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Abstract

* ) o _"‘Al” = . .
The spectral function 4(t) = Z e " where {1;}52, are the eigenvalues of the

three-dimensional Laplacian is utl;d_i;d for a variety of domains, wheré —co < £ < oo and
{ = v/~1. The dependence of A(t) on the connectivity of 3 domain and the impedance
boundary conditions {Robbin conditions) are analysed. Particular attention is given to
the spherical shell together with Robbin boundary conditions on ite surface.

" 1. Historical Remarks

Let D C R® be a simply c;:mnected bounded domain with a smooth Fbuunding surface
S. Then, there exist eigenvaluea {1,}*° 7=, and corresponding eigenfunctions {¢;(z (..)}:=1

2 3 2
the Laplace operator As = —;;,— + -3——- + :? in zyz-space, under the impedance boundary

conditions (Robbin boundary cundltwnu), such that {¢,(z)}%2, is a complete orthonormal .
system in L2(D). That is, we have the following impedance problem (Robbin problem):

~D3d; = A;d, in D, | (1.1)
a :
(5, +7)¢;=0 onS, o (1.2)
where -?—— denotes differentiation along the inward pointing normal to S and -~ is a positive

a 5
conltm“ We may assume that each ¢; is real-ﬂlued and that the e1genva.lueu Aj are

enumerated in the order of magnitude

0<A €A3<A3<-€A<- moo asj—o0.  (L3)

* Received January 17, 1987.



302 Journal of Computational Mathematics Vol. 7

b

There are numerous works trea;ting the asymptotic behaviour of the number of eigenvalues,
N(X), as A — co. It has been shown that (H. Weyl, 1912)

N(A) ~ 61-’2-)3/2 a8 A — 00, - (1.4)
and that (R. Courant, 1920)
N(\) = 537 +0(Alog}) 82 — oo, (1.5)

where V is the volume of D. .

In order to obtain further information about the g.enmetry of D, one studies certain
functions of the spectrum. The most useful to date comes from the study of the heat
equation or the wave equation. | '

Accordingly, let e—*23 Jenote the heat operator. Then, we can construct the trace

function
o0

0(t) = tr(e™*4%) = Ze'“‘f, - {1.6)
=1 :
which converges for all positive &. |
Suppose that e—t83"" is the wave operator. Then an alternative to (1.6} is to study

the trace func tion
1/3

Bty = te{et ) =3 e, (L)
=1 - |
~ which represents. a tempered distribution for —co < ¢ < oo and i = v/—1. The applications
of (1.6) to problem (1.1) and (1.2) and to more general ones can be found in Gottlieb
[1], Pleijel [4], Waechter (5], Zayed [6, 7] and the references given there, thus, Pleijel has
investigated problem (1.1)—(1.2) by using the heat equation a.ﬁproai:h and has shown that:

if 4 — oo (Dirichlet problem),

S 4 S 1 1/2 .
0) = TomgyoTs ~ Toi * TSI [S Hds +O0(t%) ast—0,  (18)

and if v = 0 (Neumann problem),
v ., 5 . 1
(4xt)373 7 16xt  12x%/2t1/2

ﬂ(_t)-_= fs Hds + O(tt/?) ast—0, (1.9)

w!:tere V and S are respectively the volume and the surface area of the domain D while
H= %(-}:—1 + —1—], Ry and R; are the principal radii of curvature.

| Zayed [';]hhau investigated problem (1.1)- (1.2) for either large or small impedance 4,

by using the heat 'lg:natiun approach, and has shown that, if v >> 1, |

V 1 - 1 i
) = Gmyia e L [S Hds}+ 5773 /;Hdﬁo(t”“) as t — 0, (1.10)

e ;

L
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and if 0 < 7 << 1,
A(t) = A .+ 2 + - f(H — 3q)ds + O(t'/?), ast—0. (1.11)
(4x2)3/3 ° 18xt ~ 12x3/30172 f, '

The asymptotic expansion (1.10) may be interpreted as:
(i) D =convex domain and we have an impedance bounda.ry condition with la.rge impedance,
or
(i) D =convex domain has volume V' and its surface has the area {S — 2-1'1 f Hds}
together with the Dirichlet boundary condition.

Similarly, {(1.11) may be interpreted as:
(1) D = convex domain and we have an impedance boundary condition with small impedance,
or | B |
(ii) D =convex domain has volume V" and its surface area S has the mean curvature (H-3%)
together with the Neumann boundary condition.

We note that formulae (1.10) and (1.11) are in agreement with formulae (1.8) and
(1.9) if v — oo and < = 0 respectively. | | -

In this paper, we shall concentrate on a study of the tempered distribution i(t) and
then we can see the differences between the heat?quation approach and the wave equation

approach.
| It is easily seen that £(t) is just the Fourier transform
-+ co - |
f =N N (). (1.12)
- 00

It is well known that the wave equation methods have given very strong results; the definitive
one is that of Hormander [2]. He has constructed the first term of N(A} for an elliptic posi-
tive semidefinite pseudo-differential operator P C R™ of order m by using the distribution
tr(e**F} near t = 0, |
Recently, Zayed [8] has investigated problem (1.1)-(1.2) by using the wave equation
approach when the domain D is just a aphere of radms a'and has shown for small | ¢| that
(i} if v — o0 [Dmchlet problem}, | '

A(t) = —6(—[ t]) - 8:‘9 mgn t+ 529- sign ¢ + O(¢ sign t), (1.13)

(ii) if 4y = 0 (Neumann problem),

S 2a .. ; | _
at) = 6(-[ t ) + — a7 tent+ 3o sign ¢+ O(t sign t); . (1.14)
(iii) i v >> 1,
(S — 8xay~1) 2a : .
fremat e it : T t t s -
A(t) —6( | ¢ ) Y sign t .- 5 tien t+ Ot sign ), (1.15)
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(iv) f 0 <y << 1,
a(2 — 3va)

14 s . .
a(t) = Eﬁ(—l t)) + g MR t+ . sign ¢+ O(t a1gn t), (1.16)
where §(—| ¢ |) is the Dirac delta function and
1, t>0,
sign t = 0, t =0,
-1, t < 0.
In these formulae, V = 4—1m is the volume of the sphere D, and S = 4xa? is its

- surface area. We note also that formulae (1. 15] and (1.16) are in agreement with formulae

~ (1.13) and (1.14) if y 2 o0 and ¥ =0 reapectwely
Tt is of interest to investigate the impedance problem (1. 1)—(1.2) by using the wave ¥
equa.tmn approach when D C R® is a general convex domain. This is still an open problem.
The object of this paper is to discuss the following tmpeda.nce problem by using the

wave equation approach.
Let |
D= {(r,ﬂ¢]'a{r<bﬁ<9{1r,0<¢<2ﬂ'}

bea sphencal shell. Suppnse that the emenvaluea (1.3) are given for the Helmholts equation
| (As+Au=0 in D, (117)

together with the impedance boundary conditions {Robbin boundary conditions)

(—+"]rltal),,._‘Iﬂll = Q, (——+1gu),.___,-, =0, ' (1.18)

where y; and vz are positive constants. Determine the geometry of D and the unpedances
71,732 from the asymptotic expansion of

a(t) = Ec -0 for small ¢ |. ' (1.19)
=1 '
Recently, Zayed | 9] has investigated problem (1.17)—(1.18) in the following special
cases and has obtained: |
Case 1. 7; = 73 = 0 (Neumann conditions on r = a,r = b},

(t)-“g’&ﬂ;a)fl Hl+“’“’”“” TR Lok ngntw(: signt) as |t —O.

8x%t 6x*
~(1.20)

Case 2. 4, — 00,72 = 0 (Dirichlet condition on r = a, Neumann condition on

r = b).

3 _ 43 ' L HEE 3
ix(b” — )6( —eD+ 41r(bsrgta ) i’

| 4x(b + a)
A= —3mgy

gn t+ — 3 sign 2+ O(t sign t)  as |t| —+O.
(1.21)
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Case 8. <4 = 0,73 —+ oo (Neumann condition on r = &, Dirichlet condition on

r =b).

4x(a? — b?)

_ 4x(b® - a®) ., 4x(b+a
a(t) 3(ant) §(—It]) + a3, - sign i sz ) gign t+O(t signt) as|t| —O.
(1.22)
Case 4. 4; = 73 — oo (Dirichlet conditions on r = a,r = b),
~ 4x(b® - a®) ar(b? + a?) | 4x(b+a) . ;
A(t) 3(4nt) 5(—1t)) an3,  signt+ — —— sign ¢+ O(tsignt) [t|—0.

(1.23)
An examination of these results shows that the first term of ji(¢) determines the
volume of the shell D, the second term determines itz surface area, and the third term

determines the principal radii of curvature.

..I'-

2. Formulation of the Mathematical Problem

It can be easily seen that the trace function jfi(t) is given by

w0) = [ [ [otz.zin4s. (2.1)
) _

- where G(z,z';t) is Green’s function for the wave equation

32

(Aa — -a—tE)G(E,E’;t) =0 in DX{-00 <t < o0}, (2.2)

subject to the impedance boundary conditions (1.18) and the initial conditions

lim G(z, z’' Bt 9G(z.25Y) 5 ’ 2.3
e (E:E 1t)—0: t-lﬂl Y (E""E ), [ : )

where §(z — z') is the Dirac delta function located at the source point z = z'. The points
z = (z,y,2) and z' = (2/, ¢, 2') belong to the spherical shell D. Let us write

G(z,z';t) = Golz,z";t) + x(z,2'; t), (2.4)
where
1
Gol(z,z';t) = mﬁtlz —z'| — [t]) (2.5)

is the “fundamental solution” of the wave equation (2.2) while x(z,z';t) is the “regular
solution® chosen in such a way that Glz,z’; t) satisfies the impedance boundary conditions
(1.18).
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From (2.1}, (2.4) and (2.5}, we find that

4x(b° —

ﬁ(t) o 3(4 )

k= [ [ [xzz0d. (2.7)
D

In what follows we shall use Fourier transforms with repect to —oo < t < oo and use
—00 < n < oo as the Fourier transform parameter. That s, we define

a’) 5{—|t]} + K (1), (2.6)

where

+ o0
G(z,z';n) = f e~2mnt Gz, z';t)dt. (2.8)

w0

An application of the Fourier transform to the wave equation (2.2) shows that G(E,E'q)
satisfies the reduced wave equation

(As + 4x%9?)8(z,2z';n) =0 in D, (2.9)

together with the impedance boundary conditions (1.18).

The asymptotic expansion of K{t), for small | £ |, may then be deduced directly from
the asymptotic expansion of K(n) for large |n|. On using the spherical polar coordinates
(r,6,¢) with £ = rsinfcos¢,y = rsinfisingd and z = rcoe f, we find that

ﬂ'(n) L_n /_ [“ﬂr %(r,8,4,r,0,¢;n)sinbdrdfd¢. (2.10)

8. Construction of Green’s Function

Equation (2.9) has the fundamental solution

exp{—2xin|z — z'|}

G'O[ri 9I¢Ir118'1¢l;n) 41!":!: — I,l
-7 (.1)
z (2m + 1] g (27007 ) (277) Pra (co8 ),

m=0

where a is the angle subtended at the origin by the line joining the field point z and the
source point z', and P, is the Legendre polynomial of degree m. We note that

Im(27n7) (2": 3 Jns1/2(27m7),  km{27nr) = (2“] /24 1/3(27r),

where Jp 1172 and Yin41/2 are Bessel functions of the first and second kinds.
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On solving equation {2.9) we deduce that if ' < r < b,

G(r,0,6,7,0,¢";n) = E {in[Z;:: l)jm(Z:lrnr')k,,.[qur)

m=0 | (3.2)
+Amkn(22n7) + Bpim (2irnr) }Pm(cog a),

and f ¥ > r > a,

G(r,6,6,7,0",¢"n) = 2 {""2;:: ) ;. @rnr) e (2707)
| =g (3.3)

A Amkm(2xnr) + Bmg}n(Zrnr)}Pm(cm a},
where A,, and B,, are constants to be determined.

It is straightforward to show that the impedance boundary conditions (1.18) on r = a
and r = b give the following: |

Am = ﬁ.’g?R:l} (127030 (27n1) + Y17m (2770)]{270 5, (2770) Y2 5m (270B) Jorm (2777)
~[2xn3., (27n8) + Y17m (27na)) (270K, (271b) + Yakm (227} |3m (27nr'}}, (3.4)
and - |
Bm. = 9’;:_’:}‘;: J {[2xnk,, (2xna)+ 11 km (27na)}[27nk,, (2xnb)+y2km (2770) | Im (27xnr’)
—[2xn3L, (27ma) + +715m (27na)|[27nkl, (27nb) + yakm (27nb)|km (229r")},  (3.5)
where

R, = [27n5",(2%9a) + v17m(27na))[2xnk!, (277b) + Y2km (27nb)] (3.6)

~[2xnk.,. (2xn4) + Y1km (27na)][2707%, (270b) + Y2 jm (279b)] # O.

From (3.2)-(3.6) we obtain Green’s function Glr,8,¢,7,0',¢'; 1), and if we put ¥ =
r,9' = 0 and ¢' = ¢, we find that equation (2.9) has the regular solution

2(r, 0,4, 7,0, 45n) = D _ in(zT i {[27n31.(27na) + 717m(27na)][27n 50, (277))
m=0 2n R"‘ |
+¥23m (270b) K2, (2707) — 22705, (27na) + V17w (27n0)| 270k, (2700) (3.7)

+742(2708) |3 (270 7) ke (2207) + [27nk!, (27n0) + Y1km (27na)][ 220k, (277b)

+7akm (27nb) |3 (2797) }.
If we insert (3.7) into {2.10) and integrate, we find after some reduction that

m [

R(n) =82 Y (m+ 2hlm+ im) —a? Y (m+ J)falm+ zim), (39

m=0 m=0
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where
m2 2Jm(2’ﬂb)
; - J.; Y..(2
Fi{m; n) (1 4x3n3}p2 ){ (2mnb)Y,m (2290) + xb[2xnJ? (2x9b) + "erm(zﬂ"?b)]}
. Yg J! (2!’1}'6).
F | il
+Jm (270b) Yy, (2798) x2nb|2xnJ! (27nb) + o Jm (27nb)]
. m? \ 27T}, (27na) + 11 Jmm (27na))
- 4“.2’?2 h? ﬂ'gbzR:,;[zwﬂJ:n (2ﬂ'ﬂb) b 'Tng [2!'?']&)]
73 [2xenJ! (27na) + 71 Im (27na)]
x4n2b62 Ry [2xnJ., (270b) + 2 (27000)]
- (3.9)
and
- o 2Jm{27na)
f2{min) = ({1 dnZpn2q? ) { Jm [ana)l’m (27na) wa|2xnJ! (2xna) + 41 Jm (2702a)] }

11J,, (27na)
n2na(2xnJ}, (21na) + v1Jm (27na)]
m? ] [27nJ]. (27nb) + 2T (279))]
dn2n2a?’ 722 Ry [270nJ), (2%na) + 110 (2750))]

Yi[2xnJ], (2x0b) + y2J,.(27nd)]
 xin? u“R,";,[Zrn m(2mna) + 71 (27na}]’

+J! {2xda)Y] (2xna) +

—4(1

(3.10)

where
R, = [2xnJ;,(2xna) + 105 (27na)][220 Y (229b) + Y2 Y (277n8)]

—[2xnY,,, (2mna) + 11 Y (27na)|[22nJ., (2200) + Y2 Jm (270b)].

The series (3.8) in fact diverges since K (t) behaves like signt

difficulty may easily be removed by deducing the asymptotic expansion for large |n| of

for amall | ¢ |; however, this

Kn(n)=b’-’2(m+ =) film+ > =n)—ﬂ’§:(m+-)fz(m+ ~i1)- (3.11)

Inversion of the Fourier transform gives Ky (t) and we may then write

K(t) = N]im K (t). (3.12)
On applying the Watson transformation [5] to (3.11), we deduce for large |n| that
N N
Kyn{n) ~ 52/ vfi(v;n)dy — ug'[ v f2(v; n)dv. (3.13)
0

It now follows that the functions f;(v;n) anf f2(v;n) may be expressed in terms of

the asymptotic expansions of Bessel functions and their derivatives due to Olver [3]; these
x

expansions for large |n| are uniformly valid in v for [argy| < =
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4. Some Asymptotic Expansions of the Tempered Distribution A(t)

In this section, we look at the following cases:
Case 1. 0 < 71,72 << 1.
In this case, we deduce after some reduction that for large inl,

(¥ — 4x3b%n? 1/2 = D, (r1)
filvin) ~ oo ) 5> S (4.1)
n=0
‘ (12 — 472329212 L Cpir)
fa(vin) ~ T b P o (4.2)
n=0
where -
v B v
LR o e TE O VL 2= 12 — an2a?n?)i/2’
and ”

Dy = 0, D1 =—n+1), Dy=1i(2mb—-1)—-1] $(292b — 3) 21‘1,
23

Ds = —1"1(— — 2v2b + 243b%) — -rf*(—-—- + 6y3b — 293b?%) — r;f(— — 4y3b) + — 17,

Co =0, Cl =r -1, OC3=r13 (211.:: —1) - r4(2710 - 3) ~ 21'3,

23
Cs = "'2(- — 2716+ 29ia?) + Tg(-'— + 67;a — 2774’} + Tg(z‘ ~ 4m18) —

If we insert (4.1) and (4.2) into (3.13) and integrate, then we deduce, after inverting
the Fourier transform and letting N — oo, that

4 bﬂ 2
K(t) = r(aﬂ: 21 sign t+ = {4#!32(- —372) + 47a (— — 37,) }sign ¢t + O(¢ sign t),
- as | t|—0.
N (4.3)
From (2.6) and (4.3) we have the trace formula
_ 4x(b® —a®) 4% (b3 + a?) 3
A(t) 3{“” 5(—| | S sign ¢ + ——{4"'5 (* —~ 373) (4.4

+41m’(— — 3v1)} sign t + O[t signt), as|t|—0.

The asymp‘totlc expansmn (4.4) may be interpreted as:
(i} D = spherical shell and we have the impedance boundary conditions (1.18) with
small impedances 7v; and vz; or

(;1) D = bounded domain has volume V' = %w(bs — a®) and its surface area S =

4x(b? + a?) has the mean curvatures (% - 342) and (% ~ 34,) together with Neumann
Buundu'y conditions on its boundaries.
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We note that the formula (4.4) is in agreemént with the formula (1.20) if «y; = 3 = 0.
Case 2. 7, >> 1,0 < 73 << 1.

In this case, we deduce that the function f;(v;n) for large |p| has the same fnnu as
(4.1) while fz(v;n) for large || has the form

| (2 _4izﬂ=qﬂ)1ﬂ o C,(r2)
falvin) ~ r "z::u — (4.5)
where
2(r3 - 1 2 213
Cﬂ=""(_'= ); c —_1'2+f2(1 )+—l,
Ta Y18°  Ma
y
= 1
La 474 2 471 u) +n 4'11¢1r2’
1 271 . .21 107
. = '&(— 271 ﬂ) [_“ 2111.1] 2 & 2'11a)
i 15 141, 30
—(~-—+—)+ —nr".

4 2via" ma

If we insert (4.1) and (4.5) into {3.13) and integrate, then we deduce, after inverting the
Fourier transform and letting N — oo, that

4*1!'{!35I — (a® - 2av71)}

K(t) = sign ¢ + :.2 {41rb’(—:- — 342) + 4xa} sign t + O(t sign t),

8wt
as [t | — 0.
(4.8)
From (2.6) and (4.6) we have the trace formula
3 3 - Z - -1
(4.7)

1
+E§3{4rbﬂ[; ~ 343) + dxa} sign ¢t + O(t sign t), as |t| — O.

The asymptotic expansion {4.7) may be interpreted as:

(i) D = spherical shell and we have the impedance boundary conditions (1.18) with

large impedance +; and small impedance ~;; or

{ii) D = bounded domain has volume V = 4—’(!?3 — @) and its surface has the mean

curvatures (;— — 3v2) and %. A part of this surface has area 47b%® with Neumann conditions

and the other part of the surface has area 4x{a? — 2a+y7!) with Dirichlet conditions.

We note that the formula (4.7) is in agreement with the formula (1.21) if 4; — oo
a.nd 19 =0

Case 8. 0 < << 1,7 >> 1.
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In this case, we deduce that the function fz{v;n) for large In| has the same form as
(4.2) while fi(v,n) for large |n]| has the form

filvin) ~ L _41::2:22]“:;9';?1): - (4.8)
where |
Dy Z{Ti; 1): D, ""1"1—"'1( e '2‘_;;]::
e 4-7; “nl-w )+ bl - 4:; + ::b gt
R (at R o R (G )
T

If we insert (4.2) and (4.8) into (3.13) and integrate, then we deduce, after inverting
the Fourier transform and letting N — oo, that

— (B2 ~1
K(t) = drf{a? - (b — 2673 )} sign ¢ + —-—{41rb + 4#&2(— — 3+1)} sign t + O(t sign ¢),

8wt
as [t — O.
(4.9)
From (2.6) and (4.9) we have the trace formula
; 4x (b3 — a”) dx{a® — (b% — 2bv3 1)}
t ren
pe) = et + o sign ¢
(4.10)

1 ; G s
+E§{4Ib + 4#3’(; — 37;)) sign ¢t + O(t sign t), as [t| — 0.

The asymptotic expansion (4.10) may be interpreted as:

(i) D = spherical shell and we have the impedance boundary conditions (1.18) with
small impedance 7; and large impedance yg; Or

(ii) D = bounded domain has volume V' = 4-i(b:"' — a®) and its surface has the mean
curvatures : and (- — 34;). A part of this surface has area dxa? with Neumann conditions

and the other part f the surface has area 4x(b% — 2by;1) with Dirichlet conditions.

We note that the formula (4.10) is in agreement with the formula (1.22) if 4; = 0 and
2 —* OO.

Case 4. 71,73 »> 1.

In this case, we deduce that the function f1(v;n) has the same form as (4.8) and the
function f2(v;n) has the same form as (4.5). If we insert (4.5) and (4.8) into (3.13) and
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integrate , then we deduce, after inverting the Fourier transform and letting N — oo, that

2 - —1 ~1 4
4!’{b + a 2('3"71 —I-bf2 )} Eignt+ ﬂ'(ﬁ-{-ﬂ] gign t+0(t aign t);

K(t) =

8x2t - 6x?
as |tj —O.
(4.11)
From (2.6) and {4.11), we have the trace formula
ﬁ 4x(b* — a®) 4x{b2 + a? — 2{ay71 + 093 ")} .
p(t) - 3(4,1) 6(_|tl) - 82t Bigh ¢
(4.12)
b
+4F(6!_-: ) sign t + O(t sign t), aslt| — 0.

The asymptotic expansion (4.12) may be interpreted as:
(i} D = spherical shell and we have the impedance boundary conditions (1.18) with

large impedances «; and y3; or
4x

(ii) D = bounded domain has volume V = ?(63 — a*) and its surface area § =
4x{b3 + a? — 2(an;! + byz ')} has the mean curvaturea % and E together with Dirichlet

boundary conditions on its boundaries.
Finally, we note that the formula (4.12) is in agreement with the formula (1.23) if

M = T2 7 CO.
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