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Abstract

In this paper, a technique of coupling variational formulation of FEM and
BIE (boundary integral equation) is used to deal with stationary Navier-Stokes
equations in an unbounded domain. We discuss well-posedness for the coupling
variational problem, the regularization method and FEM-BEM approximation.
Finally, operator splitting and optimal control techniques are used to treat the
difficulty of nonlinearity and constraints in computer implementation.

1. Introduction

The coupling of FEM and BIE has recently been recognized as a powerful tool
for solving a certain class of physical problems with an unbounded domain for which
the traditional numerical analysis techniques are unsuitable.

Following basically A. Sequira etal. [1], [2] concerning Stokes case, the major
aim of the present work is to develop this method for N-S equations in an unbounded
domain. Essentially, the coupling method involves the choice of an artificial smooth
boundary separating the unbounded domain into two regions; an integral equation
over this interface, representing the solution in the exterior domain in terms of a
single layer potential, is incorporated into a variational formulation in the primitive
variable velocity-pressure for the interior region. This allows discretization along
the artificial boundary together with a typical discretization by the FEM.

2. Statement of the Problem
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The stationary N-S equations with an exterior domain are given as

(W V;)u' = Vo' + fiii=12,...,n,n=20r3, infl,
divu=0 in ¥, (2.1)

u|p=uo, U — Uy, T —F +00, fugds=0,
r

where (1’ is the exterior of a simply-connected bounded open set £2 in R™ with smooth
boundary I', u the velocity of fluids, p = p/p the pressure, f the external forces and
A = Re~! Re — 4, L/v Reynolds number, o), 0;; stress tensors, e'?  e;; strain rate
tensors, V;, V' covariant and contravariant derivatives respectively, g;;, 9] metric
tensors,

;i (4, p) = —pgi; + 2peii(u), eij(v) = (Viu; + Viu)/2,
o'i(u,p) = g*g ™ okm, €7(u) =g g™ erm.

We only consider the homogeneous boundary condition in the sequel, but all
the results stated here still hold if the trace of u on T' is any given sufficiently smooth
function that admits a solenoidal extension ( div « = 0) in 0. |

Let (¥ = 0; U (2, be a decomposition of the domain such that {2; and {1
are open subsets of '. I'; is their common smooth boundary with a unit normal
exterior to {13; {1; is bounded and supp(f) CC {1;.

It is well known [8] that there exists at least one solution for problem (2.1).
Generally speaking, velosity or its gradient in subdomain 1; is small in the amphitude
compared with that in subdomain (2;. Therefore, the inertia term #Vu in {12 can
be neglected, and problem (2.1) can be replaced by the following

IV — Vo (u,p)= ', in O,
(wV;)u jo'(u,p)=f 1 (2.2)
div u = 0, in{l,
Vo' (u,p) =0, in (s,
k] ( :P) 2 (2-3)
div u = 0, in {1a,
U‘[‘ — “‘I"g = ung! (2'4)

where the last conditions represent the appropriate assembling of the two separate
problems in 2; and {,.

3 Variational Formulation for the Continuous Coupling Problem

In order to reduce the problem in {13 into an integral equation over the bound-
ary, the fundamental solution {U*, P*} of the stationary Stokes equation with the
concentrated force will be employed and can be expressed in arbitrary curvilinear

coordinates as [8]
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{ AWz —y) = —gxlele -y 4 G - )l

Pz —y) = Zlﬂ-_vﬂz—yl'l ,n=2=3 '

{ AWz - y) = —grxlelnlz - o+ (@ - )@ - )T
P“'(m—y):?l;vilnh——yrl n=2 |

where |X — Y| is distance between the points X and Y

|z — y* = gij(=* — ¥')(& —¢).

Let us denote
U(z — y) = (U=, U, U"}).

Then, Stokes problem (2.2b) can be resolved by applying the fundamental solution

(g~ [ MO P e~ p)us(=)ma(e)doe

| (3.3)
+A~1 f Uij(:n ~ y)o;(z)ds: +¢, Vy€ (g,
P{y¥E —A/; 2V P (z — y)n'(z)u;(z)ds.,
: (3.4)
g j;i P'(a: = y)ar;(:r)ds,, Yy € {13,
Lyi(yx ~ | o*(A~\UF, P')u;(z)ni(x)ds,
. ‘/;’ k (3.5)

+A-1 j; U (z - yloj(z)ds; +¢, YyeT,
- 2

where ¢ is an arbitrary constant. The kernels U (z — y) and o* (U, P)(z, y)n;{z) of
integral equations (3.3)—(3.5) are summable when (x — y) € T are close together.
Indeed, U% (z — y) has singularity In |z — y|( or |z — y|™") and we can easily see that,
' by elementary calculation, we have
Stz —y) = oAU, P¥)(z - y)nj(2)

= -4z - ) (e* = y¥)le — y| 7} (z - y)n(z), n=2,
Sz —y) = oA 1U*, P¥)(z - y)ny(2) '

= £ (z* - ¥')(z* — y¥)lz — 9| (z - y)n(z), n=3

(3.6)

where (z — y)n(z) = gij(z* — y*)n?(z) and (3.3), (3.5) are an infinitely differentiable
function over the analytic boundary. Otherwise, as y approaches the boundary from
the exterior, the expression (3.4) has no limit value.



160 Journal of Computational Mathematics Vol. 7

Now, we introduce the following Hilbert spaces

Xo = (H3{M))", X = (H(M))", M= Lj(h)={q¢/q€ Lz(ﬂl):j; gdz = O},
W = (Hir ()" = {vlv € X,v/r =0}, Wo={v|v €W, divv=0},

T = {ulu € H-Y2(T2))", /r, pds = 0} = (Hfm (I'2))"

and bilinear and trilinear forms

ao(u,v) = 2[ e’ (u)e;;(v)dv = | Vu.Vuvdv, dv=,/gdz, (3.7
1, ;
ay(u;w,v) = f W Viw'vidv, (p, divv) = [ p div vdv, (3.8)
. 1 I“1
blo,u) = /I: fr Ut (2 ~ y)oi(z)u;{y)dszdsy, < o,u>p,= fh ouds, (3.9)
& 2

Ku = {— ./[:2 oV (U™, P™)(z — y]u;(m)n;(m)dsm}
={- [ 5"z - yw(a)de: ,

m=1.2,-n

< Ku,p >p,= - /;‘: ‘fl‘g "™z — y)u;(y)pm(z)ds ds, . (3.11)

(3.10)

Using (3.5) and usual methods, it is not difficult to obtain the following coupling
variational formulation associated with problem (2.2) and integral equation (3.5):

Find (u,cr, p) € W x T x M such that
Aao{u,v) + ay(u;u,v) —(p, div v)+ < v,0 >p,=< f,v >, VveW,

(Q)
A~12b(o, u)— < u,p >1r, +2 < Ku,p >p,= 0, vueT,
(g, div u) =0, Vge M
or .
Find (u,o) € Wy x T such that
(P) Aag(u,v) + ay(u;u,v)+ < v, v >p,=< f,v>, VveW,,

A~12b(o,p) - < u,pu >r, +2 < Ku,u >p,=0, Vu€ P,

It is well known that the bilinear form b(.,.) on T' x T is symmetric continuous
and T'—elliptic in the sense that there exists a constant ¢ > 0 such that

b(p, 1) 2 *’|‘P”£1/2,r2: VueT. (3.12)

We emphasize that the operator defined by (3.10) is compact from W to
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(HY2(T))" c T
W o (HY ()" 2 (B (1)) —E— (B (T)) S (BT > T

where < is the canonical injection and ~, is the trace operator on I's. Since H3/ 2.(I‘;)
is compactly embedded in H'/2(T';), the continuity of K as well as that of the trace
operator g imply the compactnessof X : W 1=

4. Existence Theorem

In order to set the coupling variational problem of the Navier-Stokes equation
into an operator form, we consider the following problem: Vu e W,

Find ¢ € T such that
(4.1)

blo,u) =A/2<u,pu>r, —A< Ku,pu>p,, YueT.

By virtue of (3.12), we have
Lemma 4.1. Problem (4.1) admits a unique solution 0 € T, and the mapping

Lo defined by (4.1), o(u) = ALg(u), t& linear continuous, and

U(u)”-lfﬁyri $AC(O.5 + ”K |)”“”1’ (4 2)
Lol| < ¢(0.5 + || K|]) where |- |
denotes the operator norm.
The operator Ly possesses the following property:
Lemma 4.2. Vu € Wy, we have
<wu,o(u) >p,> 0 | (4.3)

where o 1s defined by o*(u) = 0*/(u,p)n;, which s a surface stress tensor.

Proof. Yu € Wy, [ unds = 0. Hence we can define the Stokes problem:
I3

{ V0 (w) + Vis=0, divw =0, infh,
: wlr =0,w|pr, =u|r, onTUT,
which has a unique solution. In virtue of the symmetry of tensor o'/ and
gifeij(w) = gi-fviwj = divw=0, (V's,w;)=0,
we have

< u,o(u) >r, =./I“ 0¥ (u, p)u;n;ds =[
3

Lj

= (V's,w;) + ./[; ot eis(w)dv = [n (—8g" Viw; + Aet e;5)dv
1 1

=X/ e,-jeijdv > 0.
{i,

a”(w,s)wm,-ds=/ V(o w;)dv
1,
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The proof is completed.
Now we define a bilinear form on W x W

Ao(£,) = aol& ) + £ < (5-(€) >ra= a0(6: )+ < 1, Lo(€) >y, VE,0 € Wo. (44)
In view of lemma 4.2, the form Ag(.,.) is continuous linear and Wy—elliptic:
Aole,€) 2 Mi€lEa,, YEEWs (45)
Hence, the following variational problem : VF e W',
Find £ € Wy such that (46)
AAg(€,v) =< F,v >, Vv €W |

—+ £ = LF can be defined by (4.6).

has a unique soluton. Therefore, F € w!
there exists G(u) € w' for

On the other hand, by the trilinearity of a1(.;.5-)s
i € W such that
(4.7)

< G(u),v >= a1{u;u,v) ,YveW
and G(u) € (L¥3(0,))" (cf. Li Kaitai [4]),
IG(w)l. < Njul}q,, N =llall.

Obviously, w € Wy, < f,v > —ay(w;w,v) is a linear continuous functionals. So the

following variational problem : Yw € Wo,

Find £ € Wy such that (4.8)
Mo(€,v) =< f,v > —a1(w; w,v), YvEWq |

has a unique solution &(w) = L{f — G’ (w)) = Lf - LG(w), and

€(w)lr0, < XIS + Nlwlia,}-

Set,
Tw = LG(w), YweW. (4.9)
Then, problem (4.8) can be expressed in an operator form
éw)=f+Tw, f=LJ. (4.10)

It is clear that (4.6) is a coupling variational problem for Stokes equations.

" From the regularity result of coupling for Stokes problems {cf. A. sequeira (1]},
we have & € (H**/3(02;))" NWo. Since (H%4/3(1;))" and (H?(,))" are compactly
embedded into (H1(021))", we can conclude that the mapping w — §(w) is compact.
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Furthermore, it is easy to prove that £(.) is Lipschitz continuous:

€(w1) — E(wa)la, < A N{lwil0, + [welra, Hwr — wali0,, Ywi, w2 € Wo. (4.13)
In addition, if f satisfies the condition
ANX2| 1)l < 1, (4.14)

then £(.) is a contraction mapping from a closed set S into S. Therefore, we have
Lemma 4.3. The mapping w — &(w) defined by (4.10) is locally Lipschstz
continuous and compact from Wo into Wy if f € (L*())".
Furthermore , if  satisfies condition (4.14), then the variational problem

Find u € Wy such that (4.15)
AAg(u, v) + aj(u;u, v)=< f,v>VveE Wa .
has ¢ unsque solulion and |
luna, < gxllflle- (4.16)

From Lemmas 4.3 and 4.1, we conclude that problem (P) has a unigue solution
if condstion (4.14) is satisfied. Owing to the equivalence between problems (P) and

(Q) , we have
Theorem 1. Assume f € W' and (4.14) holds. Then the variational problem

(Q) has exactly one solution (u,o0, p) e Wox T x M. Moreover, if f € (H™ 1{(h1))",
then u € (H™H (1)), 0 € (H™1/3(3))",p € H™(h) nd there exists a constant
¢ > 0 such that

||llm+2.02, + |lo "m—lﬁ.l‘n + |ipllm.0, < cllf lm—1,0,-
Proof. The proof is rather technical and can be omitted.
5. Approximation of Branches of Nonsingular Solutions
5.1. Regularization Method

Let us consider an abstract nonlinear problem and its approximation. Assume
X,Y,Z are three Banach spaces and there exists a compact interval of the hne K.
Given a ¢®-mapping (p > 1)

F: (QLbueAx X+ F(lhu)eY
we want to solve the equation
FP(),u)=u+ LG(A\,u)=0 (5.1)

where L € £(2,Y), and G is a c*>-mapping from A X X into Z. We are interested
in the branch u{)) of nonsingular solutions of (5.1}, s.e.
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D, F(),u{})) is an isomorphism from X onto Y for all A € A. (5.2)
We will make an additional assumption:

{ There exists another Banach space V contained in Z with continuous (5.2)

imbedding such that D,G(A,u) € L(X;V); VA€ A, VueE X.

To approximate (5.1), we introduce an operator Ly € £(Z, X) to approximate the
problem:

Fr(A,u) = u+ LpG(A, u). (5.4)
The approximation problem is
Find us € X such that Fi(A, uy) = 0. (5.5)

Furthermore, we assume that operator L, has the following properties:

lim [|(Z ~L)glls =0, VYgeX, (5.6)
lim [|(Ln ~ L)|| e¢vsx) = 0. | (5.7)

If the imbedding of V into Z is compact, then (5.7) is a consequence of (5.6).
The following theorem (Girault and Raviart [3]) will be used:

Theorem 2. Assume that G is c*-mapping from A X X into Z and the
mapping D,G ts bounded on all bounded subsets of A x X. Assume in addition that -

conditions (5.3), (5.6) and (5.7) hold and that {(A,u(A));A € A} 15 a branch of
nonsingular solutions of (5.1). Then there exists a neigborhood ¥ of the origin 1n X

and, for h < ho amall enough, a unigue c*-function A € A — up(A) € X such that
{(X,un(A)); X € A} 15 a branch of nonsingular solutions of (5.4) , (5.8)
up(A) — u(A) € 9 for all A € A. (5.9)
Furthermore, there ezists a constant ¢ > 0 independent of h and A wnth
lun(x) — w(A)llx < ell(Z - LG, u(A)lx, VA€A. (5.10)

If G is a cP-mapping { with p > 2) and D,G is bounded on all bounded subsets of
A x X, then u(X) € ¢?(A; X) and

" e d'
“cﬂ—m(u(l) — uh(A])nx < cm!go (L - Lh]E—iTG(A;u(A)) .’ 0<m<p-1L

Now we consider the penalty method for coupling Stokes problems. Assume
U and U, € X are respectively a solution of coupling Stokes problem
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s
Find U = (u,0,p) € X such that
AAg(u,v) — (p,dive) =< f,v >, Yve W,
| (5.11)
A~ b(o,u) — 05 < u,p >+ < Ku,pp >r,= 0 VueT,

(¢,dive) =0, Vge M,




