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Abstract. Analyses were performed on the dispersion overshoot and inverse dissipa-
tion of the high-order finite difference scheme using Fourier and precision analysis.
Schemes under discussion included the pointwise- and staggered-grid type, and were
presented in weighted form using candidate schemes with third-order accuracy and
three-point stencil. All of these were commonly used in the construction of difference
schemes. Criteria for the dispersion overshoot were presented and their critical states
were discussed. Two kinds of instabilities were studied due to inverse dissipation,
especially those that occur at lower wave numbers. Criteria for the occurrence were
presented and the relationship of the two instabilities was discussed. Comparisons
were made between the analytical results and the dispersion/dissipation relations by
Fourier transformation of typical schemes. As an example, an application of the cri-
teria was given for the remedy of inverse dissipation in Weirs & Martı́n’s third-order
scheme.
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1 Introduction

High-order schemes are widely used in direct numerical simulation and large eddy sim-
ulation to resolve turbulent structures with broad length scales. Numerical simulation
of shock/turbulent boundary layer interaction is an example that requires high order ac-
curacy for capturing the broad length scales and the capability of shock capturing. The
main advantage of the high-order scheme is the lower truncation error, which is obtained
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through precision analyses. As shown in [1], the spectral characteristic of the scheme is
another important attribute. It is not unusual that relative low-order schemes can have
better dispersion/dissipation relation than that of higher-order ones.

Bandwidth optimization refers to the technique for improving the dispersion and/or
dissipation features of difference schemes, which are derived through Fourier analysis.
The methodology is to sacrifice the order of the scheme and use the available free param-
eters for optimization. Lele [2] and Tam [3] pioneered studies in this aspect from different
considerations. Several variants of Tam’s methods were proposed subsequently [4–6].

The optimization of the dispersion relation is to make the real part of the modified
wave number (ℜ(κ′)) to distribute as close as possible along the theoretical one (κ). Gen-
erally, the dispersion curve of the standard center or upwinding-biased pointwise scheme
moves below the theoretical straight line and drops to zero at π. Optimization tries to
push the deviation of the curve to the line toward the higher band of the scaled wave
number. Lockard [4] stressed that the moving of the curve above the theoretical one
might happened in this process (”a noticeable overshoot”), which is called as dispersion
overshoot in the paper. Because dispersion overshoot implies the possibility of excessive
”deviation from the correct result for smaller values” (i.e., scaled wave numbers) like
that in ”Tam’s operators” [4], which might result in phase errors for wave propagation,
it is natural that attempts be made to solve the problem. A modified objective function
was given by Lockard [4] to try to alleviate the phenomenon, but no analysis was given
regarding the cause of the overshoot.

The numerical dissipation is another issue concerned by the optimization of
upwinding-biased schemes. Usually some dissipation is necessary for numerical sta-
bility, especially in the case of shock capturing. As proposed by Adams & Shariff [5],
the stability criterion is that, the imaginary part of the modified wave number satisfies:
ℑ(κ′)≤ 0. This criterion has often been used by simply checking or requiring that the
dissipation at π (called as πdissipation in the paper) be less than zero, and assuming that
the criterion is satisfied in the region [0,π] also. No further attempt is made to thoroughly
check if the criterion is satisfied throughout the region.

To test Lockard’s method, we used it to perform optimizations and obtained a third-
order scheme (referred as LKD3), which used the same candidate schemes as that of
the fifth-order WENO scheme but had different weights. The result showed that the
optimized scheme still had minor dispersion overshoot, which indicated that the opti-
mization method proposed by Lockard [4] might not truly solve the problem. In the
meanwhile, when we checked the dissipation curve of Weirs & Martı́n’s third-order
scheme [6, 7] (referred as WM3), we found that the inverse dissipation existed at lower
wave numbers. To explore above issues, we analyzed the dispersion overshoot and the
inverse dissipation, and found the cause and criteria for the occurrence. The purpose of
this study is not to develop a specific scheme, but to provide useful theoretical references
to support bandwidth optimization of high-order schemes.

The paper is organized as follows. In Section 2, we report our investigations in point-
wise high-order finite difference schemes, and present the analytical results; in Section 3,
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we report the similar studies on schemes on staggered grids; and, in Section 4, we give
concluding remarks.

2 Analyses of high-order finite difference pointwise schemes

The investigation is in the context of the one-dimensional hyperbolic conservation law:

ut+ f (u)x =0. (2.1)

The domain is discretized into xi = i∆x, where ∆x is the discretization interval. There
are at least two ways to represent a linear scheme, i.e., the explicit form

( fx)j ≈
1

∆x

N

∑
l=−M

aj f (xj+l∆x) (2.2)

and the conservative weighted form:

( fx)j ≈−
f̂ j+1/2− f̂ j−1/2

∆x
, (2.3a)

f̂ j+1/2=
r′

∑
k=0

Cr
kqr

k, (2.3b)

qr
k =

r−1

∑
l=0

ar
k,l f (uj−r+k+l+1). (2.3c)

The latter is constructed by the combination of the weighted candidate schemes, where
r is the number of grid points in each grid stencil, r′ is the number of stencils, ar

k,l is
the coefficient of each candidate scheme, and Cr

k is the weight. A sketch for the most
frequently-used WENO-like schemes on three-point stencils, the sketch is given in Fig. 1
for illustration. If the stencil represented by S3 is included or r′= r, the stencils are sym-
metric; otherwise they are upwinding-biased or r′= r−1.

It is easy to derive the formula of the modified scaled wave number of the scheme by
Fourier transformation as [1–3]

κ′=
−i

∆x

N

∑
l=−M

aje
ilκ , (2.4)

where κ is the scaled wave number defined as κ = k∆x, and k is the wave number in
Fourier transformation.

In the following, we investigate schemes when r= 3 in which the accuracy order of
each candidate scheme is three and ar

k,l can be found in [8, 9]. For completeness, typical
values for Cr

k are given in Table 1 according to final order R of the weighted scheme.
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Figure 1: The schematic of candidate schemes on three-point stencils.

Several typical schemes can be expressed using Eqs. (2.3a)-(2.3c) and are also in-
cluded in Table 1. Among them, the third-order schemes are like the linear WENO
scheme (WENO3) with R=3, C3

2=C3
3 =0 and C3

1=1; Weirs & Martı́n’s optimized scheme
(WM3) [6, 7]; and the optimized scheme using Lockard’s method [4] (LKD3), in which
the objective function of optimization is

I=
∫ κ1

0

{

σRe(κ′−κ)2+(1−σ)[Im(κ′)−γsinµ(κ/2)]2
}

dκ

and the control parameters are (κ1=2π/7, γ=−13/32, σ=1/5, µ=8) [4]. Further, fourth-
order schemes are like the center scheme with R=4 and C3

3 =C3
0 =0 and the Dispersion-

Relation-Preservation scheme (DRP4) by Tam [3]. The fifth-order scheme is like the linear
WENO scheme (WENO5) with R=5 and C3

3=0. Finally, the sixth-order scheme is like the
center scheme with R=6. In the paper, we abbreviate the scheme on upwinding-biased
stencils (C3

3 = 0) as the UPW-scheme, and the one on symmetric stencils (C3
3 6= 0) as the

SYM-scheme.

Table 1: Weights C3
k for difference schemes.

R k=0 k=1 k=2 k=3

3 1−C3
1−C3

2−C3
3 C3

1 C3
2 C3

3
3(WM3) 0.094647545896 0.428074212384 0.408289331408 0.068988910312
3(LKD3) 0.113263320922852 0.546957397460938 0.339779281616211 0

4 C3
0 C3

0−2C3
3+1/2 −2C3

0+C3
3+1/2 C3

3
4(DRP4) 0.07955985 0.42044007 0.42044007 0.07955985

5 −C3
3+1/10 −3C3

3+3/5 3C3
3+3/10 C3

3
6 1/20 9/20 9/20 1/20

2.1 Analyses of the dispersion overshoot

After careful checks on the dispersion curve of a scheme, it is found that the overshoot
happens just after κ=0. This hints that the behavior of the following term

ℜ(κ′)

κ
−1 (2.5)
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Table 2: Dispersion relations of the UPW- and SYM-schemes.

R ℜ(κ′)

3, 4 sinκ
3

[

4C̃R cos2κ−(8C̃R+1)cosκ+4C̃R+4
]

5, 6 sinκ
15

[

2cos2κ−9cosκ+22
]

Table 3: ∂(i)

∂κ(i)

(

ℜ(κ′)/κ−1
)

(0) and overshoot criteria for weighted difference schemes.

R i=4 i=6 Overshoot criterion

3, 4 −4/5+8C̃R 20/7−80C̃R C̃R >1/10

5, 6 0 -36/7 N/A

should be studied at κ=0. For completeness, the values of ℜ(κ′) corresponding to Table
1 are given in Table 2.

In Table 2, C̃3 =1−C3
1−C3

2 and C̃4 =C3
0+C3

3. For the UPW-scheme, the highest order
is five. After deriving derivatives of Eq. (2.5), we find that κ= 0 is a zero-value point of
high order, i.e.,

∂(i)

∂κ(i)

(ℜ(κ′)

κ
−1

)

(0)=0,

for i=0,··· ,3 and 5. The details are shown in Table 3.
It is easy to derive the criterion for the occurrence of overshoot by requiring the first

non-zero derivative be greater than zero, which are also included in Table 3. Using the
criterion, checks can be made on the optimized schemes listed in Table 1. It is easy to
see that WM3, LKD3 and DRP4 satisfy the conditions in Table 3 and overshoots occur.
Among the schemes having overshoots, C̃3 in LKD3 is the closest to 0.1 and produces
the least overshoot. Fig. 2 gives the numerical relative error of the dispersion relation
of typical schemes. The inset in the figure is an enlargement showing the overshoot of
LKD3 which may be obscured in the main figure. Consistency is shown by the figure
between numerical results and analytical results.

Based on the analytic relation in Table 3, we have the following observations:

1. When the critical state (C̃R=1/10) is met at R=3, the dispersion relation turns out
to be that of the fifth-order scheme, i.e.,

sinκ

15

[

2cos2κ−9cosκ+22
]

,

with no overshoot.

2. Because
d
(

d(4)(ℜ(κ′)/κ−1)/dκ4|κ=0

)/

dC̃R=8= const

at R=3 and 4, any ”improvement” of the dispersion relation by optimization than
that of the fifth-order scheme will cause dispersion overshoot, no matter what
methods are used. And there is no possibility to further improve the dispersion
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Figure 2: The relative error of dispersion of difference schemes.

relation of a fifth-order scheme due to the dispersion relation shown in Table 2 at
R=5,6. In other words, the fifth-order scheme is at a special position which can not
be surpassed if the non overshoot constraint is required.

3. The dispersion relation at R=3 is actually the same as that at R=4, which indicates
that the third order optimized scheme theoretically can not further improve the
relation than that of the fourth-order one. Similar idea and analyses can be used for
the scheme whose candidate grid stencils have more than three points.

2.2 Analyses on inverse dissipation

In order to investigate the inverse dissipation phenomenon, we first deduce the dissipa-
tion relation (ℑ(κ′)) of the weighted difference scheme at different R. Based on ℑ(κ′),
πdissipation and the corresponding stability condition are obtained and shown in Table 4.

Similar to the development in the previous section, we investigate the inverse dissi-
pation at the lower band of wave numbers by checking the behavior of (ℑ(κ′)) at κ= 0,
and find that κ=0 is a zero-value point of high order, i.e.,

∂(i)ℑ(κ′)

∂κ(i)

(

0
)

=0

for i=0,··· ,3 and 5. The details are tabulated in Table 5.

Comparing Tables 4 and 5, we find that, the stability based on πdissipation at R = 3
can not guarantee that the scheme is stable at the lower wave number. For example,
Table 1 shows that, for WM3, 2C3

1+C3
2+3C3

3 = 1.471404487112 < 3/2, which demon-
strates the existence of inverse dissipation and the potential risk of instability; for LKD3,
2C3

1+C3
2+3C3

3=1.433694076538087<3/2, which also shows the same problem. However,
for WENO3 and WENO5, two stability criteria are satisfied. As an example of the applica-
tion of analytic results, we incorporated the criterion in Table 5 at R=3 into the optimiza-
tion of WM3-like scheme, and obtained a modified solution (M-WM3) as (C3

0,C3
1,C3

2,C3
3)=
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Table 4: Dissipation relations, πdissipation and corresponding stability criteria.

R ℑ(κ′) πdissipation Stability criterion

3 1
3

[

(4−4C3
1−4C3

2−8C3
3)cos3κ+(−9+8C3

1+10C3
2+18C3

3)cos2 κ+(6−4C3
1−8C3

2−12C3
3)cosκ+2C3

2+2C3
3−1

]

1
3

(

−20+16C3
1+24C3

2+40C3
3

)

4C3
1+6C3

2 ≤5−10C3
3

4 4
3 (C

3
0−C3

3)cos3κ−4(C3
0−C3

3)cos2κ+4(C3
0−C3

3)cosκ− 4
3 (C

3
0−C3

3) − 32
3 (C

3
0−C3

3) C3
0 ≥C3

3

5 2
15 (1−20C3

3)cos3κ− 2
5 (1−20C3

3)cos2κ+ 2
5 (1−20C3

3)cosκ− 2
15 (1−20C3

3) − 16
15 (1−20C3

3) C3
3 ≤1/20

Table 5:
∂(i)ℑ(κ′)

∂κ(i) (0) and corresponding stability criteria.

R i=4 i=6 Stability criterion

3 6−8C3
1−4C3

2−12C3
3 −150+160C3

1+140C3
2+300C3

3 2C3
1+C3

2 ≥3/2−3C3
3

4 0 −120C3
0+120C3

3 C3
0 ≥C3

3

5 0 −12+240C3
3 C3

3 ≤1/20

(0.0902000403417333, 0.446821215154559, 0.39128933190972, 0.0716894125939877). M-
WM3 has almost the same dispersion and dissipation relation as WM3 but satisfies the
stability criterion. The numerical results are shown in Fig. 3.

Based on Tables 4 and 5, it is shown that two kinds of stability discussed above are
equivalent at R=4 and R=5 but are different at R=3.

Figure 3: The dissipation of difference schemes at the lower band of wave numbers.

3 Analyses on high-order finite difference schemes on staggered

grids

In [2], Lele proposed a class of center-type compact schemes on cell-centered meshes.
What is more, the explicit finite difference scheme can be obtained in this class of com-
pact schemes by simply setting α= β= 0 in Eq. (B.1.1) in [2]. The obtained scheme can
be thought as center schemes on staggered grids, and to fulfill the computation, inter-
polation schemes must be used to give the value at staggered grids. Theoretically, the
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dispersion relation of the difference scheme will have a value close to π at κ=π, but it is
a misunderstanding that such a scheme can fundamentally improve the dispersion rela-
tion because, when the interpolation is imbedded into the scheme, the dispersion curve
of the combined scheme will still drop to zero. Also worth noting is that the optimization
methods used in pointwise schemes in Section 2 can also be used in schemes on stag-
gered grids. Similar analyses can be conducted except that two kinds of schemes will be
involved, namely, the finite difference scheme and the interpolation scheme.

3.1 Analyses on the finite difference scheme

As in Section 2, the difference scheme for the spatial derivative of Eq. (2.1) can also be
formulated in explicit form

( fx)j ≈
1

∆x

N

∑
l=−M

aj f
(

xj+
(

l+
1

2

)

∆x
)

(3.1)

and the conservative weighted form as Eq. (2.3a), where f̂ j+1/2 and qr
k are re-defined as:

f̂ j+1/2=
r′

∑
k=k0

Cr
kqr

k, (3.2a)

qr
k =

r−1

∑
l=0

ar
k,l f (uj−r+k+l+1/2). (3.2b)

In this paper, the investigation is performed on the difference scheme on three-point sten-
cil, which is sketched by Fig. 4. If the scheme uses stencils S0 to S2 (or k0=0 and r′=r−1
in Eq. (3.2a)), the scheme is upwinding-biased and called as the UPW-scheme as before.
Otherwise it is symmetric and called as the SYM-scheme with k0=1 and r′= r.

The modified wave number of the scheme has the form

κ′ =−i
N

∑
l=−M

ale
i(l+1/2)κ . (3.3)

For completeness, the coefficients for ar
k,l in Eq. (3.2b) are tabulated in Table 6.

Figure 4: The schematic of three-point stencil and stencils on staggered grids.
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Table 6: Coefficients ar
k,l for candidate difference schemes.

k l=0 l=1 l=2

0 23/24 −35/12 71/24

1 −1/24 1/12 23/24

2 −1/24 13/12 −1/24

3 23/24 1/12 −1/24

Table 7: Weights C3
k for UPW-schemes.

R k=0 k=1 k=2

3 C3
0 C3

1 1−C3
0−C3

1

4 C3
0 22C3

0 −23C3
0+1

5 9/1840 99/920 71/80

Table 8: Weights C3
k for SYM-schemes.

R k=1 k=2 k=3

3 C3
1 C3

2 1−C3
1−C3

2

4 C3
1 −2C3

1+1 C3
1

6 −9/80 49/40 −9/80

The weights for the UPW-schemes are tabulated in Table 7, and those for the SYM-
schemes are tabulated in Table 8.

The coefficients for SYM-schemes at the sixth-order in Table 8 are actually implicitly
included in the scheme by Lele [2].

3.1.1 Analyses of the dispersion overshoot

Following the similar idea in Section 2.1, we derive the derivatives of Eq. (2.5) up to sixth
order. It is also found that κ=0 is a zero-value point of high order, i.e.,

∂(i)

∂κ(i)

(

ℜ(κ′)
/

κ−1
)

(0)=0

for i=0,··· ,3 and 5. The non-zero derivatives are tabulated in Table 8.

Based on Table 9 and the dispersion relation not shown in the paper, we give the
following remarks:

1. For the UPW-scheme at R=3 in Tables 7 and 9, when the critical state (68C3
0−C3

1 =
9/40) occurs and C3

0 = 9/1840, it is easy to check that the scheme actually turns
into a fifth-order scheme. Under the critical state, it can also be found that, when
0<C3

0 <9/1840, the dispersion relation can be slightly improved than that of the fifth
-order scheme, and the best one can be obtained by setting C3

0=0; when C3
0≤149/3680,

κ′(π) will have a positive value.



818 Q. Li, Q. L. Guo and H. X. Zhang / Adv. Appl. Math. Mech., 5 (2013), pp. 809-824

2. For the UPW-scheme at R=4 in Tables 7 and 9, when C3
0 =9/1840, the scheme will

upgrade to the fifth-order one without overshoot. Since

d
(

d(4)(ℜ(κ′)/κ−1)
/

dκ4|κ=0

)/

dC3
0 =23= const

any optimization to the fourth-order scheme will cause overshoot. It can also be found
that, in order to yield a scheme with convex coefficients, C3

0 should be less or equal than
1/22, and κ′(π)|C3

0=1/22=31/33.

3. For the SYM-scheme, dispersion relations of the third and fourth order are the same,
which implies the third-order optimized scheme theoretically can not further improve the
relation than that of the fourth-order one.

4. For the SYM-scheme at R=4 in Tables 8 and 9, when the critical state (C3
2 =49/40)

happens, the scheme will upgrade to sixth order without overshoot. Because

d
(

d(4)(ℜ(κ′)/κ−1)
/

dκ4|κ=0

)/

dC3
2 =1/2= const

at R=3 and 4, any attempts to improve the dispersion relation of the third- or fourth-
scheme will cause overshoot. So the dispersion relation of the sixth-order scheme is at
a special position which can not be further improved if the non overshoot constraint
is imposed. Particularly, the weights of the sixth-order scheme are observed to be a
non-convex combination because C3

1 =C3
3 <0.

Table 9: ∂(i)

∂κ(i)

(

ℜ(κ′)
/

κ−1
)

(0) and overshoot criteria for UPW- and SYM-schemes.

R i=4 i=6 Overshoot criterion

The UPW-Scheme 3 − 9
80 +34C3

0−
1
2 C3

1
45

224−
1115

2 C3
0+

25
8 C3

1 68C3
0−C3

1 >
9
40

4 − 9
80 +23C3

0
45

224−
1955

4 C3
0 C3

0 >
9

1840

5 0 − 981
448 N/A

The SYM-Scheme 3, 4 − 49
80 +

1
2 C3

2
745
224 −

25
8 C3

2 C3
2 >

49
40

5 N/A N/A N/A

6 0 − 225
448 N/A

3.1.2 Analyses on inverse dissipation

For schemes on staggered grids, it is easy to find by analytic relations of the dissipation
that, all πdissipation equal to zero. After checking the behavior of ℑ(κ′) at κ = 0, it is also
found that κ=0 is a zero-value point of high-order, i.e.,

∂(i)ℑ(κ′)

∂κ(i)

(

0
)

=0

for i=0,··· ,3 and 5. The details are shown in Table 10.
The corresponding stability criteria are also given in the table. From Tables 7, 8 and

10, we give the following remarks:
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Table 10:
∂(i)ℑ(κ′)

∂κ(i) (0) and stability criteria for UPW- and SYM-schemes.

R i=4 i=6 Stability criterion

The UPW-Scheme 3 22C3
0−C3

1 − 1765
2 C3

0+
35
4 C3

1 C3
0 ≤

1
22 C3

1

4 0 −690C3
0 C3

0 ≥0

5 0 − 27
8 N/A

The SYM-Scheme 3 −2C3
1−C3

2+1 35
2 C3

1+
35
4 C3

2−
35
4 2C3

1+C3
2 ≥1

4 0 0 N/A

6 0 0 N/A

1. For the UPW-schemes, when C3
0 = C3

1/22 at R = 3, the scheme will upgrade to the
fourth-order scheme, whose stability depends on the sign of C3

0. When C3
0 =0 at R=4,

the scheme will become the standard fourth-order center scheme with one staggered grid
point vanishing.

2. For SYM-schemes, when 2C3
1+C3

2 =1 at R=3, the scheme will upgrade to the fourth-
order center-type scheme without dissipation. Dissipative schemes can only occur for
third-order cases.

3.2 Analyses on the interpolation scheme

In order to compute derivatives using the scheme defined on the staggered grids (see
Eqs. (3.1)-(3.2b)), the interpolation is needed to give the value of the variables on
staggered grids. Deng et al. first proposed an adaptive, ENO-like interpolation al-
gorithm [10]. Later Deng constructed a weighted form of interpolation similar to
WENO [11]. Deng et al.’s scheme is based on upwinding-biased stencils (referred as
the UPW-scheme) which have three grid points. It appears natural to construct the sym-
metric form which includes the UPW-scheme. The complete form of the interpolation
can be expressed as:

ui+1/2=
r′

∑
k=0

Dr
k pr

k, (3.4a)

pr
k =

r−1

∑
l=0

br
k,lui−r+1+k+l, (3.4b)

where pr
k is the candidate interpolation scheme and r′ is the number of stencils used. The

scheme is upwinding-biased if r′ = r−1 (the UPW-scheme) and symmetric if r′ = r (the
SYM-scheme). A schematic for the commonly-used schemes on a three-point stencil is
given by Fig. 5.

In the following, we investigate schemes when r= 3 in which the accuracy order of
each candidate scheme is three. For completeness, the coefficients br

k.l are given in Table
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Figure 5: The schematic of interpolation schemes on three-point stencils.

Table 11: Coefficients br
k,l for candidate interpolation schemes.

k l=0 l=1 l=2

0 8/3 −5/4 15/8

1 −1/8 3/4 3/8

2 3/8 3/4 −1/8

3 15/8 −5/4 3/8

Table 12: Weights D3
k for interpolation schemes.

R k=0 k=1 k=2 k=3

3 D3
0 D3

1 1−D3
0−D3

1−D3
3 D3

3

4 D3
0 2D3

0−3D3
3+1/2 −3D3

0+2D3
3+1/2 D3

3

5 1/16−D3
3 5/8−5D3

3 5/16+5D3
3 D3

3

6 1/32 15/32 15/32 1/32

11, while Dr
k is shown in Table 12 with respect to the final order R. Especially, Dr

k of the
UPW-scheme can be explicitly obtained by setting D3

3 =0.

By substituting Eq. (3.4b) into Eq. (3.4a), we can derive the analytic forms of the mod-
ified wave number of the scheme at various R by Fourier analysis, and analyze the dis-
persion and dissipation relation of the scheme as before.

3.2.1 Analyses of the dispersion overshoot

For completeness, Table 13 shows the ℜ(κ′) expressions of the interpolation schemes.

In Table 13, D̃3
0=D3

0+D3
3. For the UPW-scheme the highest order is five. After check-

ing

∂(i)

∂κ(i)

(

ℜ(κ′)
/

κ−1
)

at κ= 0, we also find that the value at this point vanishes with high order for i= 0,··· ,3
and 5. The details and corresponding dispersion overshoot criteria are shown in Table
14.

For the UPW-scheme the highest order is also five. Based on the results in Tables 14
and 13, we give the following remarks:
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Table 13: Dispersion relations of the UPW- and SYM-schemes.

R ℜ(κ′)

3, 4
cos(κ/2)

2

[

12D̃3
0 cos4(κ/2)−(24D̃3

0+1)cos2(κ/2)+12D̃3
0+3

]

5, 6
cos(κ/2)

8

[

3cos4(κ/2)−10cos2(κ/2)+15
]

Table 14: ∂(i)

∂κ(i)

(

ℜ(κ′
/

κ−1)
)

(0) and overshoot criteria for weighted interpolation schemes.

R i=4 i=6 Dispersion criterion

3, 4 − 9
16 +9D̃3

0
45
32 −

315
4 D̃3

0 D̃3
0 >

1
16

5, 6 0 − 225
64 N/A

1. When the critical state occurs at R=3 and 4, i.e., D̃3
0 =1/16, the dispersion relation is

the same as that at R=5 and 6, where there is no overshoot; The order of the scheme at
R=4 will increase by at least one order, and a further increase may be possible depending
on the choice of the rest free parameter of Dr

k.

2. Because

d
(

d(4)(ℜ(κ′)/κ−1)
/

dκ4|κ=0

)/

dD̃3
0 =9= const

any ”improvement” of the dispersion relation by optimization with respect to that of the
fifth- or sixth-order scheme will cause overshoot.

3. Because the dispersion relation of the fifth-order scheme is the same as that of sixth-
order, there is of no possibility for further optimization on the dispersion relation, but
there is availability to adjust the dissipation of the scheme to a desired level, which can
be seen in Table 15 at R=5 in Section 3.2.2.

4. Because the dispersion relation of the third-order scheme is the same as that of fourth
order, it is not necessary to develop any third-order optimized scheme, which can not
further improve the dispersion relation but is one order lower than the fourth-order
counterpart.

3.2.2 Analyses on inverse dissipation

In a similar way, we first study the stability problem at π. The dissipation relation (ℑ(κ′))
of the interpolation schemes can be deduced and πdissipation can be computed. Expres-
sions for ℑ(κ′), πdissipation and corresponding stability condition are tabulated in Table
15.

Then we check the behavior of ℑ(κ′) at κ=0, and find that κ=0 is also a zero-value
point of high order, i.e.,

∂(i)ℑ(κ′)

∂κ(i)

(

0
)

=0

for i=0,··· ,3 and 5. The details are shown in Table 16.

Based on the results in Tables 15 and 16, we give the following remarks:
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Table 15: Dissipation relations, πdissipation and corresponding stability criteria.

R ℑ(κ′) πdissipation Stability criterion

3 1
2 sin3(κ/2)

[

12(D3
0−D3

3)cos2(κ/2)−8D3
0−2D3

1+6D3
3+1

]

−4D3
0−D3

1+2D3
3+1/2 4D3

0+D3
1 ≥1/2+3D3

3

4 −6sin5(κ/2)(D3
0−D3

3) −6D3
0+6D3

3 D3
0 ≥D3

3

5 − 3
8 sin5(κ/2)(1−32D3

3) −3/8+12D3
3 D3

3 ≤1/32

6 0 0 N/A

Table 16:
∂(i)ℑ(κ′)

∂κ(i)

(

0
)

and stability criteria.

R n=3 n=5 Stability criterion

3 3
2 D3

0−
3
4 D3

1−
9
4 D3

3+
3
8 − 105

4 D3
0+

15
8 D3

1+
225

8 D3
3−

15
16 6D3

0−3D3
1 ≥9D3

3−
3
2

4 0 − 45
2 (D3

0−D3
3) D3

0 ≥D3
3

5 0 45D3
3−

45
32 D3

3 ≤1/32

6 0 0 N/A

1. When D3
0 =D3

3 happens at R=4, the scheme will become a center-type scheme, which
includes the standard fourth order center scheme at D3

0 =D3
3 =0.

2. When D3
3 =1/32 for SYM-scheme at R=5, the scheme will upgrade to the sixth order

center scheme without dissipation.

3. For schemes at R=4 and 5, we can see that the stability criteria derived through inverse
dissipation at κ=π and 0 are the same, which indicates that the easily-realized stability
at π can guarantee the stability at the lower wave number. But the situation differs at
R=3: the inverse dissipation might happen at the lower band although the scheme is
stable at κ=π.

4 Conclusions

We performed systematic investigations on the dispersion overshoot and inverse dissipa-
tion related to the high-order difference scheme. Inverse dissipation is discussed in two
aspects: that at the scaled wave number π, and that at the lower wave number. The latter
is not obvious and is usually ignored in pervious studies. The high-order schemes con-
sist of two types: the first are the pointwise schemes, and the other are those constructed
on staggered grids. For each type, two kinds of schemes were comparatively studied,
namely, the UPW- and SYM-schemes. These discussed schemes, which are based on
third-order candidate schemes on three-point stencils, cover commonly-used forms to
some extent. Analyses were performed and a comprehensive theoretical reference was
set up thereafter, which can be used as references for the bandwidth optimization.

Although the dispersion overshoot has been already reported by others, it is usually
superficially studied. We present a theoretical foundation of the overshoot and the cri-
teria for its occurrence. We point out that nearly all previous optimized schemes will
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have inevitable overshoot after optimization if the purpose of the optimization is to get
a improved dispersion relation than that at the critical state. The only exception lies in
the third-order UPW-scheme on staggered grids. It appears impossible to develop a spe-
cific optimization method to eliminate the overshoot. The reasonable requirement for
optimizations should be rather how much the overshoot can be tolerated. It was found
that theoretical constraints exist in optimization, i.e., non further improvement can be
obtained for third- or fifth-order scheme by degrading one order from the fourth- or
sixth-counterparts respectively.

Two types of inverse dissipation have been discussed, especially that at the lower
wave number. The theoretical foundation of this issue is investigated and the criteria for
the occurrence of inverse dissipation are given. For pointwise and interpolation schemes
discussed in the paper, it was found that two types of stability are equivalent for schemes
of fourth and higher order, but they are different for the third-order schemes. The dissi-
pation of the third-order scheme may have a stable negative value at κ=π but be positive
around κ=0.

The results indicate that within schemes discussed in the paper, the third-order point-
wise and interpolation optimized schemes can not further improve the dispersion rela-
tion than the fourth-order scheme but with a loss of one accurate order; what is more,
there exists the risk of inverse dissipation if schemes are not carefully designed. So from
our view, it is not suggested to construct third-order optimized schemes.

Tests on the available schemes show the agreement between the theoretical conclu-
sions and numerical schemes. The outcomes of the analyses can serve as remedies for the
scheme having inverse dissipation problem.
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