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A NEW FAST SOLVER—MONOTONE
MG METHOD MMG*

ZouvJux (8 %)

(Wuhan Uriversity Wuhar, Ching)

§.0. Introduction

In this paper, we discuss a new method the MMG for solving a class of
linear or nmonlinear elliptic boundary value problems, fixed point problems and
variational inequality problems. The method is based on the FAS introduced by
Brandit™ and uses nonlinear monotone relaxation iteration for its smoothing part.
The difference between the FAS and the MMQG methods is an additional parameter
dy 10 guarantee the monotonicity of the iterative sequence. It is just this parameter
that may effecpively accelerate the convergence of the FAS for a class of problems
diseussed Here, Its convergence (including v—cycle and w—cycle)can be easily proved
and the assumptions are very natural., Numerical experiments and comparisons
with the M@ and the nonlinear monotone relaxation method are reported.

§ 1. Problem and Algorithm

QOonsider the discrete system of equations
Inu=f, (D
WhEI'B f.:: (fi.! i H)Tl U== (.u'ir = )TF Lu=' (Ll'u: Ty Lnu)I'.
Suppose L is an M—matrix (if (1) is linear) or M—function (if (1) is nonlinear).
The system (1) arises in elliptic boundary value problems, fixed point problems,
etc. The iteration method usually used to solve (1) is the SOR iteration, that is,

k41 1 K i
- {from LA (u*t, oo, wfd, wy, hq, oo, W) =fo

weo get u;; then sot (2)
Wt =yl (uy—uf), r€ (0, 2), 4=1, ++¢,; m, k=0, 1, ---,
We know™ that if there exist two vectors «°, v° such that
W<, L< F<In®,

where u®<<2°(1®<<2° below) is defined componently, then for r& (0, 1], the two
sequences {u*}, {v*} produced by (2) taking «° o° as their initial vectors
regpectively satisly |
-' o' tu, v D, a8 n—>00,

and

I

* Received November 13, 1885.
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We have the same result™ for the Jacobi iteration.
For convenience we denote the monotone iteration (r€ (0, 1]) by SUR
(successive underrelaxation) and the iterative process by

e § (P, L, f).

Now we describe our algorithm based on the FAS.,
Suppose we have N+1 numbers: Ag>hy>>+-->hy, and the corresponding grid
gpaces: {dyC Q- -2y and discrete systems of egqnations:

L =fy, k=0, 1, «.e, N,
Qur purpose is to solve the equations
Lwﬂ =fH, N?ll

In the following we use u”'®* ag an iterative vector; the superseripts N, k, ¢
are self-explanatory. I%*' and I%,, are operators which trans form grid functions
on {4 into grid functions on Q,; and viee versa'™:. we call them prolongator and

restrictor, respectively.
Algorithm 1 (MMG@).
Starting with & given k-th iterative approximation u® %9 to ¥

LHHN.E.o,(fN (Lm&ﬂ'k’o}f_y) ;
Step 1. Pre-snfoothing:
u bt S U, Ly, fy), $e1, 2, 4,
Step 2. Coarse—grid correction:
——Compute the defect By = fy— Lyu¥r¥b,
Restrict the defeect  dy_y=1T ¥dy,
Solve on the N—th grid Qy_;:
Ly gw =Ly (T¥ ¥ %%) + dy . | (3)

If N=1, we solve (8) directly.

If N>1, we solve(8)by performing mz>>1 steps of the MMQ@ N-grid method
(using the grids Q,, @y, +--, @y_4 and the corresponding grid operators) to (3) with
IX %% ag first approximation. Denote the approximate solution by w¥1,

—Compute ¢ B hmyFlb L G TY | (pF-1- TE-1¥ k)
where dj, is chosen in such a way that
Ly ¥ 5 < foy (Lati™ 04> fy).
Step 8. Post-smoothing:
gk htl _ g (&'N,h,t;, Lm fﬂ) !
e G, Do POl Syt oy B,

Continue the above process with k-1 instead of & and g¥##+1s0.— ¥ Erduthy,

Remark 1. Clearly dy in Algorithm 1 exists (dx>0), and usually d,>1. If
we set dy=1, thon Algorithm 1 reduces to the FAS. For concrete problems, d, can
be easily computed.

SR T —
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§ 2. Convergence of Algorithm 1

First, we generalize a result from [8]. It is a basic conclusion for this paper.
~ Lemmal, Le F: DR SR" be a continuous, off-déagonally antitone amd
siricily diagonally ésotone mapping. And assume 2°, o°€ D, bE RY satisfy

a0y, Fa®<b<Fy°.
Then, for r< (0, 1), the steraies {2*}, {4*} produced by the SUR satisfy
P F Lt oy, FF<b<Fyf, k=1, 2, o»

and @4z, |y, Fx=Fy=b.

The proof of the lemma is the same as in [8], with only slight modifications.

Next, we discuss the convergence of Algorithm 1 in the case of two grids. We

have

Theorem 1. Supposs Lu, Lo are continuous M—functions on their domains of
de finition Gy and Lo, respectively. And there are vectors ub'®®, v1%° and f4 such thai

RN T L L LRy e Lph®0, |

Also assume that the prolongator I} and restrictor I3 én Algorithm 1 are linear striotly
monotone operagors (that s, u>p=s Ku>EKwv, K és I or I3) . And 1121, £32>0{or £1220,
15>>1). Then the sequence given by Algorithm 1 laking ul*®0 gg ifs indtéal veclor ¢8
sirictly monotone inoreasing and converges 10 the éwach solution w* of Lyu'=f.

Wo have the same result for v1%° but the corresponding sequence is strictly

monotone decreasing.

Remark 2. The resirictions of prolongator I3 and restrictor I are easily
satisfied for the usual operators '

Proof. From Lemma 1, we know

ul,k,ifl{ul,?ﬂ,t{wﬂk,t<ml,lﬁ.f*1’

Lot fi < Iywt®t, =1, 2, oo, f. (4)
This fact, with the assumption on I3, shows
do=T%d; =I3(f1— Lyh¥ ") >0,
Therefore |
Ligt® = Lo (T30 % ") +do>> Lo (L3uh ™).
Owing to the assumption on L, we have
w® > I0ub ¥,
which implies
,E:,k,t,=u R R de% (,wo i Hu:,#.t;) g kets,
From the definition of dj, we obtain |
Lo < fy, (6)
Similarly, we have
Lk, b~ b KT | ' ,
v g P H ©)

Lié;l,k,t; ~ f v
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——
(B),(6) and the assumption on I, show
b B ha < phkb
Again using Lemma 1 and(4), we get |
| b 00 gl Bt o LRyt - (LR < gk t-1 o 1}1.0,0’

Bo, there exist two vectors u, v such that

uhE Iy gl ag k—>00, (8)
UKD, t=0, 1, s+ 5.
Now we show % =75 and Lyu=fy. Denote Iy by Ly= (Li,e-, LY
Uonsider two real continuons functions: |
(s) =L (= uity, 8, uiryt, -, w1

| y(8) =Li(ve, ==, wity, 5, ¥J170 oo, 247Y), 1<4<N.
Note that we omit the superscripts 1, k. Clearly

z(s) >y(s), VsE Ri_.
This shows, with (7),

) <o () <T@ <fI<If (o%)
- <y (e <a (o).

By the assumption on Iy, there exist unique %, and 9 which satisfy

TR T R P A

and

2 (U™ =fl=y (wi).
Recalling the roles of ui? and 7/*~! in Algorithm 1, we know

N u;‘h =ME'_1+T (i::-—-l.__ %&{:_1) ,
that is, ui™ = (uf —uf™) /r+ul >4, a8 koo,
Similarly, we have

VT, a8 koo, 1<i<N.
Seb gmgyp? and v¢~lin @ () and y(s), respectively. Then as k—»oc0, we obtain (with

(8))

lu=fi=L, 1<i<N,
which show u="%. So we complete the proof of Theorem 1.
We can easily generalize Theorem 1 (two—grid
iteration by induction,
Suppose we have N+1 numbers: Ro=>by > >hy. Our purpose is fo
=fy. Wo will use grid operators L(k=0,1, ... N—1). We have

Theorem 2. Suppose I,(3=0, 1, e, N ) are continous M-functions on 2,
respectively, and there are vectors fy, u¥+'° gud »¥+0 which satisfy

Lo 00 f oy << Ly ¥ 90,

The restrictions of prolongator I, and restrictor I*—1

. x  areée the same as I} and I? in
Theorem 1. Then the sequence gwen by Algorithm 1 taking u™° gs its snitial vector s

iteration) to the multigrid

solve Lu¥
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strictly monotone tncreasing and converges to the ewact soluiion of Lyu®=Ffx.
Weo have the same result for +™%°, but the corresponding sequence is sirictly
monotene decreasing.

§ 3. Algorithm and Convergence in the Case of
Non-Strict Monotonicity

In this section, we only agsume that the initial vectors u’ and ° satisfy
Lw’< f<In’.
A1l the signs in this section are the same as in Sections 1, 2.
Our purpose is to solve Lyu¥ =fx, N=1. In the following we use the notation
I () ={6: Lhu" =f%} where ¢ means the ¢-th component of the corresponding
vector. , ,
Algorithm 2.
Starting with a given k-th iterative approximation w¥**? to u™:
L_NHN’;"“‘Q (;,.;) f,u'.
Step 1. Asstep 1in Algorithm 1.
Step 2. As step 2 in Algorithm 1, but change the computing of u¥ %4, Denote
Iﬁ_i ('IHI-J‘N_I —Iﬁ‘;’iul"" s h) bj" ex.
Compute u¥+#h=y¥ ¥4 dey where d,>>0 satisties:
Lyt < () fY, for all 6 Liyu™ "< (>)fx,
- {ﬂ}, for all é: fi> (<) Lk,
BN N
0, for € T (% h),
Step 3. As step 8 in Algorithm 1.
We have the following

Theorem 3. Take the assummptions of Theorem 2 and assume the grid funciions
L; on Q;:

Lau— Au+ Bu, g=0, 1: s J:
where A, are N,x N; M—matrices, B;: R¥—> R"* are diagonal, continuous and %80i0Me
functions. Then the conclusions of Theorem 2 hold, bui the corresponding sterative
séquens are monoions, not strictly monotone.

Proof. Woe only need to prove the following results:

Suppose Ii, A= (@) and B have the game properiies as L;, A;, B;. And assume
that there are vectors u, w& R such that

(a) u<< f, w=0,
where w,=0, for € I (u) = {4: f*=TLfu}. Then, if d>>0 satisties

Li(u+dw) < fi, for é: f1>L(w),
we have L{(u+dw) < f;
or such that

(b | Tuz=f, w<,
where 1w,=0, for € I (1) ={i: f*=Lu}. Then, if d>0 satisfics
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L (u+-dw) > f*, for ¢ <Ly,

we have L(u-+dw) >f.
The proof of (a): Consider the jth component of L(u+duw), i€ I (u)
I (u-dw) = A! (u+dw) + B (w+dw;) = Afu+d A*w+ B! (u,)
= Ly dAw=f+d % apny< f!, (with ap<<0, j+Fk)
Also, I {u+-dw) <f?, for §: DPu<<f?, that is, Li(u-+dw) < f.
Similarly, we can prove (b).

With (a) and (b), the proof of Theorem 3 can proceed in the same way as
Theorems 1, 2.

§ 4. A concrete Problem

In this section, we congider a mildly nonlinear partial differential equation of
elliptic type

Py, My ,
ﬂl&=-3—w7+—a?-=f9ﬂ), in Q,

(9)
ﬁlgﬂ"‘_“g(m, ¥) s

Ef_} »
where 5 =0.

i

Using the standard five—point difference scheme with lexicographic ordering of

the grid poinis (from left to right and from bottom to top), discretize (9) (step
gize i):

L= Asu+12Bys=fy (10)
where = (11, =+, uy) T, fa=— (f1, ©o0 )T, Byu= (f (1), <o, S @x))?,
C I 4 -1
—C o -7 . —1 4 -1
T M Tt =] (T .
— T ¢ T —1 4 -1
= 4 O —1 4

Clearly, Ly is an M-matrix (if By is linear on %) or

M-function (lf By is
nonlinear on wu).

Remark 8. Obviously, if the coefficients of g:;‘: , _2_2;7 are nonnegafive

functions of £ and ¥ and at least one of them ig positive or f(w) is replaced by
S (@, ¥, v), we can obtain the same regult.

Remark 4. In the I-D case, we have a gimilar discrete structure,
For other kinds of examples, refer to [6].

§ 5. Numerical Experiments

Now we give gome numeripa.l results for solving the following two problems:
(4) du=e"+f (2, y),
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SRR

(B) | - du=w’—g(z, ¥),
where f=4—- " g (274-9)% -2, = (0, 1)2. |
Their exact solutions are u=a?+¢?+1 and u=2?-y, respectively. Discretizing
problems (A), (B) in the same way as in Section 4, we obtain

L;‘H — A;“u -+ hﬂBﬁH ='f1,.,

where Ay, fa, s aTe as in Section 4, Byu= (e*, -+, ¢*7)T for problem (A’), Byu= (ui,
u3)T for problem (B).

"~ For the sake of comparison with the SUR and the M@ methods (i.e. dy=1 in
Algorithm 1), we use EPS = max |uf —,| as the error conirol, where ¢* is the k-th

1<f< N

tterative solution and % is the exact solntion of problem (A) or (B). The time and
number of iterations faken by the methods above are listed when EPS reaches a
¢eriain accuracy.
It is well known that if the number of grids is too small, the advantages of the
MG method cannot show up. Here we only give the results of two cases i.e. four
. T 31 13 . 1 1 1 1 1
grids ( =51 157 6 3) and five grids (h= 15 B 19 67 3).

Some notations, In the following tables, @,<<0 means zy= — A7 (A*By0— fi] -+
k%) : Lyzo< fa; @o=>0 means zo= 431 (A1B0 — fa| +A%): Inzo>> fi, where e= (1, 1, ---,
1)*. For proﬁlem (A), we also congider the case @y~0 which does not satisfy Lna,<<
f», but approximately so. For the casses ,<C0 and @y=0, the iterative sequences are
strictly monotone increasing, while for x,>>0, strictly monoione decreasing.

We take the relaxafion factors »=1.0 for the SUR, 0.88 or 0.9 for the MG
and the MMG, respectively. The rate of convergence of the SUR is faster in the case
g=1.0 than in the case r<1.0. Although we only take r=0.98 for the MG and the
MMG@, their rates of convergence are much greater than the SUR in the case r=1.0.

A1l the numerical results reported here were computed on an M-3408 system
made in Japan.

We take ;=2 #3=1 in Algorithm 1. Time in the following tables means CPU

time (M-minute, S-second), ITER means the number of iterations, and MG-}V
{also MG-W, MMG-V") means V-cycle or W-cycle.

Table 1 For preblem (B): EPS-=10-4, I}, - FW, I}*ilinear interpolation [2],

1
Fﬂlll'—gl'l‘i: hn = %, h1 == -E-. hgﬂ~1—-]ﬁ-, hg =?l"'-

Method T r Time Tter . Time Tter

SUR 1M 118 647 1.0 iM 88 534
A T s YO

M-V 508 88 473 8L
MG-W Zo<<0 0.9 I - 439 o7 0.98 415 33
MMG-V (3,5) 193 14 198 12
MMG-W (3, 5) 183 g 168 G
SR 548 510 1.0 539 479
MG-V | ass 65 ars 61
MG-W Zo=>{ 0.9 3415 41 0.98 325 39
MMG=-V (2, 8) , 178 9 173 9
MMG-W (2, 5) 158 & 143 ¢

T e
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Table 2 For problem (A): EPB=-10*3,. Ii01—FW, I**! a8 In Table 1, stop size agz in Table1
Method Zg r | Time Tter r Time Iter

i p— T e — ¥ H it - i = T

BUR , %<0 0.9 1M 218 451 1.0 1M168 421
MG-V 1548 61 558 59
MG-W 2y <<0 0.9 . 418 40 0.98 468 38
MMG-V (g, 5) | 208 o . 208 9
MMG-W (2, 5) 178 4 178 4

~ SUR . - ! 568 804 1.0 538 291 )
MG-¥ | 428 48 T 408 40 -
MG-# Zy>0 0.9 283 98 0.98 358 27
MMG-7 (g, 5) | 178 8 178 5
MMG-W (3, 5) 158 3 158 3
SUR _ 1M 118 409 1.0 1M 18 379
MGV ) 488 56 w8 s
MG-W Ty 0.9 | 428 37  0.98 428 36
MMG-V (2,5) . ’ 178 8 - 178 8

MMG-W (2.5 158 4 158 4

Table 3 Fgr problem (B): Ii.,—INJ [2] (r—0.98), I%,,— FW (r=0.9), I+
as In Table 1, EPS=10-3. FivE—gl'id: hur—=—1-, flj_ﬁ'l, hg=—l-, hy— 1 ’ }l4-=—1-..

8 & 12 24 48 :
Method i 7 Time Iter . # ' Time - Iter

BUR | 15M 428 1.0 14M 278
MG-7 6M 208 185 6M 43 171
MG-w g<20 0.9 4M 78 81 - 3M 478 76
MMG@-7 (2,5) o | 1M 218 20 0.98 1M 168 18
MMG-W (2, 5) 508 5 -~ 518 5
SUR 10M 558 1.0 10M 38
MG-V T 4M 268 140 4M 118 1z =
MG-W To>0 0.9 2M 558 60 0.98 3M 458 56
MM-F (2, 5) iM 58 14 1M 28 13

MMGE-W (g, 5) 478 4 468 4 '

Table 4 For problem (A): I+, 11, EPS and step size as in Table 3

Method X 7 Time Iter 7 Tima Tior

T BOR 2iIM 118 1.0  17M 498 o
MG-7 10M 108 225 ) OM 428 193 =
MG-7 L <0 0.9 6M 308 103 0.98 5M 458 8
MMG@-V (2, 5) 1M 78 9 1M . T
MMG-W (3, 5) iM I8 5 IM 63 &

= SUR 1IM 158 1.0 1IM 38 "
MG-F n 5M 278 118 ~ BM 108 ' E 70
MG-w T ) 0.9 3M 428 54 0.98  8M 488 51
MMG-¥7 (3, 5) 508 5 508 5
MMG-W (3, 5) 578 5 . 528 4

PP e e — e ——— - - rs i —

BUR 1 18M 408 1.0  15M '238

MGV 8M 573 200 T™ 468 176
MG =0 0.9 5M 488 96 0.98  4M 548 81

=
MMG-V (3, 5 408 8 878 . 7
CMMG-W (3, 5) : l 388 5 378 5
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R Y = = i = S

Remark 5.  The parameter di in Algorithm 1 is chosen as follows: Suppose
veciors U, v€ RY satisfy V>0, LU <fs. Then ’aaka

d=m111 {mm fi— , }

1
gl >0 ﬁh

where do>0 (a given constant) and z5 = IV +7? (vg*+o —e") for problem (A), and
SV + 22 (Buiv,+ 8do |1 | vi+ (d8 — 1)1: ) for problem (B). In the other case, ie.

InU > fy, take d=mm{m1nﬁ do}_, where zy=IAV +A® (Bufvi— 8do fuu | vi +

240 ¢

(d§—1)v;) for problem (B), and min £ !‘U- for problem (A).

g i

In the tables above, the sign (p, ¢) under MMG-¥ or MMG-W means taking
do=1p on the lower grids, and do=g on the highest grid.

From the choice os d; above we know that d¢ cannot be taken $00 large;
otherwise d, may be very small (then we have a glower rafe of convergence).
Usually we take do€ [1, 4] on the lower grids, and do€ [B, 6] on the highest grid. It
is better to take do& [2, 8] on the lower grids, and do=~b on the highest grid. But
the best choice of d, still needs further analysis and more numerical experiments.

Remark 6, 'The numerical experiments show that the MMG method is more
efficient thap the MG method if we choose do appropriately. The number of
iterations of the MMQ clearly shows its fast convergence. |

Finally we list the errors EPS after each iteration for the MMG method in
three cases: (for problem(A))

Table 5 MMG—‘)&V: x,=0, r—0.98, I¥,,— FW, I}+1 as above, five-grid, siep size as Table 8
(3, 5 |

W

numbear of B 1 2 | 3 . 4 D
ite:a.tiﬂns | "
HEPS .2918101 .BOSYSEO0 A497 KO0 4190 -1 - .1436H-2 .9565E -3

—._____.—__.—.—_—_—-——-—_-_—_'-—'—-_-__—

Table § MMG-W: x,—0, I%,,, Ii+1 and r as Table 5, four-grid

- (2,5) |
; _
number of | 0 1 2 = 3 &
jterations
BPS A83TEQL ABZRK00 A178E~1 Al1T4E-3 40631-3

__——-W-__—ﬂ
Table 7 MMG-W: x,<.0, others as In Table 8

(2, 5)
____-—__#_—M
number of 0 i 2 | 3 4
iterations
BPS ATTRE01 .8893H00 . 7693F-1 .8096E-2 .6T43E-3

—__——_.__——._—-——_—-—_—m'._'—‘_——_—"

§ 6. Numerical Results of Some Typical M-Type or
Non-M Type Problems

For many typical M—type or non-M type problems, namely the coefficient
functions of discrete systems are not M—functions, we have made a lod of numerical
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oxperiments. The results show that the initial iteration vector for the MMG method
18 not necessarily chosen strictly to satigly Lu’< f or Tu®> J a8 Algorithm 1 or 2
and the MMG method can effectively be used for more problems,

The following results are computed by using the five-grid MMG iteration,

)

1 1 1 1 1 =
aamely ho“g: h1='-€, hn=—1§: ha=-ﬂ-, hing‘", and r=0.98, EPS=1( 4 wy=0,

We discretize the following problems a), b) and ¢).
a) Chemical equilibrium problem

Q=12 in Q= (0, 1)2
{-.u==g(m, ¢), on T, |
where g(z, 4) <0. Weo know that there exists a nonnegative unique solution for the
problem™, We take ¢g(=, ) =#*+2?4+1. The numerical results are ag follows:
method MG-W MG-V MMG-W MMG-V

(2, b) (2, b)
Iter 75 149 8 21
Time 8M 278 4M BTS 358 H3S

Especially, we have got the same Tesults by using a,= —‘—1'- (BPe+ fi) <O,

b) Consider the following problem:

‘ { =2, in Q= (0, 1),
u=p(z,y), onTl,
where ¢ (7, y) <0, and @ (z, ¥) =0,

Whether there exists a solution for the problem has not been proved yet. But
nsing the MMG method, we have made a lot of numerical experiments for different
@ (2, ¥), and the regults show that the iterative sequence for the MMG converges #0
the exact solution of the discreto system when we take ¢(@, y)>>—4.5. When
@ (%, y) < —B, the iterative sequence does not converge; perhaps it is becanse there

does not exist any solution for the problem in this case. The following are two
numerical regults by using the MMG-~W method:

(3, B)
p{@, y) Tfer Time
— 3.0+ sin (ay) 8 84.728
—4.5 (for four—grid) 7 15,065

©) A gimple bifurcation problem
{.du= ~Ae*, in Q=(0, 1)3
u=0, on 1.

We know an upper bound of the bifurcation point is 6.81. The following are
S0me numerical results by using MMG-W:

(4, 5) |
value Lter Time U (%-, —%-) EPS
1 b 82.888 0.0780582 10~*

6.78 6 88.789 1.12644 10~
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6.8 3 42,288 1.13184 10~

6.8099 19 1M318 1.138987 10-3

When A>=6.81, the error EPS does not reduce, and the solution of the
bifurcation problem does not exist in the case. The above result for A=1 is the
same as that in[5].
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