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Abstract

This work is concerned with the nonlinear matrix equation Xs + A∗F (X)A = Q with

s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of

the Hermitian positive semidefinite solution are derived, and perturbation bounds are

presented.
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1. Introduction

Let M(n) be the set of all n×n matrices and P (n) be the set of all n×n Hermitian positive

semidefinite matrices. We consider nonlinear matrix equation

Xs +A∗F (X)A = Q (s ≥ 1), (1.1)

where A ∈ M(n), Q is an n× n Hermitian positive definite matrix, F is a map from P (n) onto

P (n) or −P (n), and the Hermitian positive semidefinite solution X is sought. Here A∗ denotes

the conjugate transpose of the matrix A. Note that X is a solution of (1.1) if and only if it is

a fixed point of

G(X) = (Q −A∗F (X)A)
1

s .

The interest to study (1.1) arose, in particular, in connection with algebraic Riccati equations

[2,6,18,21], interpolation [27,30] and the analysis of ladder networks, dynamic programming,

control theory, stochastic filtering and statistics [2,16,17]. If s = 1, F (X) = −X−1, the equation

can be written in the form X = Q + A∗X−1A. X is a solution of X = Q + A∗X−1A if and

only if it is a solution of X = Q + A∗(Q + A∗X−1A)−1A. Assuming that A is invertible, this

equation can be written as

X − F ∗XF + F ∗X(R+X)−1XF −Q = 0,
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where F = A−∗A, R = AQ−1A∗. This is a special case of the discrete algebraic Riccati equation

X − S∗XS + S∗XB(R+B∗XB)−1B∗XS −Q = 0,

where Q = Q∗ and R = R∗ is invertible. For detail, see [21]. Several authors have considered

such a nonlinear matrix equation, see [2,9-17,19-21,24-29,31-33,35,36] and [23]. It can be cate-

gorized as a general system of nonlinear equations in Cn2

space (see [3-7]), which includes the

linear and nonlinear matrix equations recently discussed in [3-7,18,24] as special cases.

In [15], El-Sayed and Ran discussed a set of equations of the form X+A∗F (X)A = Q, where

F maps positive definite matrices either onto positive definite matrices or onto negative definite

matrices, and satisfies some monotonicity property. Ran and Reurings [26] also considered the

equation X + A∗F (X)A = Q. They derived the solutions and perturbation theory. In [29],

a perturbation analysis for nonlinear self-adjoint operator equations X = Q ± A∗F (X)A was

provided. Based on the elegant properties of the Thompson metric, Liao, Yao and Duan [24]

discussed the equation Xs − A∗F (X)A = Q (s > 1), where F : P (n) → P (n) is a self-adjoint

and nonexpansive map.

The paper is organized as follows. In Section 2, we consider the case F : P (n) → P (n).

The necessary and sufficient conditions for the existence of Hermitian positive semidefinite

solution of the matrix equation are derived. A sufficient condition for the existence of a unique

Hermitian positive semidefinite solution of the matrix equation is given. Finally, perturbation

bounds between (1.1) and the perturbed equation

Xs + Ã∗F (X)Ã = Q̃ (s ≥ 1) (1.2)

are presented, where Ã and Q̃ are small perturbations of A and Q, respectively. In Section 3,

we discuss the case F : P (n) → −P (n) in a similar way as Section 2. Finally, in Section 4, we

give some numerical examples.

Throughout this paper, we write A ≥ B(A > B) if both A and B are Hermitian and A−B

is positive semidefinite (definite). In particular, A ≥ 0(A > 0) means that A is a Hermitian

positive semidefinite (definite) matrix. ϕ(n) denotes the closed set {X ∈ P (n)|X ≥ Q
1

s }.

Further, the sets [A,B] and (A,B) are defined by [A,B] = {C|A ≤ C ≤ B}, (A,B) = {C|A <

C < B}, whereas LA,B denotes the line segment joining A and B, i.e., LA,B = {tA+(1−t)B|t ∈

[0, 1]}. See [28] for more details about these matrix orderings. We use λmax(X) and λmin(X)

to denote the maximal and the minimal eigenvalues of an n × n Hermitian positive definite

matrix X . ‖ · ‖, ‖ · ‖2 and ‖ · ‖F denote the unitary invariant norm, the spectral norm and the

Frobenius norm, respectively.

2. The Case F : P (n) → P (n)

In this section, we derive some necessary and sufficient conditions for the existence and the

uniqueness of a solution of (1.1) in the case that F : P (n) → P (n). The perturbation bound is

presented.

Lemma 2.1. ([34]) If A ≥ B ≥ 0 and 0 ≤ r ≤ 1, then

Ar ≥ Br. (2.1)

Theorem 2.1. Let F : P (n) → P (n) be continuous on [0, Q
1

s ].
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(i) If Eq. (1.1) has a Hermitian positive semidefinite solution X, then X ≤ Q
1

s and A∗F (X)A ≤

Q.

(ii) If A∗F (X)A ≤ Q for all X ∈ [0, Q
1

s ], then (1.1) has a solution in [0, Q
1

s ].

Proof. From X ≥ 0, it follows that X
s
≥ 0. Because F maps P (n) onto P (n), we know that

F (X) ≥ 0. This implies that A∗F (X)A ≥ 0. According to Lemma 2.1 and 0 ≤ 1
s
≤ 1, we have

X = (Q−A∗F (X)A)
1

s ≤ Q
1

s . (2.2)

Because F maps P (n) onto P (n), we know that F (X) ≥ 0. Then A∗F (X)A ≥ 0. Assume

that A∗F (X)A ≤ Q for all X ∈ [0, Q
1

s ]. Combining this with Lemma 2.1 and 0 ≤ 1
s
≤ 1, we

obtain

0 ≤ (Q −A∗F (X)A)
1

s = G(X) ≤ Q
1

s , (2.3)

for all X ∈ [0, Q
1

s ]. So G maps [0, Q
1

s ] onto itself. Since F is continuous, so is G. Hence we

can apply Schauder’s fixed point theorem (see, e.g., [22], section 106), seeing that a fixed point

of G must exist. This fixed point is a solution of (1.1), which proves the second part of the

theorem. �

In order to obtain the uniqueness of the solution and the perturbation bound, we restrict

the map F to be monotone, i.e., if X ≤ Y implies F (X) ≤ F (Y ).

Theorem 2.2. Let F : P (n) → P (n) be continuous and monotone, and assume A∗F (Q
1

s )A <

Q. Then (1.1) has a solution X and

(Q−A∗F (Q
1

s )A)
1

s ≤ X ≤ Q
1

s . (2.4)

In particular, X is Hermitian positive definite.

Proof. If A∗F (Q
1

s )A < Q, then for all X ∈ [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ], it follows that

0 ≤ A∗F (X)A ≤ A∗F (Q
1

s )A < Q. (2.5)

Consequently,

0 < Q−A∗F (Q
1

s )A ≤ Q−A∗F (X)A ≤ Q.

Combining this with Lemma 2.1 and 0 ≤ 1
s
≤ 1, we obtain

0 < (Q−A∗F (Q
1

s )A)
1

s ≤ (Q−A∗F (X)A)
1

s = G(X) ≤ Q
1

s .

So G maps [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ] onto itself and it is continuous on this set. Hence it has a

fixed point in this set. This fixed point is a solution X of (1.1) and satisfies (2.4). �

Next we will apply Banach’s fixed point theorem to obtain the unique solution of (1.1). We

shall prove that the operator G is a strict contraction on the set [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ]. For

this purpose, we will introduce the next lemma.

Lemma 2.2. ([8, Theorem X.3.8]) Let f be a monotone function on (0,∞) and let A, B be

two Hermitian positive operators bounded below by a, i.e., A ≥ aI and B ≥ aI for the positive

number a. If there exists f ′(a), then for every unitarily invariant norm ‖ · ‖, we have

‖f(A)− f(B)‖ ≤ f ′(a)‖A−B‖. (2.6)
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Theorem 2.3. Assume that the conditions of Theorem 2.2 hold. Let α be the smallest eigen-

value of Q−A∗F (Q
1

s )A. If b := 1
s
α

1

s
−1F

′

(α
1

s )‖A‖22 < 1, then the solution of (1.1) is the unique

solution in [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ].

Proof. Assume that X1 and X2 are solutions of (1.1) in [(Q − A∗F (Q
1

s )A)
1

s , Q
1

s ] with

X1 6= X2. Since F : P (n) → P (n) is continuous and monotone,

Q−A∗F (Xj)A ≥ Q−A∗F (Q
1

s )A ≥ αI > 0, j = 1, 2. (2.7)

So, by Lemmas 2.1 and 2.2, we have

‖X1 −X2‖ = ‖(Q−A∗F (X1)A)
1

s − (Q−A∗F (X2)A)
1

s ‖

≤
1

s
α

1

s
−1‖Q−A∗F (X1)A−Q+A∗F (X2)A‖

=
1

s
α

1

s
−1‖A∗F (X2)A−A∗F (X1)A‖

≤
1

s
α

1

s
−1‖A‖22‖F (X2)− F (X1)‖. (2.8)

By the spectral mapping theorem, we have

0 < α
1

s I ≤ (Q−A∗F (Q
1

s )A)
1

s ≤ X1, X2.

Combining this with Lemma 2.2, we get

‖X1 −X2‖ ≤
1

s
α

1

s
−1‖A‖22F

′

(α
1

s )‖X2 −X1‖ = b‖X1 −X2‖. (2.9)

This contradicts the assumption b < 1. Hence (1.1) has a unique Hermitian positive solution

X in [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ]. �

Theorem 2.4. Assume that the conditions of Theorem 2.3 hold. Then

lim
k→∞

Gk(X0) = X, (2.10)

for all X0 ∈ [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ]. The rate of convergence is given by

‖Gk(X0)−X‖ ≤
bk

1− b
‖G(X0)−X0‖. (2.11)

Proof. The first statement can be similarly deduced from Lemma 3.2 in [26]. Using Theorem

2.3 we see that

‖Gk+1(X0)−Gk(X0)‖

= ‖(Q−A∗F (Gk(X0))A)
1

s − (Q −A∗F (Gk−1(X0))A)
1

s ‖

≤ b‖Gk(X0)−Gk−1(X0)‖ ≤ bk‖G(X0)−X0‖,

which yield (2.11). �

Remark 2.1. According to Theorem 2.4 and b := 1
s
α

1

s
−1F

′

(α
1

s )‖A‖22, we have

‖Gk(X0)−X‖ ≤

(
1
s
α

1

s
−1F

′

(α
1

s )‖A‖22

)k

1−
(

1
s
α

1

s
−1F

′(α
1

s )‖A‖22

)‖G(X0)−X0‖. (2.12)

It is easy to see that the convergence rate becomes larger as s increases.
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Next we will give an upper bound for ‖X − X̃‖, where X denotes the unique solution of

(1.1) in [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ] and X̃ denotes a solution of (1.2) in [(Q̃− Ã∗F (Q̃
1

s )Ã)
1

s , Q̃
1

s ].

Theorem 2.5. Let F : P (n) → P (n) be continuous and monotone. Assume that (1.1) has a

Hermitian positive solution X on [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ]. Let α = min{λmin(Q−A∗F (Q
1

s )A),

λmin(Q̃− Ã∗F (Q̃
1

s )Ã)} > 0. If c := 1
s
α

1

s
−1, b := 1

s
α

1

s
−1F

′

(α
1

s )‖A‖22 < 1, then

‖X − X̃‖ ≤
c

1− b

(
‖Q− Q̃‖+ (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖

)
, (2.13)

for all solutions X̃ of (1.2).

Proof. According to Theorem 2.3, we know that X is the unique solution of (1.1). Since

F : P (n) → P (n) is continuous and monotone and α = min{λmin(Q − A∗F (Q
1

s )A), λmin(Q̃ −

Ã∗F (Q̃
1

s )Ã)} > 0, we have

Q−A∗F (X)A ≥ Q −A∗F (Q
1

s )A ≥ αI > 0. (2.14)

Because X̃ is a solution of (1.2), we have

Ã∗F (X̃)Ã ≤ Q̃, X̃ ≤ Q̃
1

s .

Since F : P (n) → P (n) is continuous and monotone,

Q̃− Ã∗F (X̃)Ã ≥ Q̃− Ã∗F (Q̃
1

s )Ã.

By the condition α = min{λmin(Q −A∗F (Q
1

s )A), λmin(Q̃− Ã∗F (Q̃
1

s )Ã)} > 0, we have

Q̃− Ã∗F (Q̃
1

s )Ã ≥ αI > 0, (2.15a)

Q̃− Ã∗F (X̃)Ã ≥ Q̃ − Ã∗F (Q̃
1

s )Ã ≥ αI > 0. (2.15b)

Then Ã∗F (Q̃
1

s )Ã ≤ Q̃. Applying Theorems 2.2 and 2.3, we know that (1.2) has a unique

solution X̃. We have by Lemma 2.2 that

‖X − X̃‖ = ‖(Q−A∗F (X)A)
1

s − (Q̃ − Ã∗F (X̃)Ã)
1

s ‖

≤
1

s
α

1

s
−1‖Q−A∗F (X)A− Q̃+ Ã∗F (X̃)Ã‖

= c‖Q− Q̃+A∗F (X̃)A−A∗F (X)A−A∗F (X̃)A

+A∗F (X̃)Ã−A∗F (X̃)Ã+ Ã∗F (X̃)Ã‖

≤ c
(
‖Q− Q̃‖+ ‖A‖22‖F (X̃)− F (X)‖+ (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖)

)
.

By the spectral mapping theorem, we have

0 < α
1

s I ≤ (Q−A∗F (Q
1

s )A)
1

s ≤ X, (2.16a)

0 < α
1

s I ≤ (Q̃− Ã∗F (Q̃
1

s )Ã)
1

s ≤ X̃. (2.16b)

So, by Lemma 2.2, we get

‖F (X̃)− F (X)‖ ≤ F
′

(α
1

s )‖X̃ −X‖.
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Then

‖X − X̃‖

≤ c
(
‖Q− Q̃‖+ ‖A‖22F

′

(α
1

s )‖X̃ −X‖+ (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖)
)
.

Since b < 1, we have (2.13). �

Remark 2.2. It is easy to see that the the perturbation bound becomes sharper as s increases.

Assume that s = 1 and consider the spectral norm. Then

‖X − X̃‖2 ≤
1

1− F
′(α)‖A‖22

(
‖Q− Q̃‖2 + (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖2

)
.

According to the definition of ϕ(n) in [26], ϕ(n) = [B,C]. Mϕ(n) is the smallest possible value

such that

sup
X∈ϕ(n)

‖F ′(X)‖2 ≤ Mϕ(n).

Since F : P (n) → P (n) is continuous and monotone, we have

F ′(α) ∈ {‖F ′(X)‖2|X ∈ ϕ(n)}, F ′(α) ≤ sup
X∈ϕ(n)

‖F ′(X)‖2 ≤ Mϕ(n).

Consequently,

‖X − X̃‖2 ≤
1

1−Mϕ(n)‖A‖
2
2

(
‖Q− Q̃‖2 + (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖2

)

≤
‖F (X̃)‖2(2‖A‖2 + ‖A− Ã‖2)‖A− Ã‖2

1−Mϕ(n)‖A‖
2
2

+
‖Q− Q̃‖2

1−Mϕ(n)‖A‖
2
2

.

This is the perturbation bound (16) in [26]. So the perturbation bound we get is smaller than

this bound.

The perturbation bound in Theorem 2.5 can be derived by using the approach in [26,29],

where perturbations of A, Q, and F are allowed.

3. The Case F : P (n) → −P (n)

In this section, we will consider the case that F : P (n) → −P (n) is continuous. Consider

the map

H : H(X) = −F (X).

Then

F : P (n) → −P (n) iff H : P (n) → P (n),

Xs +A∗F (X)A = Q iff Xs −A∗H(X)A = Q.

So the equation we considered in this section is the same as that in [24]. But they assume

that F is a self-adjoint and nonexpansive map. The technique they used in the analysis is the

elegant properties of the Thompson metric.

Theorem 3.1. Let F : P (n) → −P (n) be continuous on ϕ(n).
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(i) If (1.1) has a Hermitian positive semidefinite solution X, then X ≥ Q
1

s .

(ii) If there exists a B ≥ Q such that

Q−B ≤ A∗F (X)A ≤ 0, (3.1)

for all X ∈ [Q
1

s , B
1

s ], then (1.1) has a solution in [Q
1

s , B
1

s ]. Moreover, if Q − B ≤

A∗F (X)A ≤ 0 is satisfied for every X ≥ Q
1

s , then all solutions of (1.1) are in [Q
1

s , B
1

s ].

Proof. First assume that (1.1) has a solution X ≥ 0. Then F (X) ≤ 0 and

X
s
= Q−A∗F (X)A ≥ Q. (3.2)

Combining this inequality, the fact that 0 < 1
s
≤ 1 and Lemma 2.1, we have X ≥ Q

1

s . Assume

that there is a B ≥ Q such that Q−B ≤ A∗F (X)A ≤ 0 holds for all X ∈ [Q
1

s , B
1

s ]. Then

0 ≤ −A∗F (X)A ≤ B −Q, (3.3a)

Q ≤ Q−A∗F (X)A ≤ B. (3.3b)

So, by Lemma 2.1 and 0 < 1
s
≤ 1, we have

Q
1

s ≤ (Q−A∗F (X)A)
1

s = G(X) ≤ B
1

s . (3.4)

So G maps [Q
1

s , B
1

s ] onto itself and is continuous on this set, by Schauder’s fixed point theorem

[22], we know that G has a fixed point in [Q
1

s , B
1

s ]. This fixed point is a solution of (1.1).

Further, assume that Q−B ≤ A∗F (X)A ≤ 0 holds for all X ≥ Q
1

s and let X be a solution of

(1.1). Then

X
s
= Q−A∗F (X)A ≤ Q− (Q−B) = B. (3.5)

From 0 < 1
s
≤ 1 and Lemma 2.1, it follows that X ≤ B

1

s . This completes the proof of (ii). �

Next let F be anti-monotone, i.e., X ≤ Y implies that F (X) ≥ F (Y ).

Corollary 3.1. Let F : P (n) → −P (n) be continuous and anti-monotone and assume that

there exists a B such that Q−A∗F (B
1

s )A ≤ B. Then (1.1) has a solution in X ∈ [Q
1

s , B
1

s ].

Proof. Assume that there exists a B such that Q − A∗F (B
1

s )A ≤ B. Then for all X ∈

[Q
1

s , B
1

s ] we have

A∗F (X)A ≥ A∗F (B
1

s )A ≥ Q−B. (3.6)

So condition (ii) of Theorem 3.1 is satisfied and the result follows. �

Next we will introduce the mean-value theorem to get the unique solution of (1.1).

Lemma 3.1. ([1 Theorem I.1.8]) Let F : U → M(n) (U ⊂ M(n) open) be differentiable at any

point of U . Then

‖F (X)− F (Y )‖ ≤ sup
Z∈LX,Y

‖DF (Z)‖‖X − Y ‖, (3.7)

for all X,Y ∈ U .

Let Mϕ(n) be the smallest possible value such that

sup
Z∈ϕ(n)

‖DF (Z)‖ ≤ Mϕ(n). (3.8)
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Theorem 3.2. Let F : P (n) → −P (n) be continuous on ϕ(n). Assume that (1.1) has a

solution in ϕ(n). If b := 1
s
λ

1

s
−1

min (Q)Mϕ(n)‖A‖
2
2 < 1, then this solution is the unique solution in

ϕ(n).

Proof. Assume that X1 and X2 are solutions of (1.1) in ϕ(n) with X1 6= X2. Since F :

P (n) → −P (n) is continuous on ϕ(n), we have

Q−A∗F (X1)A ≥ Q ≥ λmin(Q)I > 0, (3.9a)

Q−A∗F (X2)A ≥ Q ≥ λmin(Q)I > 0. (3.9b)

Using Lemmas 2.1 and 2.2 we have

‖X1 −X2‖ = ‖(Q−A∗F (X1)A)
1

s − (Q −A∗F (X2)A)
1

s ‖

≤
1

s
λ

1

s
−1

min (Q)‖Q−A∗F (X1)A−Q+A∗F (X2)A‖

=
1

s
λ

1

s
−1

min (Q)‖A∗F (X2)A−A∗F (X1)A‖

≤
1

s
λ

1

s
−1

min (Q)‖A‖22‖F (X2)− F (X1)‖. (3.10)

With the mean-value theorem we obtain

‖F (X2)− F (X1)‖ ≤ sup
Z∈LX1,X2

‖DF (Z)‖‖X2 −X1‖. (3.11)

Because X1, X2 ∈ ϕ(n), it holds that LX1,X2
⊂ ϕ(n). So

sup
Z∈LX1,X2

‖DF (Z)‖ ≤ Mϕ(n).

This implies that

‖X1 −X2‖ ≤ Mϕ(n)
1

s
λ

1

s
−1

min (Q)‖A‖22‖X2 −X1‖ = b‖X1 −X2‖ < ‖X1 −X2‖, (3.12)

which is a contradiction. So X1 and X2 must be equal. �

Theorem 3.3. Assume that the conditions of Theorem 3.2 hold. Then

lim
k→∞

Gk(X0) = X, (3.13)

for all X0 ∈ ϕ(n). The rate of convergence is given by

‖Gk(X0)−X‖ ≤
bk

1− b
‖G(X0)−X0‖. (3.14)

Proof. The proof is similar to that of Theorems 2.4 and is omitted here. �

It is easy to see that the convergence rate becomes larger as s increases.

Theorem 3.4. Assume that (1.1) has a solution X in ϕ(n). If α = min{λ
1

s

min(Q), λ
1

s

min(Q̃)},

c := 1
s
α

1

s
−1, and b := 1

s
α

1

s
−1Mϕ(n)‖A‖

2
2 < 1, then

‖X − X̃‖ ≤
c

1− b

(
‖Q− Q̃‖+ (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖

)
, (3.15)

for all solutions X̃ of (1.2).
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Proof. According to Theorem 3.2, we know that X is the unique solution of (1.1). Since

F : P (n) → −P (n) is continuous on ϕ(n), we have

Q−A∗F (X)A ≥ Q ≥ λmin(Q)I ≥ αI > 0, (3.16a)

Q̃− Ã∗F (X̃)Ã ≥ Q̃ ≥ λmin(Q̃)I ≥ αI > 0. (3.16b)

So, by Lemmas 2.1 and 2.2, we have

‖X − X̃‖

= ‖(Q−A∗F (X)A)
1

s − (Q̃− Ã∗F (X̃)Ã)
1

s ‖

≤
1

s
α

1

s
−1‖Q−A∗F (X)A− Q̃+ Ã∗F (X̃)Ã‖

= c‖Q− Q̃+A∗F (X̃)A−A∗F (X)A−A∗F (X̃)A+A∗F (X̃)Ã−A∗F (X̃)Ã+ Ã∗F (X̃)Ã‖

≤ c
(
‖Q− Q̃‖+ ‖A‖22‖F (X̃)− F (X)‖+ (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖)

)
.

According to Lemma 3.1, we have

‖X − X̃‖ ≤ c
(
‖Q− Q̃‖+ ‖A‖22Mϕ(n)‖X̃ −X‖+ (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖)

)
.

Since b < 1, it leads to (3.15). �

Remark 3.1. It is easy to see that the perturbation bound becomes sharper as s increases.

Assume s = 1 and consider the spectral norm. Then

‖X − X̃‖2 ≤
1

1−Mϕ(n)‖A‖
2
2

(
‖Q− Q̃‖2 + (‖A‖2 + ‖Ã‖2)‖F (X̃)‖2‖Ã−A‖2

)

≤
‖F (X̃)‖2(2‖A‖2 + ‖A− Ã‖2)‖A− Ã‖2

1−Mϕ(n)‖A‖
2
2

+
‖Q− Q̃‖2

1−Mϕ(n)‖A‖
2
2

.

This is the perturbation bound (16) in [26]. So the perturbation bound we get is smaller than

this bound.

The perturbation bound in Theorem 3.4 can be derived by using the approach in [26,29],

where perturbations of A, Q, and F are allowed.

4. Numerical Experiments

In this section, we use the methods given in Theorems 2.4 and 3.3 to compute the unique

Hermitian positive definite solution of (1.1). All numerical experiments are run in MATLAB

version 7.9. We denote the residual error by ǫ(X) = ‖Xs +A∗F (X)A−Q‖F < 10−10.

Experiment 4.1. We consider (1.1) when A ∈ Rn×n is given as in Example 6.2 from [5]:

A =




4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1

−1 4




,
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and Q = 256In. Assume that s = 2 and F (X) = X
1

2 . Then F : P (n) → P (n) is continuous and

monotone. It is easy to verify that A∗F (Q
1

s )A < Q. If we take n = 256, then b = 0.2614 < 1.

(1.1) has a unique solution X on [(Q−A∗F (Q
1

s )A)
1

s , Q
1

s ] and

lim
k→∞

Gk(X0) = X, ∀X0 ∈ [(Q −A∗F (Q
1

s )A)
1

s , Q
1

s ].

Indeed, when we take X0 = (Q − A∗F (Q
1

s )A)
1

s , after 19 iterations we obtain the unique

Hermitian positive definite solution X and its residual error: ǫ(X) = 8.0029 × 10−11. When

we take X0 = Q
1

s , after 20 iterations we obtain the same solution X and its residual error:

ǫ(X) = 8.0029× 10−11.

Experiment 4.2. We consider (1.1) when A is the same as in [6,18]:

A =




3 −1

3
. . .

. . . −1

−1 3




∈ R
n×n,

and Q = 256In. Assume that s = 2 and F (X) = −X . Then F : P (n) → −P (n) is continuous.

If we take n = 256, then b = 0.5 < 1. (1.1) has a unique solution X in ϕ(n) and

lim
k→∞

Gk(X0) = X, ∀X0 ∈ ϕ(n).

Indeed, when we take X0 = Q
1

s , after 27 iterations we obtain the unique Hermitian positive

definite solution X and its residual error: ǫ(X) = 6.6241× 10−11. When we take X0 = 5Q
1

s ,

after 28 iterations we obtain the same solution X and its residual error: ǫ(X) = 6.9649×10−11.

5. Conclusions

We have considered the more general nonlinear matrix equation (1.1). In Section 2, the case

F : P (n) → P (n) was considered. The necessary and sufficient conditions for the existence of

Hermitian positive semidefinite solutions of the matrix equation are derived. Based on fixed

point theorem of contraction map, we prove that (1.1) always has a unique positive definite

solution. An iterative method is proposed to compute the unique positive definite solution. We

also show that the iterative method becomes more effective as s increases. Finally, perturbation

bound for the unique positive definite solution is presented. The bound improves some recent

results. In Section 3, we discuss the case F : P (n) → −P (n) in a similar way to Section 2.
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