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’ Introduction

»

In this paper we define a new nonlinear operator of the ocoeflicient inverse
problem of the wave equation and heat equation such that the inverse problem will
be reduced to a new nonlinear operator equation. This new nonlinear operator is
most ugefal for extending to 2-D and 3-D inverse problem of the wave equation
and heat equation. We used the Gaunss-Newton method to solve the regularizing
equation of the above nonlinear operator equation of the inverse problem of 2-D
olastio wave equation. The iterative process 18 very stable and yields excellent
numerical results ([3], [4]). Here, we study in detail the properties of thid
nonlinear operator and prove the convergence of this iterative solution to the
regularizing solution of the inverse problem in Tikhonov’s sense. In particular, we |
prove that the eonditions of T’heorem 5.1 are entirely satisfied.

§ 1. A New Statement of the Coefficient Inverse Problem
of 1-D Wave Equation and Heat Equation

1.1. The inverse problem of 1-D wave equation and heat equation
Tt is well known that, after Laplace fransformation. ([81), the ocoeflicient
inverse problem of 1-D wave equation and heat equation can be reduced to finding a

coefficient function ¥(x) in
3% {k(2) € OO, 1], 0<y1<k(2) <7s, |dk(2)/d| <pBi},
such that a solution, u(w, 8), of the ordinary differential equation
A k(z)du/de) /da+fu=0, >0, 0<o<1, (1.1)
u(0, 8) =F(s), du/da(1, 3) =0, s3>0, (1.2)

# Received March 20, 1985.
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satisfies the additional condition: |
du/da(0, 8)=G(s), 3>0, o= 0 L ()

where @ =2 for the wave equation, #=1 for the heat equation. The F(g) and G(s)
are known data, and satisfy certain compatible conditions such that the above
inverse problem hag a solution. | | |
- In what follows, we will consider the inverse problem of the weak form of

(1.1)—(1.3). '
| 1.2. A new nonlinear operator of the ooeflicient inverse problem

Definition. -

2={k(z) €0[0, 1], 0<ko<<k(a)<<ky}. e (1.4)
For fixed #(#) € X and s>>0, lot uy(w, s; %) be 2 solution of
J: {k(m)-dui/dm*dw/dw+s’-m-w}d:ﬁ=ﬂ, >0, (1.5)
| u1(0, 8)=F(s), s>0, for all v H'[0, 1], v(0) =0, (1.6)
and let ug(w, 8; k) be a solution of | |
"[: {#(@) »dua/da-dv/do-+ s®ug+ v} dop — —k(0)G(s)v(0), (1.7)
'
for !
all v€H[0,1], s>0. (@.8)
Definition. |
2 |
T (k) = || (k@) (@t~ 1) /d2)"-+ (s — )}, (1.9)

T (k) is a new nonlinear operator of the coefficient inverse problem of 1-D wave
equation and heat equation, so that the coeflicient inverse problem of weak form of
the wave equation and heat equation will be reduced to the following nonlinear
operator equation

T(k) =0, (1.10)

§ 2. Gauss-Newton—Regularizing Method for Solving the
Coefficient Inverse Problem of the Wave
Equation and Heat Equation - |
2.1. Hilbert space L, (0, co) | | N | - |
- In Bection 1.2, we took = ag a domain of the operator T(%k), here we have to
define a range of 7' (k).

Definition. L,(0, o) és a Banach space ommwiny- of all functions f(s) which
are defined in (0, co) and satisfies

| P@w©ds< o, B (2.1)

with a norm _ . | | -
VB[ fetema, (@2)

wheare
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w(s) =8%/(1+¢*)%. (2.3)
Definition. The énner product of £(8) and g(s) which are in Ly(0, o) i3
(fr Do=|. F(5) -9 -w(s)ds. (2.4)

9 9. Tikhonov’s variational problem™ of the coefficient inverse problem
Lot A be a linear bounded self-adjoint positive defined operator such that
Q%) = (Ak, k) is a stable funotional in Tikhonov’s gense™, for example,

Q(k) = (Ak, k) =j1 (+ (8 /de)?) d. (2.5)

By the regularizing method™, the coefficient inverse problem of 1-D wave equaiion
and heat equation will be reduced to finding a function k,(2) which minimizes the
following nonlinear functional, i.e.,

J(kn) - iﬂi_ﬁﬂ.f(k), (2.6)
=
where

J (k) = |T (&) [+ a(Ak, k)

~[1f (@) - s /30)*+ & (ta—u0) D) ()it (A, B).

(2.7)

2.8. Euler equation
The Euler equation of (2.6) is

77 (k) T (k) + adk=0. (2.8)

2.4. Gauss—Newton method

Wo nse the Ganss—Newton method to solve the nonlinear equation (2.8), so as
to obtain the Ganss-Newton-regularizing iteration for solution the coeflicient inverse
problem. The iterative process is as follows:

(1) If k.(z) is known by (n—1)th iterative step, we can compute T (ka ) and its

first order Frechet derivative operator 1" (%,).
(2) Solve the following linear equation

(" (k) « T (ko) + 17" (ko) « T (ko) +ad) - OF,

= — (T"*(kp) T (k) T A k), (2.9)
where T (%,) was computed in the first step. .
(3) kn+1= II+ 3]#,,. (2 : 10)

The iteration (1)—(8) is called the Gauss-Newton-regularizing iteration. In
order to compute TV(%) and T” (%) and study their properties, we have fo study inm
detail the generalized Green function of equations (1.5)—(1.6) and (1.7).

§ 3. The Generalized Green Function

3.1. The generalized Green function G1(w, {) and Ga(w, §)
Definition. If o function G4(x, §) satisfies the following conditions:
(1) Gy(w, &) € H*[0, 1] with respect to either @ or &,

(2) Gi(z, §) =Ga(E, @),
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(3) Gi(a, &) is a sclution of the following equaticn

J: {37(5‘)'.ﬁgifaf-dﬂ/df+sﬂ(¥1-w}d§=m(m), 0<a <1, §>0, (8.1)

Gi(z, 0)=0, for all v€ H[0, 1], v(0) =0, (3.2)

then @4(z, £) is called the generalized Green function of equation (1.5) with the

homogeneous boundary value condition. For simplicity, in what follows we re fer to it
as the generalized Green function of (1.b).

Definition. If o function Gy(a, §) satisfies the following conditions:
(1) Gaa, &) € H[O, 1] with respect to either x or £,
(2) Ga(w, £) =G4(¢, 2),

3) Gal(w, &) és a solution of the following equation
E{k(f)-3G2/3§-dw,/d£+s"(¥ﬂ-w}d§=@(w), 0<a<1, >0, for oll v&€ H[O, 1],

(3.8)
then Ga(z, £) is called the generalized Qreen Junetion of equation (1.7).

Remark. For fixed ¥€3 and $>0, Gy(, £) can be found. In fact, G,(z, &)

continuously depend on %(z) and s; so in what follows we often write Gz, & 8, k).
Let us odnsider the following equations

_E 1£(2) duty/dzedv/do- 5P <y » w}dm=":f-w dz, s>0, (3.4)
u1(0, 8) =0, s>>0, for all € H[0, 1], »(0)=0, (3.5)

end
‘ J.:{k(m) 'dﬂg‘/dﬂ}ld‘ﬁ/dw'l_sﬂluﬂ-w}dmgj:f.ﬂdwl, for "UEH]'[O, 1’]} >0, (3.6)

We use the generalized Green function G, (@, £)(¢=1. 2}, to represent a solution of
(8.4)—(3.5) and of (3.6), regpectively.

Lemma 3.1. Suppose G;(z, &) s the generalized Green function of (1.5) or

(1.7), 4=1, 2, for the fized k(z) €3 and s>>0; then the solution of (8.4)—(8.5) or
(3.6) can be represented by

w(o, 5 B)=[ Gu(s, £)-F(€)df. (3.7)

Proof. 1Tt is obvious, so we omit it.
Lemma 8.2. Under the conditions of Lemma 3.1, if the right hand terms of

(3.4) and (8.6) are changed io Jl Of /Ow-0v/0x-dx, then itheir solutions can be

0

vepresented by
w(z, s B)=— | oG,/06of /¢ -a& (3.8)

-~ | e & 5 B)- [ of /on1/kCran-ag

* +L af 1o A E()in. (3.8)*
3.2. The properties of the generalized function
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Lemma 3.8. If k(2) €00, 1] and G4(z, §) is a classical Green function of

d(k(@)du/da)/do+s"u=0, s>0, 0<ae<l, (3.9)

%(0, 8) =0, du/da(l, £)=0, s>0, (8.10)

then G(w, &) is also the generalized G'reen function of (1.5). If the first condétion of
(3.10) is changed fo w'(0) =0, then uis classical Green fumction Ga(z, §) is also the

generalized Green function of (1.7).
Lemma 8.4. If k(2)=k", ¥ being constant, then the generalized Green funotion

of (1.5) is

[1/ (/TR 8@@Tsh ((s9) / V&) ~@)eh (D) /B

st 23]~ ENMET TR, IR, (3.1
10 )1 11 /(ST 8b () /NE-E) b (™) /NEF T
(1= 2)) /oh s/ TE)), E<o<l

and

[ @ia, 2)do=1/2(1/(VTF)-5) sh( () / NF)/ oh(547/ ~/FF)

<1/2+(1/ (VT -s2)). - (8.12)

Proof. Omit¥d.
Lemma 8.5. If k(z)=k", k" a consiant, then the generalized Green function of

{1.7) s
(1/ (N TE")) +s©®) ch ((s©2)/ V) ch ((s9/2) / N
$o Bt . (1-¢))/sh(se® /N (&)), 1<az<§,
2\l 1/ (TED) =892 eh ((89/2) /T €) ch((s¥®) / N

. (1—:;-.:))/3]:1(3“”2’ /& (")), &<o<l
(8.18)

. and
[} @3e, 2)da=1/2(1/ (VT +6) ch((@)/ VF) /s &2/ JE)
<1/2:1/((VE) ). | (3.14)

Proof. Omitted.
Lemma 8.6. Suppose k(2) €2, and Gilw, £ s, k) is the generalized Green

funetion of (1.5) or (1.7), i=1, 2, respectively; then
| j: -w(s){j: j: (k(€) [0G/ 051"+ &°« f)dfdm}ds{+m. (8.16)

Lemmas 8.7. Suppose ki(z) €2 and G (w, & 8, k) 48 the generalized Green
funetion of (1.B) when k(2) =ki(z), =1, 2, respectively. Them there exists a constand

L independent of k; and s, such that
IOINNEAG e @)Y 1 ¢ (GG )i -da-ds <Ilbi—Rall.  (3.16)

Lemma 3.8. Suppose ki(w) €2 and G.(x, & s, k)is the gemeralized Greem
Susction of (1.7) with k(x) =k, ¢=1, 2, respectively. Then there exssts @ constant L

" “independent of &, and s such that (3.16) holds.
Corollary 8.8. Under the condition of Lemma 8.8, the following inequality
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holds

j w(s)(Jr (%8) 39*) - 8 Gﬂ)dgdw) ds< oo, (3.17)

Corollary 8.7. Under the conditions of Lemmas 3. 7and 3.8 Gy(z, &; s, ky) is
the generalized Green function of (1.6) and (1 8), ¢=1, 2, when %(2) =%;(z). Then
the following inequality holds.

J w(s) Jr Io;(&) B(G‘H—Gu)) +8° (Ga ~ Gyy) ]dgdm) A3 < Ly | by — ka2,

where Ly is a constant independent of %, and s>>0.

§ 4. The Properties of T defined by (1.9)

Lemma 4.1. Suppose F(s) € Ly(0, o), k(z) €3, and uy (=, s; k) 8 @ solution of
(1.5)—(1.6). Then

Jo[r@ (L) + et aacst 2 o)) (4.1)

Lemma 4.2. Supposs k(%) €2, G(s) EL.(0, o), and us(z, 33 k) 48 a solution
of (1.8). They

"Bl s Ko--8°
J: [k(@(%*)ﬂ"i'fuﬁ]dmg* Lilg® | <L,
L2[G(s) |5, e>1,

where Ly and Ly are constants independent of k{z) and 3>>0.
Lemma 4.8. T (%) in (1.9) maps k(z) € 2 into L, (0, 00), ¢.6.,

| w(o) T () do< +oo. (4.3)
Proof. 8ince F(8) € La(0, co) € Ly (0, oo) and: |G|% is also ﬁmte,and moreover,
W) = f;)ﬂ,, s0 by (4.1) and (4.2), (4.8) holds.
Definition. For k(z) €2, s>>0,
g 2 . _
. H%,.={u JZ k(m)(—% —l—s’u“:’d:n<+m}. (4.4)
Denote the norm of u én Hiyy by |t/ ss, -
]Iul];,.=J k(m) )ﬂ +3°uﬂ]dm
Deﬂmtlon For k(x) €2, 80, |
a 2
L (0, w0z Hk,)={ujﬂ w(s) ([} [#(a)(42) o7 | ds<m}. (4.5)
Denote the norm of u in L,(0, oo, HE) by |4 wke,
|22} w;,,,—'.[ w(s) j’ [?ﬂ(a:)( +3'uﬂdm)ds.
Remark. (a) By Lemmag 4.1 and 4.2, we know that

w(w, 8; k) € L,(0, oo; H},).
(b) If u€ H*[0, 1] and u(0) =0, then u& Hi,.

(4.2)
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~ Lemma 4.4. If F(s) EL;;(G, oc) and G(8) €L, (0, o), kyE€E, and uy(z, 8 k)
#s the solution of equation (1.B5)—(1.6) or (1.7), i=1, 2, with k(x) =ki(z), j=1, 2,
respectively, then

|2 — u,ﬂﬂwh=rw(s){,[ k(o) d(uﬂ_M)) 8® (251 — ﬂm)ﬂ]dm}ﬂds

‘QLHE:L‘—J% G*QL:l”ki kﬂ"H‘: (4'6)

where Ly is @ Lipschitz constant independent of k; and s.
Corollary 4.4. Under the conditons of Lemma 4.4,

= 2 3
[T o) (] [Blay (L0 )t g# uy — wis)? Jdo) d
<L|ky— ko te <Ll by — ba| i,
L, L, are constants independent of %; and s.

Lemma 4.5. Suppose F(38) € Ly(0, o) and G(s) EL.(0, oo). Then T (k)
defined by (1.9) is @ Lipschitz continuous map from 2 into L, &.6., there emist
constanis L and Ly tndependent of bk and 8 such that

|7 (1) — T (ko) | <L By — Baf 0o <L | By — B2 | s (4.7)

Next, we will,study their first order and second order Frechet derivatives.

Lemma £.6. Suppose F(38) €L,(0, o), k(z) €3, and G(s) €EL.(0, o). Then
the nonlinear operator wiz, s &) defined by (1.6)—(1.6) or (1.7), é=1, 2, has the
first order Frechet derivative u;, and

W ko j:h oF b d& (4.8)
- ‘1 ; : fdu h(m) 5 | ® dus  h(n)

Moreover, ul b & Ly, (0, o0} Hi,).
Lemma 4.7. Suppase F(s) €ELy(0, o0), G(3) EL(0, o), and k(z)Ec 2. The

nonlinear operator u(w, s; k) 48 defined by (1.5)—(1.8) or (1.7), ¢=1, 2,
respectively. Then their first order Frechet derivative uyh is @ Lipschitz contimuous
map from 2 into L,(0, oo; Hy,) and
i fo— vip o | s S L[ o 0o By~ Bia] v, (4.10)
whers L is ¢ Lipschitz constant independent of &, h, 3.
- Lemma 4.8. Suppose F(8) €Ly (0, o0), and G(8)EL.(0, ). Then the
nonlinear operator T (k) defined. by (1.9) has the first order Frechet derivative T'(k)k

€ Ly (0, 0),

T (k)b = Jh(m)[( )]dm. ' (4.11)

Corollary 4.7. Under the condit ions of Lemma 4.7,
N d(u" lh_u :h
Jo wo (J,[m@(Hnelasty

+ 8 (Ul b — U} 1sh) ? dm) ds<L|A4 ] by — o

Lemma 4.9, Under the conditions of Lemma 4.8, the first order Frechet
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differentiable T'(k)h of the nonlinear operater T'(k) defined by (1.9) is o Lipschitz
conitnuous map from 2 into Ly (0, o), 4.6., Jor any ki, kyy, RES and {0) =0, there
ow18ls & constant L independent of k; and k, such that
|2 (&ea)— T (2 ] SL| by~ k| | 2] . (4.12)
Proof. From the represontation of V(%)% and the proof of Lemma 4.0, we can
obtain (4,12) immediately.

Lemma 4.10. Under the conditions of Lemma 4.8, the nonlinear operaior T (k)
defined by (1.9) is second order Frechet differentiable, and T”(k)hb* is g Lipschitz
condinuous map from 3 into Lo (0, o0),

Moreover, we have

s =of B (2 — (80 i

N R AN o ¢ B R
- sa.E{ok_T(: & dn.[nk(:)' @ o

gy [ e anfo
e e . ay(a, 6. DL g,

— | o) , dva 5 e PR (n), du
ohln) Ty 91 Falm £+ ) oL dnlanas  (4.13)

and for any kq, ko, b, B € 2 and h(0) =h*(0) =0, there exists a constant L independont
of &, h and k*, such that

IIT”(ki)hh'-—T”Uva)hh"ﬂwgllﬁkl—kallwﬂk!la-ﬂh'ﬂu-%ﬂ;llkr—kallmllhnmllh"llm-
(4.14)

§ 5. The Convergence of Gauu—-_Newton—Regulm-izing Method

5.1. The convergence of quasi~Newton Meihod
Lot
| k) =T"(&) T (k) + adk. (5.1)
Then (2.8) reduces to .
@ (k) =0. | (5.2)
If we assume that equation (1. 10) has a unique local solution A" (z), by [1], then a
solution of (5.2), k,(z), satisfies |
|#a (@) — B*(2) | ~>0, 28 a—>0. (5.8)

k.(x) i8 oalled the regularizing solution of (1.10). Next, we will prove the
convergence of the modified Gauss-Newton iteration (2.9)—(2.10) for solving
(B.2).

Let us consider the yuasi-Newton iteration for solving (5,2)
kn.{.:{ = Ky — REI@(E’H); (5 : 4)

where R, is a sequence of invertible linear operator. Under certain conditions of &,
and the initial point ky(z), the following theorem holds.
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Lemma 8.1. Supposs P(k) is Frechet differentiable in the Banach space B. Let
R, be a sequence of the dmwertible linear operator from B into B*, such that for @
ko(z) €B and p>0, the sphere S(ko, p) €B, and for given nonnegalive constanis X, 8,
B, and 7, - |

(a) [B;'] <A, g | | - - (B.5)

(b) |Ba—& (ko) | <e, | ' : (5.6)
(o) if &, kb are in sphere S (ko, o), then

[ @ (&) — B (B) — D' (ko) (k— 1) | 5 <Ba|k—hl, | (56.7)

@) (2% |p<n - (5.8)

e=A(Bat+8) <1, = (1“'_"'?6 <p. . (B.9)

Under these conditions, the iteration (5.4) is well defined in S(ko, p) and converges to
a solution k() of (B.2). Furthermore, |ks— ko|<r and ko(w) i8 the only soluiion of
(5.2) condained in this sphere. The rate of the convergence 43 given by

[ Bn— B4 | <™. . - (6.10)

The proof of this lemma can be found in [B].
For (5.2); if we take |
R,=T"(ky)T" (k..)_ +ad,
then the quasi-Newton iteration is the standard Gauss—Newion iteration. If
R =T () T () + T (ko) + T (Joo) + 04, ks (6.11)
thon it is called the modified Gauss-Newion iteration, where ko is the initial poinf,
For convenience. Let

N (&) =T"T' (k) +oA. - (5.12)

It is clear that in order to prove the convergence of the iteration (2.9)—
(2.10), it is suflicient to prove that under certain conditions, the conditions of

Lemma 5.1 can 2ll be satisfied. |
5.2. The proof of the convergence of the (auss-Newton—Regularizing method

The commnutative diagrams of Fig. 1 and Fig. 2 are useful for mnderstanding
the range and domain of the operators e ¢ gnd 7.7, In Fig, 1, for fixed &, T (k)
is the linear operator which maps A€ 0°[0, 1] into L., (0, o). T"*T' (k) is the linear
operator which maps AC ¢°[0, 1] into O°[0, 1]. In Fig. 2, T (%) is the linear
operator for fixed k. It maps C°[0, 1] into L, (0, oo)x H*[0, 1]. T'"*T ig the
linear operator for fixed ¥ which maps hcC®[0, 1] into C*[0, 1].

Lemma §5.2. For g(8) € L,(0, o), we have

7 (k) - g () (@) = j:[( dus ) - (_%_)ﬂ J-g¢s) - (s) -ds. (5.13)
Upon substiiuiing (6.13) into (5.1), we have
o~ [ {[(S2) -(G) ]

'ﬁ[}"’(@(@d}w )ﬂ b (w—#ﬂ)]ﬂdf -w(S)}czs+aAk. (6.14)
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Ttk e e, T Gig
O'[0,1]——— o» [0, 1] 1o, 1j———» C'™[0, 1]

1

4 - TM!

TJ‘ T!i

Lo(0, 0)——= 150, @) Lou(0, o) x H1[0, 11——0 72 0 %0} x H1[0, 1]
Fig. 1 | Fig. 2

Lemma 5.8. Suppose k(’n)EE _ﬂn&; F(s) ELﬂ(O"I co), and G(s) EL.(0, oo);

then _ |
rO - {8 DY (dule s DY)
J" B (duq(& ; Q)“ _( d_ua.(% s k) )”

T 2E w2 g [ (o) - (L

]d§ -w(s)ds, (5..15)-
a4 )T ®)-wo)ds

HWH NEE S
J":’a(ﬂ) ez duy J*'hg'n) duy

, En) I G R e
& & (¢ 5" ( ) diy
k(;; T dndf} T (%) s~ w(3)ds

A MJ Va6 o [ R 20 414,

L[| Gl & 5, Byan- :’;(‘;;?)) Ly ag

-2 [ ey, & 5 k)j”;{;? % dn ¢ dy

a du”'[ J Ga(n, &; s, b)dn'[:};(%) % dmif}
D (k)5 w(g)ds,

N'(k)-h*= (D" (k) T(Ia)+T T (E)) o 1* '
-4, T2 (L ) -(2) ] [(my G*J w(s)ds
+4T(=5TJ {""“‘J f’?;,é?) ) B e
I s o M} &) - (G2 o wtrae
- k(@ {--~J‘ J.6:0. & 5. . f, A dn df dy

JJG‘a(y £; s, k)f% dncf&d}

(5.16)
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T' (%) is @ Lipschitz contimuous map from 5 €0, 1] énto C°*[0, 1], d.e., there ewisis
a constant L>0 independent of k; such thai -
77T () — T T (hs) | <L iy — a2 (5.18)
Lemma 5.5. Under the conditions of Lemma 5.3, the operators 7T (k) and
T'*T(k) are also Lipsohitz continuous maps from Z into C* i.e.
|77 T (oy) — T T (Ba) | < Ll b — Bal o <La s — Bal (56.19)
HT”*'T (ki) ! e 4 (kﬂ) “ QLaﬂ oy — 2 pﬂ‘QLa,'lki — I “ H's (5 20)
where Ly are Iipschitz contanis independent of k, and 8, i=1, 2, 8, 4, i=1, 2.

Lemma 5.8. Under the conditions of Lemma 5.3, the operator T'*.T i3 Frechet
differentiable and we have |

(T TV he=T" T h+-T"*T+h (5.21)
for any h(x) €c°[0,1]. | |
Lemma B.7. Let L, and Ly be linear operators from Banach space X enio I
Assume that

(i) L, is invertible and | LT'| <A,
(ii) [Ln—I| <3,
(iii) Ad<le

Then Lq i3 also invertible and

_1 A
L <o

Proof. See [6]. '
Lemma 5.8. Let ®(k) be a nonlinear operator from Banach space X into Y,

and let it be first order Frechet differentiable. For ko€ X and p>0, if k(x) €8 ko, p)
and

[ @' (k) — D' (ko) | <8,
then for all k, h€ 8 (ko, B), we have

| B (%) ~B(h) — D' (ko) (B—h) |z <Blk—h]x
Now, we are able to prove our main convergence theorems.

Theorem b.1. Assume that there evists a ba(x) € 2 € H* for small enough such
that ©(ky) =0, and let @' (k,) be an dnwertible linear operaior which maps € H0, 1]
into H™[0, 1]. Moreover, let R, be defined by (5.11). Then all of the conditions of
Lemma 5.1, (a)—(e), are satisfied, and the dteralive sequence {k.} of Gauss—Newton—
reqularizing method, (2.9)—(2.10), converges o the regularizing solution ks of

(1.10). Furthermore, it has the estimate of (5.10).
In Theorem 5.1, we agsume

(1) there exists a k,(z) € = € HY, for a small enough, such that
. D(%,)=0. |
(2) @'(%,) is invertible. '

We will prove that under oerfain. conditions, the above hypotheses (1} and (2)
hold. . -

Theorem §.2. Suppozs F(s) ELE-(O, o0) and G(s) € L.(0, o0) and there exists
a unique solution k*(@) of equation (1.10) such that
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(@) €H' [0, 1], and 7i<k'(z)<72.
Then, when « is small enough, there is a k. (z) € H*[0, 1] such that

#*
71 <ka(m) <272

2
Moreover,
B(ky)=0. (6.22)
Theorem 5.3. Under the conditions of Theorem 5.2, @' (k,) is tnveriible.
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