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Abstract

Let A, A € €™*",rank(4) = rank(é) — n. Suppose that A = QH and A = QH
are the polar decompositions of A and A, respectively. It i8 proved that

1@ — Qllr < 2]|AM2]|A - Alle

and i i
|H - Hllr < V2 ||[A— AllF

hold, where At is the Moore-Penrose inverse of A, and || ||2 and || || » denote the spectral
norm and the Frobeniua norm, respectively.

$§1. Introduction

In this paper, we use the following notation. The symbol €™*™ denotes the set of
complex m X n matrices, and IR™*" the set of real m X n matrices. AT and A¥ stand
for the transpose and the conjugate transpose of A, respectively. A) is the Moore-Penrose
inverse of A. I'") is the identity matrix of order n. || |2 denotes the spectral norm and

| l|F the Frobenius norm.
The polar decomposition has found many important applications in factor analysis,

aerospace computations and optimization. The following polar decomposition theorem is

well known.
Theorem 1.1, Let A€ €™ ™ m > n. Then there ezisis a matriz Q € C™*" and a

uniqgue Hermitian positive semi-definste mairiz H € €**" such that
LA=QH,  Q¥g=1"_ o {1.1)

If rank(A) = n, then H 1is positive definite and Q 13 uniquely determined.
Let A€ €™X" > n, have the singular value decomposition

A=U(E)VH
0

where U = (U,,Uz) € €™*™ V € €"*" are unitary, and L = diag(o;,02, - ,0n)}, 01 2
gy > -+ > 0,. Then A= QH 1s the polar decomposition of A, where
Q=UVHE H=VIV¥H (1.2)
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In the practical computation, because of the restriction of finite decision, the com-
puted polar factors are those of a matrix A perturbed from A. So it is of interest both for
theoretical and for practical purposes to determine the perturbation bounds for the polar
factors of a matrix. Higham [1] and Mao (2] have studied that question, and the following

results were given.
Theorem 1.2/11. Let A € C™*™ be nonsingular, with the polar decomposiiion A=

QH. If e = ”-“ﬁ;AA"uE satisfies kp(A)e < 1, then A+ LA has the polar decompossiion
A+ AA=(Q+ AQ)(H + AH),

where
18H|F . /5. . o13).
L e B (14
18@lr < (1 4+ VE)kr(A)e + O(?), (14)
1R~

xe(A) = [ ALl A

Theorem 1.3.12. Let A € IR®*"™ be nanamgufar, which has stngular value decom-
pnntmn A = UTVT +where A 13 perturbed to A which has singular value dccnmpoattmn

A=UZVT, Then - P
(VT —UVT|r < 2l|A%]21iA - Alir. (1.5)

This paper will further study the perturbation bounds for polar factors.
§2. Main Results

First, we introduce the following lemmas:
Lemma 2.1. Let Be €™ *X™ . C € C**",m 2 n, be normal matrices, and

71 _
72
I'= Ecm){":’hZ’rzE'“ETnEU*
6 '
Then _
Jin) [tn)
|BT - TC||r > 1,.”3( ) - ( ” )CHH (2.1)
Proof. Let
a n T3 & a C 0
F = ". H C= ( 0 N ¥
O In 1'11-[,“_"’ :

where N € ¢(mn)x(m=n) ig any normal matrix. Then we have

|BE - TCIF = “B(P’ (%I(i—-n))) - (F (,, Iti—n}))( )"
=J(or-re8(, nm) = (purmn) L 22

= || Br - reiz +'r,,||B( (m_..q) ( )“
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M‘ S SRS, o R —

and

wiB -Gl =B (15 e )-(§ &),

g (1™ _ (1™, (%3]

=2l2(s ) - (‘s )ol +218 (rm) - (311

Observe that B and C are normal matrices, from Lemma 2 of [4] we know that
|BT — £Cllr > 7,l|B - &iF- (2.4)

Combining (2.2) with (2.4), we get (2.1) at once.

= (d,;) € IR™*™ is called a doubly substochastic matrix if di; 2 0 and Z dix 2 1,
k=1

"
Y d21,i=12-,n
k=1 -
Lemma 2.213l. Let z = (21132: ' ":'Tn)T 5 ¥ = (ylsm:"':yn)ThE R", z; > z5 >
2Zn20,y1 2 Y22 2 yn 20, and suppose that D € IR**" 45 g doubly substochasiic
matriz. Then | |
o T Dy < zTy. | (2.5)

Lemma 2.3. Let W € €™*" be unitary, X € €nXn snhafy ||X”g <1, and L =
dlag(alrﬂ'ﬂr :ﬂn) E = dlag(ﬂl,ﬂ'g, :a'n) g, 2022 260, 20,0 2 Gz 2 -+ 2
On 2 0. Then

tr(EXHEW)| < -Retr[EWHEW] + = Z 0i0;. - (2.6)
|.—1
Proof. Since

tr(EWH ZW) = ii“ﬁi‘ﬁﬁ‘”ﬁ = i i 0:5j|wyi|* = Retr(SWHLW),

=1 j=1 i=]1 =1

then

tr(EXHEW)]

n n
IZZ %i0; J*‘”Jil S
i=1 =1

n i
DD oidy|zji|lwyi]

t=1 3=1

IA

HM:
-

: S -
115 aidi|zsf* + 2 Z Eﬂi“jh":’i':

=1 =1 5y=1

= lnezr(zwﬂ'iw) + 561,82, ,3a) D01, 02, -, 0n)7,

where D = (|z;;]?) € IR"*™, Because || X||2 < 1, we can see that D is a doubly substochastic
matrix. Utilising Lemma 2.2, we get (2.6).

Theorem 2.1. Let A, A € C™*", m > n, rank(4) = ‘rank{A4) = n. Suppose that
A=QH and A= QH are the polar decompositions of A and A, respectively. Then

1@ - Qllr < 2)|A|[2)) A - Afr, (2.7)
HH — H|l» < V2| A- AlF. (2.8)
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Proof. Applying the singular value decomposition theorem to A and A, we have

&=l vE  A=0 . Ve
0 0

where U = (U Uz ) 0 = (Uy, Uy) € @mXm ¥ ¥ & €™ are unitary, and £ =

n m-—n m—n

dia.g[u'l,crg, 'y "), ¥ —dmg(crl,crg, ;::r,,,] OL 202> -2 Op, 01 2022 - 2 On.
Since
(B\g .
1A-Alr =10 )7%-u () Vi

> llﬁ(g)f}” =0

s> 3 " .
—joa () - (3)V* 7l - 1E - Sl

utilizing Lemma 2.1 and the perturbation properties of singular values, we have

w Jin) Jin) -
i-ate 2alvea("C) - (' ) PIr ~1A- Als

= U U]_VH —UIV”F"”A A"
= [|At1z*1Q - @llr — |4 — Allr.

So (2.7) is true.
Let W = VEV, X =VHQHQV. Then W is unitary and || X||]z < 1, and we have

|A - HI|2 = te(H — H)(H - H) = tr(H?) + tr(H?) - 2Retr(HH)
= tr(H?) + tr(H?) — ZRetr(VEVHVEVH)
= tr(H?) + tr(H?) — 2Retr(ZWH W)

and

|4 — All% tr(HQH Q”)(QH QH) = tr(H?) + tr( H?) — 2Retr(HQH QH)
_ t,r(H?] + tr(H?) — 2Retr(VEVH Q¥ QVEVH)
= tr(H?) + tr(H?) - 2Retr(ZXH EW).

By Lemma 2.3, we get

1A — A2 > tr(H?) + tr(H?) - 2]tr(EXHEW))]
> tr(H?) + tr(H?) — Retr(SWHEW) - )~ 0:5;
t=1
= J1# - H|} + 31|E - T3 2 314 - H|}.

It is easy to see that (2.8) is ture.
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§3. Final Remarks

The perturbation bounds for the polar factors of column full-rank matrices are given
by (2.7) and (2.8). We can see that (2.7) iz a generalization of (1.5), and (2.7) and (2.8)-are
the generalizations and improvements of (1.4) and {1.3), respectively.

The polar decomposition is a generalization to matrices of the complex number rep-

resentation z = re'®, r > 0. For complex numbers z = re*® and # = 7¢', we have
i _ i Z,.
e’ —e’| £ -2 — 2|, | (3.1)
z .
For| < |2 2. (3.2)

It is easy to see that (2.7) is a generalization of (3.1), Now we give an example to show that
|H — H||r < ||A — A|F, as a generalization of (3.2), is not always true.

- Bxample. :
a=(89) A=5(2 )

It is easy to know that

. H=(89) A-5(% #)

- |55 #)], -2

and

V- ale = | (=0 8)], =25
Obviously, | H — Hllr > || A — Al F.
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