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Abstract

As X-ray computed tomography (CT) is widely used in diagnosis and radiotherapy, it

is important to reduce the radiation dose as low as reasonably achievable. For this pur-

pose, one may use the TV based methods or wavelet frame based methods to reconstruct

high quality images from reduced number of projections. Furthermore, by using the in-

terior tomography scheme which only illuminates a region-of-interest (ROI), one can save

more radiation dose. In this paper, a robust wavelet frame regularization based model is

proposed for both global reconstruction and interior tomography. The model can help to

reduce the errors caused by mismatch of the huge sparse projection matrix. A three-system

decomposition scheme is applied to decompose the reconstructed images into three differ-

ent parts: cartoon, artifacts and noise. Therefore, by discarding the estimated artifacts

and noise parts, the reconstructed images can be obtained with less noise and artifacts.

Similar to other frame based image restoration models, the model can be efficiently solved

by the split Bregman algorithm. Numerical simulations show that the proposed model

outperforms the FBP and SART+TV methods in terms of preservation of sharp edges,

mean structural similarity (SSIM), contrast-to-noise ratio, relative error and correlation-

s. For example, for real sheep lung reconstruction, the proposed method can reach the

mean structural similarity as high as 0.75 using only 100 projections while the FBP and

the SART+TV methods need more than 200 projections. Additionally, the proposed ro-

bust method is applicable for interior and exterior tomography with better performance

compared to the FBP and the SART+TV methods.
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1. Introduction

In the clinical applications of X-ray Computed Tomography (CT), it is important to re-

duce the X-ray dose while preserving the quality of CT image reconstruction. The X-ray CT

reconstruction problem can be essentially represented as a linear inverse problem:

Pu = f, (1.1)

where P ∈ Rm×n is a measurement matrix representing the collection of discrete line integra-

tions at different projection angles and along different beamlets, u ∈ Rn is a vector rearranging

from a 2 dimensional image and f ∈ Rm is the measurement of u. The CT reconstruction is

to recover the image u from a given P and f [26]. Because P is determined by the direction

and location of the available beamlets, the matrix P can be approximately generated by the

information from the X-ray projection geometry. However, due to the mechanical error, beam

hardening, finite source and detector cell effects, and other factors, the actual measurement f

does not equal to Pu. In fact, the reconstruction problem can be redefined as:

(P + Pδ)u = f + ϵ, (1.2)

where Pδ represents the model mismatch part of the projection matrix P caused by all the

possible factors, ϵ is the additive noise. A difficulty of solving problems (1.1) and (1.2) is that the

linear system will become ill-posed if we decrease the projection number or detector cell number

for dose reduction. For example, the interior tomography [33,34] and exterior tomography are

to reconstruct a region of interest (ROI) only from the measured X-rays passing through this

ROI and aided by some prior information. Appropriate application of interior and exterior

tomography can reduce the X-ray dose to the patients. Fig. 1.1 shows the sinogram for full CT

imaging, interior tomography and exterior tomography, the ROI correspond to the pixels whose

projection lines in all angles are available. Each sinogram can be regarded as the reshape of

input f , where the columns represent different projection views and the rows represent different

projection lines in each view. Therefore, the interior and exterior tomography can be regarded

as special CT reconstruction with incomplete Radon domain measurement.

As a result, in (1.2), the matrices P and Pδ have much smaller number of rows comparing

to the number of the columns. It is difficult to determine the most appropriate u from infinitely

many solutions of the problem (1.1) and (1.2). Although the current state-of-the-art clinical CT

scanner does not support a scan with reduced projections, image reconstruction from few-view

projections has been a hot topic. The recent development of carbon-nano tube based X-ray

source make it possible for fast switch for the acquisition of sparse projections. Similar to the

flush gate in a camera, it is possible to build a special flush gate and install it in front of the

conventional X-ray source to control the overexposure of X-ray.

Although there are some classical methods available, such as the filtered back projection

(FBP) type methods [11,16,24,25] and the algebraic reconstruction techniques (ART) [19], these

methods usually suffer from artifacts especially when the number of projection is insufficient.

To reconstruct the image u from the noisy measurement, some differential operator based

regularization methods have been introduced. The total variation (TV) based method is one

of the well-known regularization methods and has been proven by its application in various

fields such as signal recovery and image processing [5, 28]. The TV-based model, sometimes

called as Rudin-Osher-Fatemi (ROF) model [28], has been applied to 3D X-ray cone beam CT

reconstruction [30, 31] and 2D CT reconstruction [23]. In the compressed sensing framework,
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it can be found that a 2D interior region-of-interest (ROI) can be exactly reconstructed by

minimizing the TV if the image on the ROI is piecewise constant [20, 34, 35]. The canonical

form of TV-based CT reconstruction model is defined as:

min
u

1

2
∥Pu− f∥22 + λ∥∇u∥1. (1.3)

where P , u and f are identical to those in (1.1), ∇ is the discretization of 2D gradient operator

and λ is a parameter to balance the fidelity and regularity terms in the minimization problem

(1.3).

1.1. Existing wavelet frame based X-ray CT reconstruction

The frame based approaches have similar form of variational methods such as TV-based

model (1.3). It has been shown that the analysis based approach can be regarded as a finite

difference approximation of a certain type of general variational model, and such approxima-

tion will be exact when the image resolution goes to infinity [2]. On the other hand, the

discretizations provided by wavelet frames were shown always to be superior than the standard

discretizations for the TV-based model (1.3) [2–4, 6, 8, 14]. This is due to the multiresolution

structure and redundancy of wavelet frames, which enable wavelet frame based models to adap-

tively choose a proper differential operators in different regions for a given image according to

the order of the singularity (non-smooth part) of the underlying solutions. More details of the

definition of wavelet frames can be seen in Section 2.1.

The general wavelet frame based image restoration model can be written as:

α∗ = argmin
α

{
1

2
∥PWTα− f∥22 +

κ

2
∥(I −WWT )α∥22 + ∥diag(λ)α∥1

}
. (1.4)

where α is the wavelet frame coefficients of estimated object image, W represents the wavelet

transform and u = WTα, u∗ = WTα∗ is the reconstructed object image for this model. Note

that the wavelet transform W satisfies WTW = I but WWT ̸= I therefore the second term

measures the distance between α and the range space of W . When κ = 0, the model (1.4) is

called the synthesis based approach which emphasize the sparsity of frame coefficients. When

κ = ∞, it is equivalent to add the constraint ∥(I −WWT )α∥22 = 0 or α = Wu to model (1.4).

In this case, the model (1.4) is therefore called the analysis based approach which emphasize

the regularity. When 0 < κ < ∞, the model (1.4) becomes a balanced approach between the

previous two approaches.

The wavelet frame has been first applied to the X-ray CT reconstruction in 2010 [22],

in which the model is essentially balanced approach methods [6, 7]. The analysis approach

outperforms the TV-based model and balanced approach model in terms of relative error and

correlations. The analysis approach were first proposed in 2012 [13] where the isotropic wavelet

frame [2] and Radon domain inpainting were also proposed. The isotropic wavelet frame treats

the singularity in different direction equally and such frame is extremely good at removing

the artifacts during CT reconstruction. The Radon domain inpainting mechanism regards the

measurement as a Nd×Np 2D image and inpaints it to Nd×2Np image, where Nd is the number

of beamlets for each view and Np is the number of views. The inpainted result would include

more information in Radon domain and can generate better reconstruction result although

the inpainted information is not 100% accurate. The model [13] attempted to alternatively

updated the inpainted measurement and the CT reconstruction object image to search for the
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Fig. 1.1. The sinogram for different type of CT reconstruction. The first row shows the original mea-

surement of CT projection of a sheep lung by a SIEMENS scanncer with 1160 views. The second row

from left to right shows: 200 views sampled from the original measurement for full CT imaging, trun-

cated sinogram in each view for interior tomography (only middle 30% projection lines are available),

tuncated sinogram in each view for exterior tomography (middle 7.5% projection lines is not available).

result with less relative error and more correlations. The Radon domain inpainting can help

to reconstruct more details with several times of computational cost. Since the Radon domain

inpainting makes the algorithm more complicated and greatly increase the computational and

memory costs, here the general analysis based model without Radon domain inpainting can be

stated as follows:

min
u

1

2
∥Pu− f∥22 + λ∥Wu∥1,p, (1.5)
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where the norm ∥ · ∥1,p is defined as

∥Wu∥1,p =

∥∥∥∥∥∥
L∑

l=1

(
∑

(i,j) ̸=(0,0)

|Wl,i,ju|p)
1
p

∥∥∥∥∥∥
1

, p = 1, 2. (1.6)

In (1.6), Wl,i,j is the wavelet frame decomposition operator with the level l and the framelet

bands (i, j). In particular, (i, j) ∈ {0, 1, 2} × {0, 1, 2} for 2 dimensional linear B-spline wavelet

tight frames and only (i, j) = (0, 0) represents the low pass frame band. When p = 1, the norm

∥ · ∥1,1 is referred to as the anisotropic ℓ1-norm of the frame coefficients, which is the standard

ℓ1-norm used for frame based image restoration problems. When p = 2, the norm ∥ · ∥1,2 is

referred to as the isotropic ℓ1-norm of the frame coefficients. In [13] it has been shown that the

isotropic ℓ1-norm regularization performs better, which coincides with the theoretical analysis

in [2].

In practice, however, there are still two problems that have not been solved by the wavelet

frame based model with Radon domain inpainting [13]. First, the projection matrix P does

not match the real measurements as stated in (1.2). The model (1.5) works extremely well if

Pδ = 0, but not so good if the P has a larger error. Second, for some high resolution imaging

objects, there are some tiny structures which may be recognized as noise or artifacts by (1.5).

Those motivate us to generate a new method to keep the tiny singularity and remove the noise

and artifacts simultaneously.

1.2. The goal and structure of this paper

In this paper a robust isotropic wavelet frame [2, 9, 10, 27] based CT reconstruction model

will be proposed. This model is robust to the error of the matrix P and can preserve more tiny

features during the process of suppress noise and artifacts. The rest of this paper is organized

as follows. Section 2 is devoted to introduce the wavelet frames, design the CT reconstruction

model and algorithm. The numerical results for both simulated phantom and real sheep lung

reconstruction are presented in Section 3. Finally, the major results and conclusions will be

summarized in Section 4.

2. Method

To obtain better CT reconstruction results compared to the FBP and the SART+TV

method, it is necessary to introduce new regularization scheme such as the wavelet tight frame

regularization. Firstly in this section, the definition and some basic concepts of the wavelet

tight frame will be briefly provided. Then, a three-system method with wavelet frame regular-

ization will be proposed to solve the CT reconstruction with an inaccurate matrix P . At last,

an alternative minimization algorithm based on the split Bregman algorithm will be presented

to solve the proposed frame based CT reconstruction problem.

2.1. Wavelet tight frames

In this subsection, the concept of wavelet tight frames and its framelets will be briefly

introduced. For more information, interested readers can refer to the related materials [9, 10,

14,27,29] for theories and survey.
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A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X

⟨f, h⟩h ∀f ∈ L2(R), (2.1)

where ⟨·, ·⟩ is the inner product of L2(R). Given a finite collection of functions Ψ = {ψ1, ψ2, ...,

ψm}, define X = {ψn,k,i = 2n/2ψi(2
n ·−k), 1 ≤ i ≤ m}. If X is a tight frame, then X is called a

wavelet tight frame and Ψ is called wavelet. The multi-resolution analysis (MRA) based wavelet

can be generated by the unitary extension principle (UEP) [27]. In this work, we will use the

piecewise linear B-spline framelets [27]. Given a 1-dimensional framelet system for L2(R), the
s-dimensional tight wavelet frame system for L2(Rs) can be easily constructed by using tensor

products of 1-dimensional framelets [9, 14].

In the discrete setting, a discrete image u is an s-dimensional array. The matrix W denotes

fast tensor product framelet decomposition and useW⊤ to denote the fast reconstruction. Then

by the unitary extension principle [27], we have W⊤W = I, i.e. u = W⊤Wu for any image u.

The L-level framelet decomposition of u will be further defined as

Wu =
{
Wl,i,ju : 1 ≤ l ≤ L, (i, j) ∈ I0

}
,

where I0 denotes the index set of all framelet bands.

Fig. 2.1. The discrete cosine transform (DCT) of the groundtruth image and artifacts generated by the

FBP method with 100 projections. The first row from left to right show the “ground truth” from full

measurement, and the artifacts generated by the FBP method with 100 projections. The second row

show the corresponding DCT result with common color bar, which shows that the artifacts has sparse

representation in DCT transform domain.
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2.2. Robust wavelet frame model and algorithm

In this subsection, we will propose an wavelet frame based CT reconstruction method which

is robust for inaccurate estimation of projection matrix P . The idea is to apply a three-system

method [1, 15] to separate and treat different image parts by different regularization terms. In

this paper, the image to be reconstructed can be decomposed to three parts: the information

part we want to restore (or cartoon part), the artifacts generated by the machine error and

insufficient measurement, and the noise part. Therefore, the three-system model can regularize

the noise part with its sparsity in Radon domain, artifacts part in discrete cosine transform

(DCT) domain, and information part in wavelet frame transform domain. Such an idea was

partially illuminated from the robust image deblurring with inaccurate blur kernels [21], in

which the inaccurate blur kernel is essentially the error of the linear operator from the image to

its corresponding measurement. Fig. 2.1 shows that compared the cartoon part, the artifacts

part has highly sparse representation in DCT transform domain.

Therefore, in this paper the error of P plays the same role as that of the blur kernels.

Applying the form of analysis based approach and the three-system structure, the robust frame

based model can be stated as:

min
u,a,n

1

2
∥P (u+ a) + n− f∥22 + λ1∥Wu∥1,2 + λ2∥Da∥1 + λ3∥n∥1. (2.2)

where f is the projection data from the detector, u is the reconstructed image, a represents

the estimated artifacts caused by inaccurate P , and n stands for the additive impulse noise in

Radon domain (See [12] for plugging ℓ1 norm regularization for additive impulse noise). P is

the anticipated projection matrix including totally Np projections. The matrix W = {Wl,i,j :

1 ≤ l ≤ L, (i, j) ∈ {0, 1, 2} × {0, 1, 2}, ij ̸= 0} is the 2D decomposition operator associated

with the linear B-spline framelet system. For the wavelet systems, l represents the layer and

i, j represent the different windows of the frame coefficient, where only (i, j) = (0, 0) stands

for the lower-pass coefficient. The operator D represents the DCT transform. We assume the

vector Da is sparse in the corresponding DCT transform domain and the noise vector n is

itself sparse in the spatial domain. λ1, λ2, λ3 are parameters to balance the regularization of

the three systems. Because the model (2.2) is convex for all its variables u, a and n, it can be

alternatively optimized to simultaneously converge to the optimized solution [32]. In particular,

the value of u is the object image.

To solve the problem (2.2), an alternative optimization algorithm is proposed. The outline

of the algorithm is summarized in Algorithm 2.1, where the variable ϵ is a given error tolerance.

The Step 3 in Algorithm 2.1 can be easily solved by a simple one-time soft thresholding

operation. In particular, if we define the soft thresholding operator T as:

Tt(v)i :=
max(|vi| − t, 0)

|vi|
· vi, (2.3)

the Step 3 can be reinterpreted as nk+1 := Tλ3(f − P (uk+1 + ak+1)). To solve the Steps 1

and 2 fast and accurately, the split Bregman algorithm is necessary to be applied here. The

split Bregman algorithm was initially stated out in [18] which was shown to be convergent

and powerful [18, 39] when it is applied to various variational models for image restoration,

e.g., ROF [28] and nonlocal variational models [17]. More convergence analysis of the split

Bregman was given in 2009 [4]. The the split Bregman algorithm to CT reconstruction is also

applied in the isotropic wavelet frame based CT reconstruction method with Radon domain

inpainting [13]. Therefore, a detail algorithm to solve (2.2) is given in Algorithm 2.2.
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Algorithm 2.1 Outline of the alternative optimization algorithm to solve (2.2)

Step 0. Set the initial values such that u−1 = −1, u0 = 0, a0 = 0, n0 = 0, k = 0.

while the stopping criteria (k ≥ 1 and ∥uk − uk−1∥22 ≤ ϵ) are not met do

Step 1. Solve

uk+1 := min
u

1

2
∥P (u+ ak) + nk − f∥22 + λ1∥Wu∥1,2.

Step 2. Solve

ak+1 := min
a

1

2
∥P (uk+1 + a) + nk − f∥22 + λ2∥Da∥1.

Step 3. Solve

nk+1 := min
n

1

2
∥P (uk+1 + ak+1) + n− f∥22 + λ3∥n∥1.

Step 4. Let

k := k + 1.

end while

Algorithm 2.2 Detailed Algorithm 2.1

Step 0. Set the initial values such that u0 = u−1 = 0, d0u = 0, b0u = 0, a0 = 0, d0a = 0, b0a =

0, n0 = 0, k = 0.

Step 1. Perform the following iterations until the stopping criteria (k ≥ 1 and ∥uk−uk−1∥22 ≤

ϵ) are met. 

uk+1 := argminu
1
2∥P (u+ ak) + nk − f∥22

+µ1

2 ∥Wu− dku + bku∥22
= (P⊤P + µ1W

⊤W )−1(P⊤(f − Pak − nk)

+µ1W
⊤(dku − bku))

dk+1
u := T ′

λ1/µ1
(Wuk+1 − bku)

bk+1
u := bku + (Wuk+1 − dk+1

u )

ak+1 := argmina
1
2∥P (u

k+1 + a) + nk − f∥22
+µ2

2 ∥Da− dka + bka∥22
= (P⊤P + µ2D

⊤D)−1(P⊤(f − Puk+1 − nk)

+µ2D
⊤(dka − bka))

dk+1
a := Tλ2/µ2

(Dak+1 − bka)

bk+1
a := bka + (Dak+1 − dk+1

a )

nk+1 := Tλ3(f − P (uk+1 + ak+1))
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where µ1 and µ2 are parameters for iteration and do not need to be rigorously chosen

since the value will not affect the optimal solution of the model and the convergence of

the algorithm. The thresholding operator T is defined by (2.3) and the operator T ′ is the

isotropic thresholding operator defined as in (2.4).

(T ′
t(v))l,(i,j) =

{
vl,(i,j), if (i, j) = (0, 0)
vl,(i,j)
Rl

max(Rl − t, 0), if (i, j) ̸= (0, 0)
(2.4)

with Rl = (
∑

(i,j) ̸=(0,0) |vl,(i,j)|2)
1
2 where (i, j) represents for different high-pass frame

windows and (0, 0) is the low-pass frame window. Note that W⊤W = I and D⊤D = I

always hold. The conjugate gradient method can be used to solve the above linear systems

for uk+1 and ak+1 in each iteration.

3. Numerical Results

In this section, the proposed robust frame based model (2.2) with three-system structure

will be evaluated and compared to the filtered back projection (FBP) and the simultaneous

algebraic reconstruction technique (SART) method with total variation (TV) regularization.

For numerical simulations, firstly the modified Shepp-Logan phantom is chosen to simulate a

human head. A typical SIEMENS fan-beam geometry is assumed, which includes 672 detector

cells and 1160 projections for a full scan. Both the measurements with and without Poisson

noise are considered. Poisson noise was simulated according to the physical imaging chain

based method [36]. While the strength of Poisson noise is increased with respect to increase

of the number of photons, the signal noise ratio is decreased. We downsampled the vector f

using merely 75, 100 and 150 projections from the original 1160 projections. To simulate local

projections for interior reconstruction, the middle 202 (30%) detector cells in each projection

are extracted. Moreover, real projections of a sheep lung scanned by a SIEMENS scanner [37]

is also employed in this paper. In all experiments of the CT reconstruction, all the parameters

are fixed except λ1 which is determined by the smoothness of the estimated reconstruction

result. Comparing to the Shepp-Logan phantom, the real sheep lung has less flat regions and

more tiny structures which can not be easily distinguished from the artifacts. Therefore, the

optimal parameter λ1 should be relatively small. For the proposed frame based method (2.2),

we set λ1 = 4.0 for the Shepp-Logan phantom reconstruction and λ1 = 0.01 for the real sheep

lung reconstruction. For other parameters, we always set λ2 = 0.05, λ3 = 10.

Besides the visual quality, the mean structural similarity (SSIM) [38] and contrast-to-noise

ratio (CNR) are used to quantitatively evaluate the quality of the reconstructed results. The

general form of the structural similarity can be defined as in (3.1). In practice, the mean

SSIM is calculated by taking average of the SSIM values from different Gaussian window with

hsize = 11 and σ = 1.5.

SSIM(x, y) =
(2µxµy + c1)(2σxσy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3.1)

where µx and µy are the average of the image patch x and y, respectively. σx and σy denote the

variance of x and y. c1 and c2 are two constants to stabilize the division with weak denominator

and their default settings are c1 = 0.01 and c2 = 0.03.
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The CNR value is defined as the ratio between the intensity difference of two flat regions and

the estimated noise standard deviation. The regions chosen for both the Shepp-Logan phantom

and the real sheep lung are indicated by the circles in Fig. 3.1.

Fig. 3.1. The object images for numerical simulations. The left one is a modified Shepp-Logan phantom

and the right one is a real sheep lung. The red circles indicates the regions for calculating the contrast-

to-noise ratio (CNR). The white square indicates the magnified region of Fig. 3.5. The green lines are

the positions of the profiles in Fig. 3.6.

Moreover, we also consider the relative error and correlation which are defined in (3.2) and

(3.3) respectively.

err(u) =
∥u− ũ∥2
∥ũ∥2

, (3.2)

corr(u) =
(u− ū)(ũ− ¯̃u)

∥u− ū∥2∥ũ− ¯̃u∥2
, (3.3)

where ũ denotes the ground truth, ū and ¯̃u denote the mean values of u and ũ respectively.

For numerical simulations of the Shepp-Logan phantom, the ground truth is selected as the

phantom image. For the real lung study, the FBP reconstruction result from 1160 projections

is chosen as the ground truth.

Regarding to the computational time, we take the reconstruction of sheep lung (resolution

512× 512) from 100 views as an example. Note that all the numerical simulations are executed

via personal laptop with CPU Intel Core P8700 (two CPUs with frequency 2.53GHz) and

memory 4GB. The FBP method needs 0.015s for each view and the total computational time

about 1.5 seconds. The SART+TV method is an iterative method and the time consumption

is 0.03s for each view and per iteration. The reconstruction is stopped after 250 and the

total computational cost is 750 (0.03 × 100 × 250) seconds for the SART+TV method. The

proposed frame based method is relatively complicated than other methods. For each iteration

of the corresponding split Bregman algorithm, two linear systems need to be solved and each

of them takes 50 iterations of conjugate gradient methods. Generally, it needs 42.2 seconds

for one iteration of split Bregman algorithm. Fortunately, only 10 iterations of split Bregman

algorithm is necessary to approach the solution therefore the total computational cost is about

422 seconds.

The reconstructed results are shown in Figs. 3.2–3.10. Figs. 3.2, 3.4–3.7 and 3.9 are for

global reconstruction and the others are for interior tomography [33,34]. The quantitative anal-
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Fig. 3.2. The tomographic results (512 × 512) of the Shepp-Logan phantom reconstructed from noise-

free projections. The image on top is the ground truth image. The following rows are the CT recon-

struction results using 75, 100 and 150 projections, respectively. Images from left to right in each row

are the results obtained by FBP, SART with TV regularization, and the proposed robust wavelet frame

based model (2.2), respectively.

ysis results for global reconstruction can be seen in Tables 3.1–3.3. It is shown that the SART

method with the TV regularization and the proposed frame method (2.2) can remove more

artifacts inside the region-of-interest (ROI) than the FBP method. For the FBP method, the

artifacts make the final image much more difficult for diagnosis. For the SART+TV method,

because of the lower approximation order of the TV regularization, it oversmoothes the recon-

structed images. Therefore, compared to the proposed frame based method (2.2), its SSIM,
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Fig. 3.3. The interior tomographic results (512 × 512) of the Shepp-Logan phantom reconstructed from

noise-free projections. The image on top row is the ground truth image. The following rows are the CT

reconstruction results using 75, 100 and 150 projections, respectively. Images from left to right in each

row are the results obtained by FBP, SART with TV regularization, and the proposed robust wavelet

frame based model (2.2), respectively. The highlighted parts in white circles centered at the middle of

the phantom are the reconstructed ROI whose projection lines in all projection angles are available.

correlation, and CNR are smaller and the relative error is higher. In particular, Figs. 3.5 and

3.6 show that in the flat regions of ROI, the proposed method (2.2) has less standard deviation

compared to the SART+TV method. It can also be shown in Fig. 3.7 that both the FBP

method and the SART+TV oversmooth the sharp edges while the proposed robust method

(2.2) can preserve such sharp edges. Consequently, the proposed robust frame based method
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(2.2) has lowest relative error and highest correlation and CNR values since the frame based

method with isotropic wavelet frame regularization can remove most of the artifacts in all di-

rection and protect the sharp edges. Fig. 3.11 demonstrates the separation of the three systems

and Fig. 3.12 shows that the three-system method has less error than the single-system method

without a and n. Additionally, from Tables 3.2 and 3.3, it can be seen that the proposed frame

based method (2.2) is most insensitive to noise.

Fig. 3.4. The tomographic results (512 × 512) of the Shepp-Logan phantom reconstructed from noisy

projections with Poisson noise. The image on top is the ground truth image. The following rows are

the CT reconstruction results using 75, 100 and 150 projections, respectively. Images from left to right

in each row are the results obtained by FBP, SART with TV regularization, and the proposed robust

wavelet frame based model (2.2), respectively.
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Fig. 3.5. Zoom in images of a flat region of Fig. 3.4 for 150 projections. The region is indicated in

Fig. 3.1. The image on top row is the ground truth image. For the bottom row, the images from left

to right are the zoom in images obtained by FBP, SART with TV regularization, and robust wavelet

frame based model (2.2), respectively.

Fig. 3.6. Representative of the profiles of the green line in the images in Fig. 3.1 reconstructed from

150 projections.
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Fig. 3.7. Zoom in images of the edge parts of Fig. 3.4 for 150 projections. The image on top row is the

zoom in part of assumed ground truth image with the color bar which is also shared for the bottom

three images. For the bottom row, images from left to right are the zoom in images obtained by FBP,

SART with TV regularization, and the proposed wavelet frame based approach (2.2), respectively.

The performance of the proposed isotropic wavelet frame based method, especially for the

real preclinical sheep lung with complicated image structure, demonstrates the feasibility of

applying wavelet frame based method to clinical applications. Furthermore, with the robustness

of proposed wavelet frame based CT image reconstruction model, it is possible to reduce the

radiation dose even if the projection matrix P suffers from mismatch.

Table 3.1: Comparison of mean SSIM (Gaussian window of size 11 and standard deviation 1.5), relative

error, correlation and contrast-noise-ratio (CNR) for the reconstructed results of the Shepp-Logan

phantom from noise-free projections.

FBP method SART+TV method Robust method (2.2)
Np SSIM error corr CNR SSIM error corr CNR SSIM error corr CNR

75 0.832 0.516 0.927 520.7 0.952 0.219 0.969 1829.2 0.960 0.132 0.990 3097.5

100 0.856 0.470 0.931 629.7 0.953 0.216 0.970 1873.5 0.966 0.115 0.992 3494.2

150 0.882 0.436 0.934 738.4 0.953 0.216 0.970 1818.2 0.972 0.097 0.994 4021.4

Table 3.2: Comparison of mean SSIM (Gaussian window of size 11 and standard deviation 1.5), relative

error, correlation and contrast-noise-ratio (CNR) for the reconstructed results of the Shepp-Logan

phantom from projections with Poisson noise.

FBP method SART+TV method Robust method (2.2)
Np SSIM error corr CNR SSIM error corr CNR SSIM error corr CNR

75 0.623 0.582 0.865 509.4 0.946 0.246 0.969 1506.2 0.959 0.135 0.989 3015.4

100 0.637 0.548 0.883 569.8 0.949 0.268 0.969 1661.8 0.964 0.115 0.991 3389.0

150 0.658 0.500 0.899 651.4 0.950 0.267 0.969 1681.0 0.970 0.101 0.994 3938.1

Table 3.3: Comparison of mean SSIM (Gaussian window of size 11 and standard deviation 1.5), relative

error, correlation and contrast-noise-ratio (CNR) for the reconstructed results of the preclinical sheep

lung.

FBP method SART+TV method Robust method (2.2)
Np SSIM error corr CNR SSIM error corr CNR SSIM error corr CNR

100 0.651 0.250 0.942 696.9 0.712 0.308 0.923 615.2 0.873 0.077 0.994 2332.3

150 0.709 0.262 0.954 787.4 0.727 0.264 0.932 639.9 0.899 0.061 0.996 2870.9

200 0.747 0.209 0.959 848.1 0.730 0.255 0.936 640.6 0.909 0.055 0.997 3136.9
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Fig. 3.8. The interior tomographic results (512 × 512) of the Shepp-Logan phantom reconstructed from

noisy projections with Poisson noise. The image on top row is the ground truth image. The following

rows are the CT reconstruction results using 75, 100 and 150 projections, respectively. Images from

left to right in each row are the results obtained by FBP, SART with TV regularization and robust

wavelet frame based model (2.2), respectively. The highlighted parts in white circles centered at the

middle of the phantom are the reconstructed ROI whose projection lines in all projection angles are

available.
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Fig. 3.9. The tomographic results (512 × 512) of the real sheep lung. The image on top row is the

ground truth image and the corresponding greymap bar (Hounsfield Unit). The following rows are the

CT reconstruction results using 100, 150 and 200 projections, respectively. Images from left to right

in each row are the results obtained by FBP, SART with TV regularization, and robust wavelet frame

based model (2.2), respectively.
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Fig. 3.10. The interior tomographic results (512 × 512) of the real sheep lung. The image on top row

is the ground truth image and the corresponding greymap bar (Hounsfield Unit). The following rows

are the CT reconstruction results using 100, 150 and 200 projections, respectively. Images from left to

right in each row are the results obtained by FBP, SART with TV regularization, and the proposed

robust wavelet frame based model (2.2), respectively. The highlighted parts in white circles centered

at the middle of the phantom are the reconstructed ROI.
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Fig. 3.11. The separation of three parts of the image for real sheep lung reconstruction from 200

projections through the proposed frame based approach (2.2). The images from left to right are the

image part, artifacts part and the noise part in the Radon domain.

Fig. 3.12. The error for the CT reconstruction of the sheep lung from 200 projections. The left image

is the error of the proposed three-system method (2.2) and the relative difference is 0.055. The right

image is the error and single-system method minu
1
2
∥Pu−f∥22+λ1∥Wu∥1,2 and the relative difference

becomes 0.069.

Due to the high intensity of some metal materials in clinical or industrial applications, the

X-ray can not pass through certain region. As a result, all the projections involved in this

region can not be measured, and the corresponding reconstruction problem for the rest of this

region is called exterior tomography. In the last of this paper, we will show that the proposed

method is also applied for exterior tomography. The exterior tomography results are shown in

Fig. 3.13, from which it can be clearly observed that the FBP method is not applicable for

exterior tomography while the rest two methods have better performance. In particular, the

proposed frame based method (2.2) has apparently better visual quality in the exterior region.

Furthermore, our proposed method (2.2) can estimate the intensity in some parts of the interior

region while the other two methods cannot.
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Fig. 3.13. The exterior tomographic results (512 × 512) of the real sheep lung. From the top to bottom,

the CT images in each row are reconstructed from 100, 150 and 200 projections, respectively. Images

from left to right are reconstructed by the FBP, SART with TV regularization, and the proposed robust

wavelet frame based model (2.2), respectively.

4. Discussions and Conclusions

In this paper, we proposed a robust CT reconstruction model (2.2), which are based on the

previous wavelet frame based models [13, 22], especially the analysis based approach [13]. The

proposed robust CT reconstruction model introduces the three-system structure of the restored

images and adds two regularization terms to treat the problem that P may mismatch the real

measurements during the CT scan process. Fast algorithm is also developed by applying the

split Bregman algorithm. Both numerical simulation and preclinical application were performed

to evaluate the proposed algorithm. The results show that the proposed multi-system model

outperforms the FBP and SART+TV methods in terms of the preservation of sharp edges,

mean SSIM, contrast-to-noise ratio, relative error and correlations. Additionally, Figs. 3.3,

3.8 and 3.10 show that the proposed wavelet frame based method is applicable for interior

tomography.

To be honest, we should admit that this paper has the limitations of the very rudimentary

image quality (IQ) analysis. For example, the CNR value is just measure of magnitude of pixel

standard deviation in a specific region. The other numerical results, such as relative error,
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correlation and mean structural similarity, are mainly error based evaluations merely in the

spatial domain. In the near future, a comprehensive evaluation is necessary to optimize the

proposed algorithm, which may includes but not limited to the Fourier space analysis (MTF and

NPS), numerical observer, and human observer studies. Moreover, to generalize the proposed

model to a feasible polyenergetic X-ray model or scattering model, is also an important direction

for the future work.
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[26] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannig-
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