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Abstract

In this paper, we consider the solution of the standard linear programming (LP). A

remarkable result in LP claims that all optimal solutions form an optimal face of the

underlying polyhedron. In practice, many real-world problems have infinitely many optimal

solutions and pursuing the optimal face, not just an optimal vertex, is quite desirable. The

face algorithm proposed by Pan [19] targets at the optimal face by iterating from face

to face, along an orthogonal projection of the negative objective gradient onto a relevant

null space. The algorithm exhibits a favorable numerical performance by comparing the

simplex method. In this paper, we further investigate the face algorithm by proposing an

improved implementation. In exact arithmetic computation, the new algorithm generates

the same sequence as Pan’s face algorithm, but uses less computational costs per iteration,

and enjoys favorable properties for sparse problems.
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1. Introduction

In this paper, we consider the solution of the linear programming (LP) in the standard form:

min c⊤x

s.t. Ax = b, x ≥ 0,
(1.1)

where A ∈ R
m×n (m < n), and c,x ∈ R

n and b ∈ R
m.

There are two basic classes of algorithms for solving LP in the literature. The first milestone

is the well-known simplex method founded by Dantzig [2], in which the philosophy is to move on

the underlying polyhedron, from vertex to an adjacent vertex, until reaching an optimal vertex.

Since then, extensive theoretical analysis, numerical implementations as well as numerous vari-

ants (see e.g., [1,3,4,6,7,9,13–18,20–24]) have been developed. To date, the simplex algorithm is

accepted as one of the most famous and widely used mathematical tools in the world [13]. The
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other type of methods distinguishes the simplex method by approaching an optimal solution

(not necessarily an optimal vertex) from inside of the polyhedron, and they are usually catego-

rized as the interior point methods. Karmarkar’s projective algorithm [10] is one of successful

and practical interior point methods and stimulates this trend (see e.g., [11–13,23]). Both the

simplex method (and its variants) and the interior point methods have their own advantages

and disadvantages; in particular, some interior point methods can reach an optimal solution in

polynomial time theoretically, yet neither of them in general shows a dominant performance to

the other numerically.

One of the remarkable results for LP (1.1) is that whenever (1.1) has a solution, then at

least one vertex of the polyhedron of (1.1) is an optimal solution (see e.g., [13]). This serves as

the theoretical fundamental for Dantzig’s simplex method. Another well-known result of (1.1)

claims that all the optimal solutions form an optimal face (see Definition 2.1). In practice, many

real-world problems usually have infinitely many optimal solutions and pursuing an optimal face,

not just a vertex (a vertex is a special face), is quite desirable. This motives the face algorithm

proposed by Pan [19, Chapter 8]1) . The basic idea behind the face algorithm is to move from

face to face, along an orthogonal projection of the negative objective gradient onto a relevant

null space (the search direction), to reach an optimal face. The search direction can be efficiently

computed via the Cholesky factorization. Preliminary computational testing is carried out and

the results show that the face algorithm has a favorable numerical performance [19, Chapter 8].

In this paper, we further investigate the face algorithm by proposing an improved imple-

mentation. The basic idea of our new implementation is to update the search direction in a

similar manner as the eta-matrix technique proposed by Dantzig and Orchard-Hayes [3] for

the simplex method. The key for our implementation is that the kth search direction of the

face algorithm is the solution of a relevant linear system whose coefficient matrix only has a

rank-one correction upon that of (k − 1)th. This fact, with the aid of the Sherman-Morrison

formula (see Lemma 4.1), then makes it possible to reuse the previous information and then

update the search direction in a similar fashion to the eta-matrix technique of Dantzig and

Orchard-Hayes to improve the efficiency of the face algorithm. In exact arithmetic computa-

tion, we will see that our improved face algorithm generates the same sequence as the face

algorithm of Pan [19, Chapter 8], but the new implementation uses less computational costs

per iteration and enjoys favorable properties for sparse problems. The detailed computational

gains and performance tradeoffs will be discussed in Section 5.

The remaining paper is organized in the following way. In Section 2, some basic concepts

and results related to the face algorithm are provided. Section 3 then outlines the original face

algorithm proposed in [19, Chapter 8]. Our new implementation, together with some new and

further properties of the face algorithm, is presented in Section 4. The computational gains as

well as performance tradeoffs of our new algorithm are then discussed in Section 5. Finally, we

report computational results in Section 6 and draw a conclusion in Section 7.

Throughout the paper, all vectors are column vectors and are typeset in bold. For a given

vector x, we use xi to denote the i-th component of x. For a matrix A ∈ R
n×m, A⊤ denotes its

transpose, and Null(A) stands for the null space of A.

1) The face algorithm is also presented and available at: P.-Q. Pan, A face algorithm for linear programming,

preprint. http://www.optimization-online.org/DB HTML/2007/10/1806.html.
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2. Some Basic Concepts Related to the Face Algorithm

To implement the face algorithm in a more efficient way, we first take a preparatory step

to transform the standard program (1.1) to an equivalent one. Assume a feasible point x(0) of

(1.1) is available, then by introducing a new nonnegative variable xn+1, we solve

min −xn+1

s.t.

(
A 0

c⊤ 1

)(
x

xn+1

)
=

(
b

c⊤x(0)

)
, [x⊤, xn+1]

⊤ ≥ 0.

Now by redefining

A :=

(
A 0

c⊤ 1

)
, b :=

(
b

c⊤x(0)

)
, x :=

(
x

xn+1

)
,

n := n+ 1, m := m+ 1, c := −en,

the standard problem (1.1) is equivalent to the following model:

min −xn

s.t. Ax = b, x ≥ 0.
(2.1)

It is clear then that Aen = em and [(x(0))⊤, 0]⊤ is a feasible solution of (2.1), where ei stands for

the unit vector with i-th component 1.Moreover, the assumption rank(A) = m is not substantial

as the case rank(A) < m could be simply tackled in the face algorithm (see [19, Chapter 8]),

and therefore, in our following discussions, we assume rank(A) = m.

In the traditional simplex method (see e.g., [2, 4, 13, 21]), each iteration is related to a

partition [B,N ] of A, where B ∈ R
m×m is a basis matrix. The basic solution associated with B

is obtained by setting xN equal to zero: xN = 0 and xB = B−1b. If xB ≥ 0, then we say that

x is a basic feasible solution. For each j, we define the reduced cost z̄j related to the variable

xj by the formula

z̄j = cj − cTBB
−1aj , (2.2)

and the following result is well known:

Lemma 2.1. Consider a basic feasible solution x associated with a basis matrix B, and let z̄

be the corresponding vector of reduced costs. If z̄ ≥ 0, then x is optimal.

For the face algorithm [19, Chapter 8], on the other hand, each iteration is also linked with

a partition [B,N ] of A, but now B ∈ R
m×k (m ≤ k ≤ n) and rank(B) = m. The number k of

columns of B varies from iteration to iteration. To simplify our presentation, in what follows,

we will use B and N to denote the associated columns index sets of the matrices B and N ,

respectively. Related to such partition [B,N ] of A, we have several definitions (see [19, Chapter

8]).

Definition 2.1. (i). Let [B,N ] be a partition of A, where B ∈ R
m×k and m ≤ k ≤ n. The

nonempty convex subset

Dk = {x | BxB = b, xB ≥ 0, xN = 0} (2.3)

is called a (k − m)-dimensional face. The matrices B and N are called the face and

nonface matrices, respectively. A point x ∈ Dk is called a face point.
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(ii). A face is a level face if the objective value is constant over it.

(iii). A level face is an optimal face 2) if objective value is equal to the optimal value over it.

Different from the traditional simplex method which only pursues an optimal vertex (i.e., a

zero-dimensional face), the face algorithm of Pan [19, Chapter 8] targets at an optimal face. This

is achieved by the so-called face subproblem (2.4) associated with a face Dk in each iteration:

min −xn

s.t. BxB = b, xB ≥ 0,
where B ∈ R

m×k, n ∈ B and Bek = em. (2.4)

The face algorithm does not attempt to solve the face subproblem (2.4) exactly as it is still

a linear programming; what we are interested is the search direction came out of (2.4). As one

can easily see that a good search direction for (2.4) is the projection of the negative gradient

onto the null space Null(B) of B given by

−∆B := PN(B)ek ∈ R
k, (2.5)

where PN(B) = I − B⊤(BB⊤)−1B is the orthogonal projection onto Null(B). One can think

∆B as a sub-vector of an n-dimensional direction ∆ ∈ R
n indexed by the index set B, and thus

the other sub-vector of ∆ indexed by N is ∆N = 0 ∈ R
n−k. Interestingly, it turns out that if

Dk is a level face, it can be identified by ∆B as the following lemma (Lemma 5, [19, Chapter

8]) shows.

Lemma 2.2. If ∆B = 0, then Dk is a level face of (2.1); vice versa, if Dk is a level face and

if xB > 0 for some [x⊤

B ,0
⊤]⊤ ∈ Dk, then ∆B = 0.

The basic idea behind the face algorithm is to iterate from one face to another, guided by

the projected negative gradient −∆B of the associated face subproblem, until an optimal face is

reached. In the next section, we begin with the search direction −∆B and discuss the original

implementation of the face algorithm of Pan [19, Chapter 8].

3. The Original Implementation of the Face Algorithm

Suppose [x⊤

B,0
⊤]⊤ ∈ Dk is a current iterate, where Dk is a face and the related face

subproblem is given by (2.4). To make the paper self-contained, in this section, we will first

describe a complete step between successive iterates of the face algorithm proposed in [19,

Chapter 8].

3.1. Search direction

Recall that the search direction suggested by (2.4) is −∆B = PN(B)ek ∈ Null(B), which is

a descent direction for (2.4), and satisfies the following properties (see [19, Chapter 8]):

Proposition 3.1 ( [19]) (i). The following are equivalent: ∆B 6= 0 ⇔ ∆⊤

Bek < 0 ⇔ ek 6∈
Range(BT );

(ii). If ∆B 6= 0, then

−e⊤k ∆B/‖∆B‖2 ≥ −e⊤k v/‖v‖2, ∀ 0 6= v ∈ Null(B).

2) It is a well-known result that all optimal solutions of (1.1) or (2.1) form a face.
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Proposition 3.1 basically says that −∆B is the steepest downhill for (2.4), and whenever

∆B 6= 0, it always leads to strictly decrease in −xn.

To compute ∆B , from (2.5), we observe that

∆B = −PN(B)ek = −ek +B⊤(BB⊤)−1Bek

= −ek +B⊤(BB⊤)−1em := −ek −B⊤y, (3.1)

where

y := −(BB⊤)−1em. (3.2)

Therefore, if we have the QR decomposition

B⊤ = Q

(
L⊤

0

)
, (3.3)

where L ∈ R
m×m and L⊤ is upper triangular, then the Cholesky factorization of BB⊤ turns

out to be

BB⊤ = LL⊤ (L is called the Cholesky factor of BB⊤), (3.4)

and therefore, y = −(L−⊤L−1em) = −L−⊤em/ν, where ν is the m-th diagonal of L; that is, y

can be simply obtained via solving a single triangular system: L⊤y = −em/ν.

3.2. Optimality test

Once the search direction −∆B at the current iterate is on hand, we can first check the opti-

mal condition to either identify the lower unboundedness of problem (2.4) or lead the algorithm

to different terminating criteria. The following theorem (see [19, Chapter 8]) summarizes two

cases for which the iteration can be terminated, either achieving optimal solutions or detecting

the lower unboundedness of problem (2.4).

Theorem 3.1. ([19]) (i) If ∆B ≤ 0, problem (2.1) and hence (1.1) is unbounded below; (ii) If

∆B = 0 and zN := −N⊤y ≥ 0, where y is defined by (3.2), then [x⊤

B,0
⊤]⊤ and [0⊤, z⊤N ]⊤ with

y, are a pair of primal and dual optimal solutions to (2.1); moreover, Dk is an optimal face of

problem (2.1).

Theorem 3.1, with the assumption that problem (2.1) is bounded below, suggests that the

algorithm would encounter two possible cases: (i) ∆B 6≤ 0, and (ii) ∆B = 0 but zN = −N⊤y 6≥
0. Treatment of case (i) and case (ii) leads to two different procedures: contracting face Dk and

expanding face Dk, respectively.

Now we show the relationship between zN defined in Theorem 3.1 and the reduced cost

vector z̄, defined by (2.2), in the standard simplex method.

Lemma 3.1. Let [B,N ] be one partition of A, where B ∈ R
m×k and m ≤ k ≤ n, and let [B̄, N̄ ]

be another partition of A, where B̄ is a basis matrix such that n ∈ B̄ ⊆ B. If ∆B = 0, then for

each j ∈ N , it is true that zj = z̄j, where z̄j is the reduced cost related to the variable xj .

Proof. Since c = −en and n ∈ B̄, we have cB̄ = −em and cN̄ = 0. Fix j ∈ N . It is obvious

that j ∈ N̄ . Let w = B̄−⊤em. From (2.2), it follows that

z̄j = −e⊤mB̄−1aj = −(B̄−⊤em)⊤aj = −w⊤aj . (3.5)

Since ∆B = 0, by (3.1), there exists a vector y ∈ R
m such that B⊤y = −ek and therefore

zj = −a⊤j y. Because n ∈ B̄ ⊆ B and B⊤y = −ek, we must have B̄⊤y = −em. Thus we have

w = y, which together with (3.5) and zj = −a⊤j y implies zj = z̄j . �
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3.3. Contracting face Dk

We first deal with the case ∆B 6≤ 0. In this case, we have known from Proposition 3.1 that

−∆B is a downhill for (2.4), and we can implement a line search along −∆B, until one of the

nonnegative constraints of xB is violated. The largest step-length then is determined by

α = xs/∆s = min{xj/∆j | ∆j > 0, j ∈ B}. (3.6)

Because e⊤k ∆B < 0 (see Proposition 3.1), we know s 6= n. Consequently, xB is updated by

xB − α∆B . It is said [19, Chapter 8] that α could vanish if xB is degenerate where some of its

components are zero. Interestingly, it is observed numerically that significantly less degeneracy

occurs than that in the traditional simplex method [19, Chapter 8]. Under the nondegenerate

assumption, it is clear that the next iterate is an improvement of [x⊤

B ,0
⊤]⊤. Moreover, because

xs becomes zero, the corresponding face and nonface indexes should be updated accordingly:

B̃ = B\{s} and Ñ = N ∪ {s}, (3.7)

and hence the dimension of the new face is reduced by one. Let B̃ ∈ R
m×(k−1) be the matrix

resulting from B by removing the corresponding column as and let x
B̃

be the new iterate. It

is shown [19, Chapter 8] that rank(B̃) = m if rank(B) = m. Corresponding to the new iterate

x
B̃
, the next face subproblem is

min −xn

s.t. B̃x
B̃
= b, x

B̃
≥ 0,

where B̃ ∈ R
m×(k−1), n ∈ B̃ and B̃ek−1 = em,

and the next search direction will be

∆
B̃
= −P

N(B̃)ek−1 = −ek−1 + B̃⊤(B̃B̃⊤)−1em := −ek−1 − B̃⊤ỹ, (3.8)

where ỹ is obtained from (B̃B̃⊤)ỹ = −em. [19, Chapter 8] provides the following downdating

procedure to update the Cholesky factor L̃ of B̃B̃⊤ (i.e., B̃B̃⊤ = L̃L̃⊤) based on the information

of the previous Cholesky factorization BB⊤ = LL⊤.

Algorithm 3.1 (Downdating) :

1. Solve m×m lower triangular system Lp = as (‖p‖2 < 1 holds);

2. β :=
√
1− ‖p‖22;

3. Determine Givens rotations J1, · · · , Jm with Ji in the (m+ 1, i)-plane such that

J1 · · ·Jm
(

p

β

)
=

(
0

1

)
;

4. Calculate J1 · · ·Jm
(

L⊤

0⊤

)
≡
(

L̃⊤

a⊤s

)
to obtain L̃.

This procedure is from Saunders [20]. In Section 5, we will take a close look at its compu-

tational cost and its performance for large and sparse problems.
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3.4. Expanding face Dk

Now we discuss the other case: ∆B = 0 but zN = −N⊤y 6≥ 0. This would happen if Dk is

a level face but not the optimal (see Lemma 2.2 and Theorem 3.1). In this case, the face Dk is

expanded by bringing an index t from N to B, where the index t is determined from

t ∈ argmin{zj | j ∈ N}. (3.9)

Similarly, the new face and nonface indexes are B̃ = B ∪ {t} and Ñ = N\{t}, respectively. Let
B̃ ∈ R

m×(k+1) be the corresponding new face matrix, and the Cholesky factor L̃ of B̃B̃⊤ now

is updated according to the following step [19, Chapter 8]:

Algorithm 3.2 (Updating) : Find Givens rotations Gm, · · · , G1 where Gi is in the

(i,m+ 1)-plane such that

Gm · · ·G1

(
L⊤

a⊤t

)
=

(
L̃⊤

0⊤

)
,

where L̃ is lower triangular and is the Cholesky factor of B̃B̃⊤.

This updating procedure simply follows [5] and we will also provide some discussion on its

performance in Section 5.

Consequently, starting from the current iterate [x⊤

B,0
⊤]⊤ ∈ Dk, we can summarize briefly

a basic iteration of the face algorithm [19, Chapter 8] as follows:

(1). compute the search direction ∆B defined by (2.5) according to Section 3.1;

(2). test optimality according to Section 3.2; and

(3). contract (according to Section 3.3) or expand (according to Section 3.4) the current face

Dk and update [x⊤

B ,0
⊤]⊤.

For a complete pseudo-code of the face algorithm as well as the Phase-1 method for an initial

feasible solution of (2.1), we refer to the detailed discussions in [19, Chapter 8].

4. The Improved Implementation

By investigating one basic step of the face algorithm presented in Section 3, one can easily

find that the dominant computation lies in solving the search direction ∆B (2.5). The proposed

implementation in [19, Chapter 8] (i.e., downdating and updating procedures in Section 3) is one

of efficient ways which updates the Cholesky factor of BB⊤ by using the previous information.

However, there are still rooms to improve this implementation. In this section, we will propose

an alternative to obtain the search direction with less computational costs (detailed comparison

of the computational complexity will be discussed in Section 5). This alternative realization

of obtaining the search direction is based on the observation that either the contracting face

procedure or the expanding face procedure only changes the face matrix B by removing or

adding one column respectively. This fact, with the aid of the Sherman-Morrison formula,

then makes it possible to update (BB⊤)−1 directly. Consequently, our new implementation
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turns out to be in a similar fashion to the eta-matrix technique first described by Dantzig and

Orchard-Hayes [3] for the simplex method.

Lemma 4.1 (Sherman-Morrison formula) Let M̃ = M + uv⊤, where M ∈ R
m×m is non-

singular and u,v ∈ R
m. If M̃ is nonsingular, then

M̃−1 = M−1 − M−1uv⊤M−1

1 + v⊤M−1u
. (4.1)

4.1. Downdating in the contracting face procedure

Using the same notation in Section 3, we assume that [x⊤

B,0
⊤]⊤ ∈ Dk is a current iterate

(or the initial iterate) and the Cholesky factorization (3.4) is available. Suppose ∆B 6≤ 0, then

we should contract the current face Dk and thus, according to (3.6) and (3.7), a column as will

be removed from B. To simplify our presentation, we can do a permutation to B, B, xB and

∆B accordingly, so that as appears as the first column of B; that is,

B = [as, B̃], (4.2)

and hence

B̃B̃⊤ = BB⊤ − asa
⊤

s . (4.3)

Now by rank(B̃) = m (see [19, Chapter 8]) and Sherman-Morrison formula (4.1), it follows that

(B̃B̃⊤)−1 = (BB⊤)−1 +
(BB⊤)−1asa

⊤
s (BB⊤)−1

1− a⊤s (BB⊤)−1as

:= (BB⊤)−1 +
h(1)(h(1))⊤

1 + η(1)
, (4.4)

where

h(1) := (BB⊤)−1as and η(1) := −a⊤s h
(1) = −a⊤s (BB⊤)−1as < 0.

Since the Cholesky factorization of BB⊤ is available, the calculation of h(1) is simplified as solv-

ing two triangular systems. Formula (4.4) is very important because the next search direction

−∆
B̃

(3.8) can be expressed as

∆
B̃
= −ek−1 + B̃⊤(B̃B̃⊤)−1em (4.5)

= −ek−1 + B̃⊤(BB⊤)−1em + B̃⊤h(1) e
⊤
mh(1)

1 + η(1)
. (4.6)

Moreover, from (3.1) and (4.2), it follows that

∆B = −ek +B⊤(BB⊤)−1em = −
(

0

ek−1

)
+

(
a⊤s (BB⊤)−1em
B̃⊤(BB⊤)−1em

)

=

(
e⊤mh(1)

−ek−1 + B̃⊤(BB⊤)−1em

)
,

which implies that −ek−1 + B̃⊤(BB⊤)−1em in (4.6) is the subvector ∆B(2 : k) of ∆B by

removing its first component e⊤mh(1) = h
(1)
m . Based on this fact, one has from (4.6) that

∆
B̃
= ∆B(2 : k) + B̃⊤h(1) h

(1)
m

1 + η(1)
, where h(1)

m = e⊤mh(1). (4.7)
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Consequently, we know that computing the next search direction −∆
B̃

only requires a vector

h(1) and a scalar η(1). As pointed out earlier, h(1) can be achieved by solving two triangular

systems of order m and the flops are 2m2, while η(1) = −a⊤s h
(1) only requires 2m flops.

One may argue that for the new face matrix B̃, we do not have the Cholesky factorization

for B̃B̃⊤ any more, and hence, the next search direction could not be obtained similarly from

our previous economic computation. In fact, we point out that the inverse formula (4.4) of

B̃B̃⊤ carries the Cholesky factorization of BB⊤ and hence the computation for the next search

direction could still be very economic. Indeed, we suppose that in the next iteration, another

column say ap is removed from B̃, and as before, we can do a permutation to make ap the first

column of B̃, i.e., B̃ = [ap, B̂]. Following the same argument as (4.4), it is true that

(B̂B̂⊤)−1 = (B̃B̃⊤)−1 +
(B̃B̃⊤)−1apa

⊤
p (B̃B̃⊤)−1

1− a⊤p (B̃B̃⊤)−1ap

= (B̃B̃⊤)−1 +
h(2)(h(2))⊤

1 + η(2)
(4.8)

= (BB⊤)−1 +
h(1)(h(1))⊤

1 + η(1)
+

h(2)(h(2))⊤

1 + η(2)
,

where

h(2) := (B̃B̃⊤)−1ap and η(2) := −a⊤p h
(2) = −a⊤p (B̃B̃⊤)−1ap < 0. (4.9)

On the other hand, with the help of (4.8), the new search direction −∆
B̂

can be computed as

∆
B̂
= −P

N(B̂)ek−2 = −ek−2 + B̂⊤(B̂B̂⊤)−1em

= −ek−2 + B̂⊤(B̃B̃⊤)−1em + B̂⊤h(2) e
⊤
mh(2)

1 + η(2)
. (4.10)

Analogously, we note from (4.5) and B̃ = [ap, B̂] that

∆
B̃
= −ek−1 + B̃⊤(B̃B̃⊤)−1em = −

(
0

ek−2

)
+

(
a⊤p (B̃B̃⊤)−1em
B̂⊤(B̃B̃⊤)−1em

)

=

(
e⊤mh(2)

−ek−2 + B̂⊤(B̃B̃⊤)−1em

)
,

and therefore from (4.10)

∆
B̂
= ∆

B̃
(2 : k − 1) + B̂⊤h(2) h

(2)
m

1 + η(2)
, where h(2)

m = e⊤mh(2). (4.11)

The formulation (4.11) implies that the search direction−∆
B̂
can be obtained if h(2) is available,

which indeed could be computed very simply and economically because by (4.9) and (4.4), one

has

h(2) = (B̃B̃⊤)−1ap = (BB⊤)−1ap + h(1) (h
(1))⊤ap

1 + η(1)
.

Therefore, if we store the Cholesky factor L of BB⊤, the vector h(1) and the scalar η(1), the

search direction −∆
B̂

is achievable by only solving two triangular systems (for (B̃B̃⊤)−1ap),

plus a matrix-vector product B̂⊤h(2) and an inner product (h(1))⊤ap.
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Our previous procedure can proceed recursively, and if l contracting face steps have been

implemented, the current face matrix, namely B̌, enjoys the following relationship:

(B̌B̌⊤)−1 = (BB⊤)−1 +
h(1)(h(1))⊤

1 + η(1)
+

h(2)(h(2))⊤

1 + η(2)
+ · · ·+ h(l)(h(l))⊤

1 + η(l)
. (4.12)

Therefore, we conclude that

(1). to represent (B̌B̌⊤)−1, we only need to store a series of vectors [h(1), · · · ,h(l)] and the

corresponding negative scalars [η(1), · · · , η(l)];

(2). computing (B̌B̌⊤)−1aq for some column aq ∈ R
m only needs to solve two triangular

systems of order m, plus l inner products; and

(3). the search direction −∆B̌ can be updated from the previous search direction (similarly

to (4.7)) with additionally solving two triangular systems of order m.

4.2. Updating in the expanding face procedure

Now suppose from the iterate [x⊤

B ,0
⊤]⊤ ∈ Dk, l contracting face steps have been taken (l

could be 0), and the current face matrix B̌ satisfies (4.12). In this subsection, we will discuss

the corresponding updating step to expand the face B̌. As we have pointed out in Section 3.4

that this could only happen if ∆B̌ = 0. According to (3.9), a new column at will be added to

B̌ and without loss of generality, we let it be the first column of the new face matrix B̄; that is,

B̄ = [at, B̌]. (4.13)

Note from B̄B̄⊤ = B̌B̌⊤ + ata
⊤
t , the Sherman-Morrison formula and (4.12), we have

(B̄B̄⊤)−1 = (B̌B̌⊤)−1 − (B̌B̌⊤)−1ata
⊤
t (B̌B̌⊤)−1

1 + a⊤t (B̌B̌⊤)−1at

= (B̌B̌⊤)−1 − h(l+1)(h(l+1))⊤

1 + η(l+1)
(4.14)

= (BB⊤)−1 +
h(1)(h(1))⊤

1 + η(1)
+ · · ·+ h(l)(h(l))⊤

1 + η(l)
− h(l+1)(h(l+1))⊤

1 + η(l+1)
, (4.15)

where

h(l+1) := (B̌B̌⊤)−1at and η(l+1) := a⊤t h
(l+1) = a⊤t (B̌B̌⊤)−1at > 0.

Here, we should point out that the scalar η(l+1) is defined differently from η(1), · · · , η(l), because
we want to distinguish the expanding face procedure from the contracting face procedure.

Moreover, we have mentioned in Section 4.1 that computing h(l+1) only requires to solve two

triangular systems, plus l inner products, yielding 2m2 + 2ml flops. Therefore, by (4.13) and

(4.14), the new search direction −∆B̄ could be obtained from

∆B̄ = −PN(B̄)ek−l+1 = −ek−l+1 + B̄⊤(B̄B̄⊤)−1em

= −ek−l+1 + B̄⊤(B̌B̌⊤)−1em − B̄⊤h(l+1) e
⊤
mh(l+1)

1 + η(l+1)

=

(
0

−ek−l

)
+

(
a⊤t (B̌B̌⊤)−1em
B̌⊤(B̌B̌⊤)−1em

)
− B̄⊤h(l+1) e

⊤
mh(l+1)

1 + η(l+1)

=

(
(h(l+1))⊤em

−ek−l + B̌⊤(B̌B̌⊤)−1em

)
− B̄⊤h(l+1) e

⊤
mh(l+1)

1 + η(l+1)
. (4.16)
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On the other hand, since

∆B̌ = −PN(B̌)ek−l = −ek−l + B̌⊤(B̌B̌⊤)−1em = 0,

we know from (4.16) that

∆B̄ =

(
h
(l+1)
m

0

)
− B̄⊤h(l+1) h

(l+1)
m

1 + η(l+1)
, (4.17)

where h
(l+1)
m = e⊤mh(l+1) is the last component of h(l+1). This completes the updating.

To sum up, in order to implement an updating procedure, one only needs to compute and

store one new vector h(l+1) and one new positive scalar η(l+1). These terms are necessary for

the search direction ∆B̄ and (B̄B̄⊤)−1 which is always updated by a rank-one matrix. Finally,

we point out that (B̄B̄⊤)−1 in (4.15) can also be rewritten as

(B̄B̄⊤)−1 = (BB⊤)−1 + sgn(−η(1))
h(1)(h(1))⊤

1 + η(1)
+ · · ·+ sgn(−η(l+1))

h(l+1)(h(l+1))⊤

1 + η(l+1)

= (BB⊤)−1 +

l+1∑

i=1

sgn(−η(i))
h(i)(h(i))⊤

1 + η(i)
, (4.18)

where sgn(−η(i)) denotes the sign of −η(i). The practical computation will benefit from this

uniform expression, because we only store the vectors [h(1), · · · ,h(l+1)] and the corresponding

scalars [η(1), · · · , η(l+1)], and the formulation (4.18) will automatically distinguish the contract-

ing and expanding procedures. Moreover, this formulation also facilitates us to express the

vector y (see (3.2)) defined as

y = −(B̄B̄⊤)−1em = −(BB⊤)−1em −
l+1∑

i=1

sgn(−η(i))
h
(i)
m

1 + η(i)
h(i)

= [−(BB⊤)−1em −
l∑

i=1

sgn(−η(i))
h
(i)
m

1 + η(i)
h(i)]− sgn(−η(l+1))

h
(l+1)
m

1 + η(l+1)
h(l+1), (4.19)

associated with the current face matrix B̄, which, according to Theorem 3.1, is needed to

determine the dual information zN = −N⊤y for optimality test. The expression (4.19) suggests

a recursive updating for the vector y.

4.3. The new face algorithm for linear programming

Based on previous discussion on the contracting and expanding face procedures, we are now

able to summarize the overall steps of our new face algorithm for (2.1) in Algorithm 4.1.

As our new face algorithm (Algorithm 4.1) is only an alternative realization to the face

algorithm proposed in [19, Chapter 8], hence the following convergence property holds:

Theorem 4.1. Under the nondegeneracy assumption, Algorithm 4.1 terminates at either

1. Step 4, detecting lower unboundedness of program (2.1), or

2. Step 13, reaching an optimal face together with a pair of primal and dual optimal solutions.
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4.4. Further properties of the face algorithm

In this subsection, we shall take another close look at the expanding procedure, and in

particular, we will show that, if in one iteration, the number of elements in the face index set

is increased by one, then in the next iteration the number of elements in the face index set will

not be increased again.

Theorem 4.2. Assume that B̌ is updated by B̄ = [at, B̌] in the previous iteration. Then in the

current iteration, we have ∆B̄ 6= 0.

Proof. Since B̌ is updated by B̄ = B̌ ∪ {t} in the previous iteration, according to the

face algorithm, we must have ∆B̌ = 0. From (3.1), it follows that B̌⊤y = −ek, where y :=

−(B̌B̌⊤)−1em. By the algorithm again, we have zt = −a⊤t y < 0. Let h := (B̌B̌⊤)−1at and

η := a⊤t h = a⊤t (B̌B̌⊤)−1at. Then η > 0. By (4.17), we have

∆B̄ =

(
hm

0

)
− B̄⊤h

hm

1 + η
, (4.20)

where hm = e⊤mh. By the definition of h, we have

hm = e⊤mh = ((B̌B̌⊤)−1em)⊤at = −y⊤at = zt < 0.

Note that

B̄⊤h =

(
a⊤t
B̌⊤

)
h =

(
a⊤t h

B̌⊤h

)
=

(
η

B̌⊤h

)
. (4.21)

By (4.20) and (4.21), we have

∆B̄ =

(
hm

0

)
−
(

ηhm/(1 + η)

q

)
=

(
hm/(1 + η)

−q

)
, (4.22)

where q = hmB̌⊤h/(1 + η). Since η > 0 and hm < 0, we have ∆B̄ 6= 0. �

Theorem 4.3. Assume that, in the current iteration, the face matrix B̌ is a basis matrix. Then

the face algorithm and the standard simplex algorithm generate the same iterates onwards.

Proof. Since B̌ is a basis matrix, by (2.3), the corresponding face Ďk is a point, and the

current iterate [x⊤

B̌
,0⊤]⊤ ∈ Ďk is a basic feasible solution in the standard simplex method. We

also have ∆B̌ = 0. Let zŇ be defined as in Lemma 3.1. One has that zŇ = z̄Ň , where z̄ is the

reduced cost vector associated with B̌ in the standard simplex algorithm. Let t ∈ Ň be such

that zt = min{zj | j ∈ Ň} and let B̄ = [at, B̌]. Since B̌ is nonsingular, by (4.22), we have

∆B̄ =
−zt

1 + a⊤t (B̌B̌⊤)−1at

( −1

B̌−1at

)
. (4.23)

Let s be such that xs/∆s = min{xj/∆j | ∆j > 0, j ∈ B̄}. Let B be the next face matrix and

B be the corresponding face index set. Then B = B̄\{s}. By [19, Chapter 8], rank(B) = m

and therefore the corresponding face Dk is a point and the next iterate in the face algorithm is

[x⊤

B ,x
⊤

N ]⊤ = [(B−1b)⊤,0⊤]⊤. Let B̌j denote the j-th element in the index set B̌. Since zt < 0
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and ∆s > 0, by (4.23), we know that s ∈ B̌ and so s = B̌i for some i ∈ {1, · · · ,m}. Thus, we

have

x
B̌i
/(B̌−1at)i = min

{
x
B̌j
/(B̌−1at)j | (B̌−1at)j > 0, j = 1, · · · ,m

}
. (4.24)

It is clear that (4.24) is exactly the rule for selecting the leaving variable in the standard

simplex, which implies that B is the next basis in the standard simplex algorithm. The proof

is complete. �

Algorithm 4.1. (NFALP):

Let k = n, l = 1, B = A and N = ∅ (l denotes the total number of iterations). Given a

feasible solution (by the Phase-1 procedure in [19, Chapter 8]) x(0) = xB of (2.1) and the

Cholesky factorization BB⊤ = L⊤L, this algorithm solves program (2.1).

1. Solve L⊤y = −em/ν for y, where ν is the m-th diagonal of L; see (3.2).

2. Compute ∆B = −ek −B⊤y; see (3.1).

3. Goto Step 13 if ∆B = 0.

4. Stop if ∆B ≤ 0 (unbounded problem).

Contracting face procedure

5. Determine steplength α = xs/∆s = min{xj/∆j | ∆j > 0, j ∈ B}; see (3.6).

6. Permutate B, B, xB and ∆B accordingly so that as is the first column of B.

7. Update xB = xB − α∆B (line search).

8. Update B = B\{s}, N = N ∪{s} and the corresponding matrices B and N ; see (3.7).

9. Solve L⊤u = as and Lv = u for v, and compute (see Section 4.1)

h(l) = v +

l−1∑

i=1

sgn(−η(i))
a⊤s h

(i)

1 + η(i)
h(i) and η(l) = −a⊤s h

(l) < 0.

10. Update ∆B = ∆B(2 : k) +B⊤h(l) h(l)
m

1+η(l) ; see (4.7).

11. Update y = y − sgn(−η(l))
h(l)
m

1+η(l)h
(l); see (4.19).

12. Update k = k − 1, l = l + 1 and goto Step 3.

Expanding face procedure

13. Stop if zN = −N⊤y ≥ 0 (optimality achieved, see Theorem 3.1), and return

[x⊤

B,0
⊤]⊤ and [0⊤, z⊤N ]⊤with y,

as a pair of primal and dual optimal solutions for (2.1).

14. Determine t ∈ argmin{zj | j ∈ N}; see (3.9).
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15. Update B = B ∪ {t},N = N\{t}, and update accordingly the face matrix B = [at, B]

and the nonface matrix N ; see (3.7).

16. Solve L⊤u = at and Lv = u for v, and compute (see Section 4.2)

h(l) = v +

l−1∑

i=1

sgn(−η(i))
a⊤t h

(i)

1 + η(i)
h(i) and η(l) = a⊤t h

(l) > 0.

17. Update (see Section 4.2)

∆B =

(
h
(l)
m

0

)
−B⊤h(l) h

(l)
m

1 + η(l)
.

18. Update y = y − sgn(−η(l))
h(l)
m

1+η(l)h
(l); see (4.19).

19. Update k = k + 1, l = l + 1 and goto Step 3.

5. Computational Gains and Performance Tradeoffs

As we have presented two different implementations to realize the face algorithm in the

previous sections, we are able to make a comparison between their computational performances.

The most time-consuming step in the face algorithm is the computation of the search direction

∆B, which involves updating the inverse of BB⊤. The method proposed in [19, Chapter 8]

gets round this bottleneck by updating the Cholesky factor, while our strategy is to update

the inverse in every iteration via a rank-one correction. By taking a close investigation on the

computational complexity of the contracting face Dk procedure (see Downdating process in

Section 3.3), we find that m2 flops are required in Step 1 for solving a triangular system and 3m2

(dominant) flops are required in Step 4 to obtain the updated Cholesky factor L̃; additionally,

to calculate the new search direction ∆
B̃
by (3.8), another triangular system of orderm needs to

be solved, together with a matrix-vector product (flops 2(k− 1)m); consequently, a contracting

face procedure requires totally

flops : 5m2 + 2(k − 1)m.

By contrast, it is not difficult to count the dominant flops used in contracting procedure in

Algorithm 4.1: only two triangular systems and l inner products of order m in Step 9, and a

matrix-vector product (flops 2(k − 1)m) in Step 10 are necessary, yielding totally

flops : 2m2 + 2ml + 2(k − 1)m.

Therefore, it is clear that the new implementation saves order ofm2 flops in the contracting face

procedure. Similarly, a careful counting on the computational costs shows that the expanding

process in Section 3.4 needs 4m2 + 2(k− 1)m (dominant) flops, while our new implementation

in Algorithm 4.1 requires 2m2 + 2ml+ 2(k − 1)m (dominant) flops.
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Recall that in order to reconstruct (BB⊤)−1 for the current face matrix B, all we need to

save is a series of vectors [h(1), · · · ,h(l)] and the corresponding scalars [η(1), · · · , η(l)]. In actual

implementations, these can be stored in lists. In history, the eta-matrix technique by Dantzig

and Orchard-Hayes [3] for the simplex method also needs to store a similar series of vectors

in lists, which is called the eta-file ( [23, Chapter 8]). As l gets large, storage is not a serious

problem since computer memory is relatively cheap nowadays; what we really concern is that

the amount of work required to go through the entire eta-file begins to dominate the amount of

work. This problem can be well settled by periodically implementing Cholesky factorization of

BB⊤ (and accompanied purging of the eta-file). In other words, whenever l gets large, we can

simply purge the eta-file but compute and store the Cholesky factor of BB⊤ for the current

face matrix, while leaving other steps in Algorithm 4.1 unchanged. This strategy is of some

advantages as now we are free to use the Cholesky factor related to any face matrix during the

iteration. In fact, from (3.3), we can also employ row and column permutations to the face

matrix B to make the related Cholesky factor L as sparse as possible. In contrast, because the

downdating and updating procedures described in Section 3 use the Givens rotatons to update

the Cholesky factor, it will introduce nonzero elements and make the sequential Cholesky factors

much denser.

The next question then is: how often should we recompute the Cholesky factor? As mo-

tivated by the strategy for the eta-matrix technique in simplex method (see e.g., [23, Chapter

8]), we can choose the period of refactorization so that the average number of arithmetic opera-

tions per iteration is minimized. This strategy tells us that for dense problems, refactorization

should roughly take place every m iterations or so (the derivation follows the same as that for

the eta-matrix technique in [23, Chapter 8]). For sparse problems, however, one may recompute

the Cholesky factor less than every m iterations (for instance every
√
m iterations or so). In

practical computation, we can make this period as a user-settable parameter and recommend,

for example 100, as the default value (see e.g., [23]).

Refactorization is also a necessary procedure for the numerical stability of the face algo-

rithm (Algorithm 4.1). As l gets large, rounding-off errors accumulate, which may deteriorate

the subsequent computations. For some problems, especially for those badly modeled, signif-

icant errors can occur and be amplified. Monitoring the numerical status and stabilizing the

computations is very important for a stable and robust algorithm. For Algorithm 4.1, the

condition number cond(BB⊤) for the current face matrix plays a crucial role. Though it is

not easy to check cond(BB⊤) in every iteration, the value η(l) defined in the expanding or the

contracting procedure reveals cond(BB⊤) to some extent. Moreover, η(l) can also serve as a

monitor for the accumulation of the errors. From this point of view, we think it is reasonable to

trigger the refactorization procedure of BB⊤ = LL⊤ whenever |η(l)| is too small or too large.

Particularly, in our numerical testing presented in the next section, we choose to recompute the

Cholesky factor if |η(l)| > 106 or |η(l)| < 10−3 or l > [m3 ].

6. Computational Results

In this section, we will carry out numerical testing and investigate the practical behavior

of our new implementation of the face algorithm. In exact arithmetic computation, it is clear

that the new realization presented in Algorithm 4.1 produces the same sequence as that in [19,

Chapter 8], which has demonstrated a superior performance compared to the standard simplex

method. Therefore, our main purpose in this section is to conduct a comparison between the
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Table 6.1: The performance of FALP on Group 1.

Problem size Total Phase-1

(m,n) Avg. Iter. # Avg. CPU(s) Avg. Iter. # Avg. CPU(s)

(50, 100) 84.2 0.0596 2.4 0.0087

(100, 150) 72.0 0.1140 4.6 0.0140

(100, 200) 208.3 0.4005 3.6 0.0296

(150, 250) 172.4 0.4722 5.5 0.0601

(200, 300) 159.0 0.8134 8.2 0.1164

Table 6.2: The performance of NFALP on Group 1.

Problem size Total Phase-1

(m,n) Avg. Iter. # Avg. CPU(s) Avg. Iter. # Avg. CPU(s)

(50, 100) 84.2 0.0568 2.4 0.0030

(100, 150) 72.0 0.0516 4.6 0.0101

(100, 200) 208.3 0.2291 3.6 0.0193

(150, 250) 172.4 0.2817 5.5 0.0423

(200, 300) 159.0 0.4266 8.2 0.0886

Table 6.3: The performance of SIMPLEX on Group 1.

Problem size (m,n) (50, 100) (100, 150) (100, 200) (150, 250) (200, 300)

Avg. CPU(s) 0.4011 3.1891 6.8457 27.5783 77.5893

two implementations of the face algorithm. For this purpose, in particular, we code the two

implementations:

• FALP: the original face algorithm proposed in [19, Chapter 8], and

• NFALP: our new algorithm (Algorithm 4.1)

on the MATLAB 7.1 (R14) platform on a PC with Pentium(R) Dual-Core CPU E5300 @2.60GHz.

To give a more clear picture of their performances, we also provide the consuming CPU(s) times

used in the simplex method (labelled as SIMPLEX3) below) and the interior-point method (la-

belled as INTERIOR4) below) incorporated in MATLAB 7.1 (R14). For both FALP and NFALP, the

initial feasible point x(0) was obtained based on the Phase-1 procedure described in [19, Chapter

8], in which components of the starting point are all ones. Harris’ two-pass practical tactic [8]

was used for pivot selection. The value 10−6 was set as primal and dual feasibility tolerance

while ‖∆B‖∞ < 5× 10−6 was used in place of ∆B = 0. For FALP, furthermore, we also recom-

pute the Cholesky factor related with the face matrix whenever 1 − ‖p‖2 < 10−8, where p is

the solution of Lp = as given in the Downdating procedure in Section 3.3.

The four algorithms were tested on two groups of linear programming problems. The first

group contains many randomly generated LP problems of given sizes: m and n. In particular,

for each fixed pair (m,n), we first randomly generated the coefficient matrix A ∈ R
m×n, a

nonnegative vector x ∈ R
n and the cost vector c ∈ R

n with elements normally distributed, and

then we set b = Ax as the right hand side. It is easy to see that the feasible set {x|Ax = b,x ≥
3) To call the simplex method in MATLAB, we can simply set the options: options=optimset(‘LargeScale’,

‘off’, ‘Simplex’, ‘on’) and then use it in the function: linprog.
4) To call the interior point method in MATLAB, we can simply set the following option:

options=optimset(‘LargeScale’, ‘on’) and then use it in the function: linprog.
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Table 6.4: The performance of INTERIOR on Group 1.

Problem size (m,n) (50, 100) (100, 150) (100, 200) (150, 250) (200, 300)

Avg. CPU(s) 0.0560 0.1726 0.2349 0.5227 1.0131

Table 6.5: Ratios of the CPU(s) on Group 1.

Problem size Total Phase-1

(m,n) FALP/NFALP SIMPLEX/NFALP INTERIOR/NFALP FALP/NFALP

(50, 100) 1.0493 7.0616 0.9859 2.9000

(100, 150) 2.2093 61.8043 3.3450 1.3861

(100, 200) 1.7481 29.8808 1.0253 1.5337

(150, 250) 1.6763 97.8995 1.8555 1.4208

(200, 300) 1.9067 181.8783 2.3748 1.3138

Average 1.7179 75.7049 1.9173 1.7109

0} is nonempty, and therefore the corresponding LP is either solvable or unbounded below. For

every given (m,n), we generate 1000 such LP problems, and then report the average performance

of each algorithm over the solvable problems. In Tables 6.1, 6.2, 6.3 and 6.4, we report the

average numbers of iterations (labelled as ‘Avg. Iter. #’) as well as their average CPU(s) times

(labelled as ‘Avg. CPU(s)’) of FALP, NFALP, SIMPLEX and INTERIOR, respectively. In addition,

in Table 6.5, we report the ratios of their average CPU(s) between different algorithms. From

these results, one can easily find that the numbers of iterations for FALP and NFALP are all the

same, indicating that they both generate the same iterative sequence.

The second group includes 16 standard LP problems from NETLIB5) that do not have

BOUNDS and RANGES sections in their MPS files. Test statistics from these algorithms

are reported in Tables 6.6, 6.7 and 6.8. From these tables, we observed that the numbers of

iterations for the FALP and NFALP are all the same in the Phase-1, and for the Phase-2, they

5) http://www.netlib.org/lp/data/

Table 6.6: The performance of FALP on Group 2.

Total Phase-1 Optimal value

Problem Iter. # CPU(s) Iter. # CPU(s)

AFIRO 25 0.0781 13 0.0313 -4.6475314286E+02

SC50B 33 0.0625 3 0.0156 -7.0000000000E+01

SC50A 39 0.0625 33 0.0314 -6.4575077059E+01

ADLITTLE 137 0.1406 28 0.0313 2.2549496322E+05

BLEND 105 0.1562 25 0.0468 -3.0812149846E+01

SHARE2B 111 0.2188 60 0.1094 -4.1573224074E+02

SC105 107 0.2188 16 0.0313 -5.2202061212E+01

STOCFOR1 75 0.1719 40 0.0937 -4.1131976220E+04

SCAGR7 169 0.4063 35 0.1094 -2.3313898243E+06

ISRAEL 579 2.2344 113 0.4219 -8.9664482186E+05

SHARE1B 305 0.6094 145 0.2969 -7.6589318579E+04

SC205 271 1.4531 38 0.2969 -5.2202061214E+01

BEACONFD 159 0.7813 80 0.3281 3.3592485852E+04

LOTFI 360 1.3125 85 0.3594 -2.5264706096E+02

BRANDY 363 1.6406 196 0.8281 1.5185098965E+03

E226 1065 6.8906 178 1.3750 -1.8751928983E+01
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Table 6.7: The performance of NFALP on Group 2.

Total Phase-1 Optimal value

Problem Iter. # CPU(s) Iter. # CPU(s)

AFIRO 25 0.0469 13 0.0156 -4.6475314286E+02

SC50B 33 0.0469 3 0.0156 -7.0000000000E+01

SC50A 39 0.0469 33 0.0156 -6.4575077059E+01

ADLITTLE 146 0.0625 28 0.0156 2.2549496287E+05

BLEND 105 0.0937 25 0.0203 -3.0812149846E+01

SHARE2B 111 0.1093 60 0.0625 -4.1573224074E+02

SC105 107 0.1093 16 0.0313 -5.2202061212E+01

STOCFOR1 75 0.1406 40 0.0625 -4.1131976220E+04

SCAGR7 169 0.2812 35 0.0625 -2.3313898246E+06

ISRAEL 562 2.2344 113 0.3125 -8.9664475363E+05

SHARE1B 305 0.4218 145 0.2187 -7.6589318579E+04

SC205 279 0.7813 38 0.1406 -5.2202061212E+01

BEACONFD 159 0.4531 80 0.1875 3.3592485826E+04

LOTFI 360 1.2656 85 0.1718 -2.5264706062E+02

BRANDY 363 1.2968 199 0.6875 1.5185098965E+03

E226 1092 7.7968 178 0.8125 -1.8751929066E+01

Table 6.8: The performances of SIMPLEX and INTERIOR on Group 2.

SIMPLEX INTERIOR

Problem CPU(s) Optimal value CPU(s) Optimal value

AFIRO 0.0313 -4.6475314286E+02 0.0313 -4.6475314265E+02

SC50B 0.0313 -7.0000000000E+01 0.0156 -7.0000000000E+01

SC50A 0.0625 -6.4575077059E+01 0.0156 -6.4575076981E+01

ADLITTLE 0.3750 2.2549496316E+05 0.0781 2.2549496316E+05

BLEND 0.5937 -3.0812149846E+01 0.0469 -3.0812149846E+01

SHARE2B 0.3750 -4.1573224074E+02 0.0156 -4.1573224023E+02

SC105 0.07812 -5.2202061211E+01 0.0468 -5.2202061211E+01

STOCFOR1 0.4531 -4.1131976219E+04 0.0313 -4.1131976219E+04

SCAGR7 0.18750 -2.3313898243E+06 0.0468 -2.3313898243E+06

ISRAEL 6.7031 -8.9664482186E+05 1.0468 -8.9664482160E+05

SHARE1B 2.9687 -7.6589318579E+04 1.7500 -7.6588658198E+04

SC205 2.3281 -5.2202061212E+01 0.6250 -5.2202061212E+01

BEACONFD 1.9375 3.3592485807E+04 0.5937 3.3592485807E+04

LOTFI 7.5781 -2.5264706062E+01 1.0000 -2.5264706062E+01

BRANDY fail fail 0.8281 1.5185098965E+03

E226 fail fail 2.0781 -1.8751929066E+02

are all the same except for slight differences in the examples ADLITTLE, ISRAEL, SC205 and

E226, which is mainly due to round-off errors. In Table 6.9, we list ratios of CPU(s) between

four algorithms. It is observed that the SIMPLEX failed in solving BRANDY and E226, and

therefore, the average ratio SIMPLEX/NFALP in the bottom line in Table 6.9 excludes those from

BRANDY and E226.
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Table 6.9: Ratios of the CPU(s) on Group 2.

Total Phase-1

Problem FALP/NFALP SIMPLEX/NFALP INTERIOR/NFALP FALP/NFALP

AFIRO 1.6652 0.6674 0.6674 2.0064

SC50B 1.3326 0.6674 0.3326 1.0000

SC50A 1.3326 1.3326 0.3326 2.0128

ADLITTLE 2.2496 6.0000 1.2496 2.0064

BLEND 1.6670 6.3362 0.5005 2.3054

SHARE2B 2.0018 3.4309 0.1427 1.7504

SC105 2.0018 0.7147 0.4282 1.0000

STOCFOR1 1.2226 3.2226 0.2226 1.4992

SCAGR7 1.4449 0.6668 0.1664 1.7504

ISRAEL 1.0000 3.0000 0.4685 1.3501

SHARE1B 1.4448 7.0382 4.1489 1.3576

SC205 1.8598 2.9798 0.7999 2.1117

BEACONFD 1.7243 4.2761 1.3103 1.7499

LOTFI 1.0371 5.9878 0.7901 2.0920

BRANDY 1.2651 - 0.6386 1.2045

E226 0.8838 - 0.2665 1.6923

Average 1.5083 3.3086 0.7791 1.6806

These numerical results overall show that (i) the original face algorithm and our new im-

plementation generate the same sequence numerically, and (ii) the new algorithm improves the

efficiency of the face algorithm by saving more than half of CPU times needed in the our new

implementation, which coincides with our analysis on computational complex in Section 5.

7. Concluding Remarks

In this paper, we have put some efforts in improving the face algorithm proposed in [19,

Chapter 8]. A new and efficient implementation has been developed, which follows the same

framework of the original face algorithm but realizes it in a different way. The principal of the

new algorithm is to update the inverse of BB⊤ for each face matrix B via a rank-one correction.

Such updating procedure can be computed economically and enjoys favorable properties for

sparse problems. We also took a close look at the behavior of the face algorithm and explored

some further properties. Preliminary numerical testings on dense problems show the efficiency

of the new algorithm.
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