sinu+ sin v)
(
sin2u+ sin2v + sin2w

)
+ sinw

(
sin2u+ sin2v

) ,

f3(u, v, w) :=
sinw

(
sin2u+ sin2v

)

cosw (sinu+ sin v)
(
sin2u+ sin2v + sin2w

)
+ sinw

(
sin2u+ sin2v

) ,

g1(u, v, w) := (1− cosu)
(
sin2u+ sin2v + sin2w

)
,

g2(u, v, w) := sin v cosw
(
sin2u+ sin2v + sin2w

)
+ sinu sin v sinw,

g3(u, v, w) := cos v sinw
(
sin2u+ sin2v + sin2w

)
+ sinu sin v sinw,
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Fig. 4.3. Triangular TB-like patches with different shape parameters.

and

P 1
2,0,0 :=

(1− cosu)α−2

1 + cosu
P3,0,0 +

[
1 + cosu− (1− cosu)α−2

]
sin v cosw

(1 + cosu) cosu
P2,1,0

+

[
1 + cosu− (1− cosu)

α−2
]
cos v sinw

(1 + cosu) cosu
P2,0,1,

P 1
0,2,0 :=

[
1 + cos v − (1− cos v)

β−2
]
sinu cosw

(1 + cos v) cos v
P1,2,0 +

(1− cos v)
β−2

1 + cos v
P0,3,0

+

[
1 + cos v − (1− cos v)

β−2
]
cosu sinw

(1 + cos v) cos v
P0,2,1,

P 1
0,0,2 :=

[
1+ cosw−(1− cosw)

γ−2
]
sinu cos v

(1+ cosw) cosw
P1,0,2+

[
1+ cosw−(1− cosw)

γ−2
]
cosu sin v

(1 + cosw) cosw
P0,1,2

+
(1− cosw)

γ−2

1 + cosw
P0,0,3,
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P 1
1,1,0 := f1(u, v, w)P2,1,0 + f2(u, v, w)P1,2,0 + f3(u, v, w)P1,1,1,

P 1
1,0,1 := f1(u,w, v)P2,0,1 + f3(u,w, v)P1,1,1 + f2(u,w, v)P1,0,2,

P 1
0,1,1 := f3(v, w, u)P1,1,1 + f1(v, w, u)P0,2,1 + f2(v, w, u)P0,1,2.

Then we can rewrite the expression of the TB-like patch (4.4) as follows

R(u, v, w) =
1− cos2u

sin2u+ sin2v + sin2w

[
g1(u, v, w)P

1
2,0,0 + g2(u, v, w)P

1
1,1,0 + g3(u, v, w)P

1
1,0,1

]

+
1− cos2v

sin2u+ sin2v + sin2w

[
g2(v, u, w)P

1
1,1,0 + g1(v, u, w)P

1
0,2,0 + g3(v, u, w)P

1
0,1,1

]

+
1− cos2w

sin2u+ sin2v + sin2w

[
g3(w, v, u)P

1
1,0,1 + g2(w, v, u)P

1
0,1,1 + g1(w, v, u)P

1
0,0,2

]
.

(4.6)

Furthermore, by setting

P 2
1,0,0 := g1(u, v, w)P

1
2,0,0 + g2(u, v, w)P

1
1,1,0 + g3(u, v, w)P

1
1,0,1,

P 2
0,1,0 := g2(v, u, w)P

1
1,1,0 + g1(v, u, w)P

1
0,2,0 + g3(v, u, w)P

1
0,1,1,

P 2
0,0,1 := g3(w, v, u)P

1
1,0,1 + g2(w, v, u)P

1
0,1,1 + g1(w, v, u)P

1
0,0,2,

we have

R(u, v, w) =
1− cos2u

sin2u+ sin2v + sin2w
P 2
1,0,0 +

1− cos2v

sin2u+ sin2v + sin2w
P 2
0,1,0

+
1− cos2w

sin2u+ sin2v + sin2w
P 2
0,0,1 := P 3

0,0,0. (4.7)

For u + v + w = π/2, it is easy to check that f1(u, v, w) + f2(u, v, w) + f3(u, v, w) = 1and

g1(u, v, w)+g2(u, v, w)+g3(u, v, w) = 1 (by using sin2u+sin2v+sin2w+2 sinu sin v sinw = 1).

Thus (4.6) and (4.7) really describe a de Casteljau-type algorithm for computing the proposed

TB-like patch (4.4).

4.5. Composite triangular TB-like patches

Let two triangular TB-like patches be

R1(u, v, w) =
∑

i+j+k=3

T 3
i,j,k(u, v, w;α1, β, γ)Pi,j,k, (u, v, w) ∈ D, (4.8)

R2(u, v, w) =
∑

i+j+k=3

T 3
i,j,k(u, v, w;α2, β, γ)Qi,j,k, (u, v, w) ∈ D, (4.9)

respectively. It is apparent that if the control points satisfy

P0,j,k = Q0,j,k, j, k ∈ N, j + k = 3, (4.10)

the two patches join along common boundary curve: R1(0, v, w) = R2(0, v, w), v + w = π/2.

Thus the two patches clearly form a surface with positional continuity, or a surface with C0

continuity.
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For the common boundary curve R1(0, v, π/2− v), differentiate with respect to v, we have

dR1(0, v, π/2− v)

dv
= β sin v(1 − cos v)β−1(P0,3,0 − P0,2,1)

+ 2 sin v cos v(P0,2,1 − P0,1,2) + γ cos v(1 − sin v)γ−1(P0,1,2 − P0,0,3). (4.11)

For R1(u, v, π/2− u− v) and R2(u, v, π/2− u− v), differentiate with respect to u respec-

tively, we have

∂R1(u, v, π/2− u− v)

∂u

∣∣∣∣
u=0

= β sin v(1 − cos v)β−1(P1,2,0 − P0,2,1)

+ 2 sin v cos v(P1,1,1 − P0,1,2) + γ cos v(1− sin v)γ−1(P1,0,2 − P0,0,3), (4.12)

∂R2(u, v, π/2− u− v)

∂u

∣∣∣∣
u=0

= β sin v(1 − cos v)β−1(Q1,2,0 −Q0,2,1)

+ 2 sin v cos v(Q1,1,1 −Q0,1,2) + γ cos v(1 − sin v)γ−1(Q1,0,2 −Q0,0,3). (4.13)

The condition for smooth joining is that the vectors defined by equations (4.11) through (4.13)

be coplanar for any value of v, which can be expressed as

∂R2(u, v, π/2− u− v)

∂u

∣∣∣∣
u=0

= φ
dR1(0, v, π/2− v)

dv
+ ϕ

∂R1(u, v, π/2− u− v)

∂u

∣∣∣∣
u=0

,

where φ, ϕ both are constants. From these, we can immediately obtain the following rule





Q1,2,0 −Q0,2,1 = φ(P0,3,0 − P0,2,1) + ϕ(P1,2,0 − P0,2,1),

Q1,1,1 −Q0,1,2 = φ(P0,2,1 − P0,1,2) + ϕ(P1,1,1 − P0,1,2),

Q1,0,2 −Q0,0,3 = φ(P0,1,2 − P0,0,3) + ϕ(P1,0,2 − P0,0,3).

(4.14)

Summarizing the above discussion, we can conclude the following theorem.

Theorem 4.2. For αi, β, γ ∈ [2,+∞), i = 1, 2, the resulting surface composed by (4.8) and (??)

is G1 continuous, if the conditions (4.10) and (4.14) hold.

From Theorem 4.2, we can see that the conditions for smooth joining two triangular TB-like

patches are similar to those for joining two triangular Bernstein-Bézier cubic patches, see [41].

However, the shape of the obtained G1 continuous surface can be modified conveniently by

changing the exponential shape parameters in the triangular TB-like patches.

Fig. 4.4 shows the G1 continuous composite triangular TB-like patches with different shape

parameters. The parameters take values φ = 1, ϕ = −1.

5. Conclusion

The four new proposed trigonometric Berntein-like basis functions possessing two expo-

nential shape parameters form a normalized optimal totally positive basis and are useful for

constructing curves in CAGD. The spectral analysis of the trigonometric Bernstein-like opera-

tor shows that the trigonometric Bézier-like curves are closer to the given control polygon than

the cubic Bézier curves. The trigonometric B-spline-like basis has totally positive property

and can be C2 ∩ FC3 continuous for a non-uniform knot vector, and C3 even C5 continuous
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Fig. 4.4. G1 continuous composite triangular TB-like patches.

for a uniform knot vector. Thus compared with the classical C2 cubic non-uniform rational

B-spline basis, the proposed trigonometric B-spline-like basis is suited for constructing space

curves where the continuous torsion is required. With the exponential shape parameters, the

corresponding trigonometric B-spline-like curves can move locally or globally toward the control

polygon. The given trigonometric Bézier-like basis over triangular domain is a new construc-

tion for geometric design and computing, which is useful for constructing some surfaces whose

boundaries are arcs of ellipse or parabola. There are also some work worthy of further study,

such as subdivide algorithm and knot insertion technique for the new given spline curves. And

C2 ∩ FC3 continuity together with controllable tension property also means that the proposed

trigonometric B-spline-like basis can be applied to construct shape preserving interpolating

space curves. These will be our future work.
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2863–2879.

[52] J.W. Zhang, C-curves, an extension of cubic curves, Comput. Aided Geome. Des., 13 (1996),

199–217.

[53] Y.P. Zhu and X.L. Han, A class of αβγ-Bernstein-Bézier basis functions over triangular domain,
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