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SYMPLECTIC DIFFERENCE SCHEMES FOR LINEAR
HAMILTONIAN CANONICAL SYSTEMS*!)
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. Abstract

In this paper, we present some results of a study, specifically within the frame-
work of symplectic geometry, of difference schemes for numerical solution of the
linear Hamiltonian systems. We generalize the Cayley transform with which we
can get different types of symplectic schemes. These schemes are various general-
izations of the Euler centered scheme. They preserve all the invariant first integrals
of the lineaw Hamiltonian systems.

§1 Introduction

Recently, it becomes evident that the hamiltonian formalism plays a fundamental role in
mathematical physics.One needs only to recall a few examples: classical mechanics, quantum
mechanics, hydrodynamics of a perfect fluid, plasma physics, and accelerator physics.

The evolution of Hamiltonian systems has the important property of being symplectic,
1.e., the sum of the areas of the canonical variable pairs, projected on any two-dimensional
surface in a phase space, 13 time invariant. In numerically solving these equations it is neces-
sary to replace them with finite difference equations which preserve this symplectic evolution
property. In [1] the first author proposed a systematic study of symplectic difference schemes
for hamiltonian systems from the viewpoint of symplectic geometry. We present here some
developments for linear hamiltonian systems.

An outline of this paper is as follows: Section 2 is devoted to a review of well known
facts concerning symplectic structures and hamiltonian mechanics. In Section 3 we review
some properties of the symplectic matrix and the infinitesimal symplectic matrix. In Section
4 we review some linear symplectic difference schemes. Constructions of linear symplectic
schemes based on the Padé approximation are described in §5. Generahzed Cayley transform
and its corresponding symplectic schemes and conservation laws are presented in §6. |

§2 Some Facts from Hamiltonian Mechanics and Symplectic Geometry

In this section we will review some facts from Hamiltonian mechanics and symplectic ge-
ometry which are fundamental to what follows. Consider the following system of differential
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equations on R*"

s T

dt 8¢’

dg; 8H .

d‘i = ap:’ v =120 (2.1)
¥ :

where H(p,q) iz some real valued smooth function on R2". We call (2.1) a canonical system

of differential equations with Hamiltonian H. We denote p; = 2;,¢; = Zi4n, 2 = {21, ...22a)’,

and $E = (§55, - -5%‘;-{: * € R**. Then (2.1) becomes

S e AT 2.2
dt d Oz %
with
. 0 In I — 11
J—(_In 0). J'==-J=1J (2.3)

where I, is the identity matrix. The phase space R*" is equipped with a standard symplectic
structure defined by the “fundamental® differential 2-form

»

W =idp;hdqi.
1

Let g be a diffeomorphism of R2":

[ 91(2)

- (P) ;g(z) . : _ [ﬁ(p,q)

q | oo (2) _ §(p,q)

g is calied a symplectic transformation if g preserves the 2-form w, i.e.,
Db Addi =) _dpi Adg;.
. 1 |

This is equivalent to the condition that

() +(2)=

i.e. the Jacobian matrix -g—g— is symplectic everywhere,
g ap 1

39 _|9p dq

o |2 =
dp dgd
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For every pair of smooth functions H(s), F(g) on R?", the Poisson bracket is defined as

# Py = (G150 = (500 5 - GV 5

The bracket operation is anti-symmetric, bilinear and satisfies the Jacobi identity. A function
F on R?" is called an invariant integral of the canonical system (2.2) with Hamiltonian H if

‘ F(z{t)) = const.

independent of t for every solution x(t) of (2.2). A necessary and sufficient condition for the
above invariant is

{H,F} =o0.

The Hamiltonian H itself iz an invariant integral of the system (2.2). The fundamental
property of the canonical system (2.2) with Hamiltonian function H is that there exist a one
parameter group of symplectic transformations g*=g%,, called the phase flow of function H,
such that the solution s{t) of (2.2) with initial value £{0) is given by

2(t) = gx (2(0)).
So the time evﬂfutiun of a Hamiltonian system is always symplectic.

§3 Some Properties of Symplectic Matrices

Let us now briefly sketch some properties of the symplectic matrix.
Definition 8.1. A matriz S of order 2n s called symplectic sf it satisfics the relation

S'JS =T (3.1)

where S’ ts the transpose of S. All symplectic matrices form a group Sp(2n).
Definition 8.2. A matriz B of order &n 15 called infinstessmal symplectic if

JB+ B'J=0. (3.2)

All snfinstessmal symplectic matrices form a Lie algebra sp(2n) with commutation operation
|A,B] = AB — BA, and Sp (2n) ts the Lic algebra of Lie group Sp (2n). We have the
Jollounng well-known propossiions:

Pl. det S=1,if § € Sp(2n)

P2. S~'=-J§'J=J-18'7,if § € Sp(2n)

P3. SJS' = J, if § € Sp(2n)
A B
5=(& 1)

P4d. Let
where A, B, C, D are n X n matrices. Then § € Sp{2n) if

AB' —BA'=0, CD'-DC'=0, AD'—BC'=1,
AC-C'A=0, BD-D'B=0, AD-CB=1I.
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I B I 0O
0 I )’'\D I

(‘3 g)ESp(ﬁn} if A=(D)7"

P7. Matrix S=M"1N c Sp{2n), iff M'JM = N'JN.
P8. Matrix

P5. Matrices

are symplectic if B’ = B, D' = D.
P6e. Matrix

(_(I?Q, I;‘?)esp(zn) iff P=0@=4q

P9. If B € Sp(2n}, then exp(B) & Sp(2n).

P10. If B € Sp(2n), and [I+B| # 0, then F = (I+ B)"'(I - B) € Sp(2n), the
Cayley transform of B.

Pll. If B € Sp(2n), then (B*™)'J = J(B*™).
P12. If B € 3p(2n), then (B*™11)'J = —J(B2™t1),

P18. If f(z) is an even polynomial and B € Sp(2n}, then f{B')J = J f(B).

P14. If g(z) is an odd polynomial and B € Sp(2n), then g(B) € Sp(2n),t.c., g(B')J +
Jg(B) = 0. :

§4 Some Symplectic Schemes for Linear Hamiltonian Systems
A Hamiltonian system (2.1) is called linear if the Hamiltonian is a quadratic form of z

H(z) = %z'Cz,C' =

and J is a standard antisymmetric matrix

g 0 In ' . r . 1-1 isue
J_[—I,, 0], J'==J=J7" detJ=1.

Then the canonical system (2.1) becomes

o =Bz,B=J"1C,C =, (4.1)
dt

where B = J~!C is infinitesimal symplectic. The solution of (4.1) is
() = ¢*2(0), ¢* = exp(tB) (2

where g*, as the exponential transform of infinitesimal symplectic tB, is symplectic (P.14}.

Consider now a quadratic form F{z) = 52'Az. The Poisson bracket of two quadratic
forms H,F 1s also a quadratic form

{H,F} = -;-z’[AJC B
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The condition for the quadratic form F to be an invariant integral of the linear Hamil-
dz

tonian system 7 =J~1Cz can be expressed in any one of the following equivalent ways:
F((exp(tJ1C))z) = F(2), (4.3a)
{H,F} =0, (4.3b)
(exp(tJ~1C)) Alexp(tJ~1C)) = A, (4.3¢)
AJC =CJA. (4.3d)

In [1] some types of the symplectic scheme are proposed. The first is c-a.lled the time-centered
Euler scheme

n+l _ _n n+1 n
: e o ™ s (4.4)
T 2
The transition 2™ — 2"+ is given by the following
n+l n s __‘l"_ - 1 =4
2" =R, F, = ¢ 23), ¢{2) T (4.5)

where F,, as the Cayley transform of infinitesimal symplectic (-—%B], is symplectic (P10).
The second is the staggered explicit scheme for separable Hamiltonian. For a separable

Hamiltonian
1

Jx 1
H =(p, VS|P ) = cp'Uq+ =g'V
" (p.g) = S(p q)S(q) ;PUa+od'Vyg

s=10 2.

U’ = U def.pos. V' =V, the canonical equation (4.1} becomes

dp

dt
d

where

R V'-.?:

The staggered explicit scheme is

1
=(p"*! — p") = Vg3,

l(qﬂ“l‘"i"f'l - qn-i-%-) — Up"+1. (4_8)

T

The p's are set at Integer times ¢t = nr, and ¢'s at half-integer times ¢t = (n + %)-r. The
transition -
pﬂ pﬂ-
w" = [qn+1}] e [qn+a}+1] = w"*!

is given by the following
: wn+1 i Fftﬂn,

F,=[__IU ?]_1.[{‘; _IV] (4.9)

as the product of two symplectic matrices is symplectic (P5), and has second order of
accuracy. "

where
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§6 Construction of Symplectic Schemes Based on
Padé Approximation

We know that the trajectory z(t) = g*zo is the solution satisfying the imitial condition
z{0) = zo. In a linear system g’ coincides with its own Jacobian. One might ask how the
approximations of exp(tB) are. This is most simply described in terms of Padé rational
approximations. Here we consider the rational approximation to exp(z) defined by

g i 3::([3 = gim (2) (5.1)
where
Pam (7) = i Ut m— k)il (5.2)
£ ([ 4+ m)kt(m — k)1
{
» (I +m — k)i
dim (z) = ; (I + m) k! (I — k)I( m)k_ 5

For each pair of nonnegative integers ! and m, the Taylor’s series expansion of ny,, (z) /dim (=)
about the origin shows that

exp(z) - M2 = of| 2 MY, Ja — 0. (5.4

The resulting ({ + m)-th order Padé approximation of exp(x) is denoted by gipm.-

Theorem 1. Lei B be an infinitesimal symplectic, then for sufficiently small |t] ,
gim (tB) iz symplectic sff L = m, i.e. gu(z) is the (I,i) diagonal Padé approzimant to exp(z).

Proof. “ f ® part. Let ny(z) = f(z) + g(z), du{z) = f(z) — g(z), where f(z) is an even
polynomial and g(z) is an odd polynomial. In order to prove gn(tB) € Sp(2n) , we need
only to verify (P7)

(f(tB) + g(tB))'J (f(tB) + ¢(tB)) = (f(tB) - 9(tB))'J(f(¢B) — ¢(¢tB)).  (5.5)
By (P.13,14), the L.H.S of (5.5) turns into

(f(tB') + g(¢tB'))J(f(tB) + ¢(tB)) = J(f(tB) - o(tB))(f(tB) - 9(¢B)).  (5.6)
Similarly for the R.H.S., we have

(f(¢B') — ¢(tB'))J (F(¢B) + g(tB)) = J(f(tB) + g(tB)){f(¢B) — ¢(tB)).  (5.7)

Comparing (5.6) and (5.7) completes the proof of "If” part of the theorem.

“ Only If * part. Without loss of generality, we may take [ > m. We need only to notice
that, in Proposition 7, the order of the polynomial on the right hand is higher than that on
the left hand .

From Theorem 1, we can obtain a sequence of symplectic difference schemes based on
the diagonal (k, k) approximant Padé table. For the (1.1) approximant, we have the Euler
centered scheme (4.4). |

1+

zn.+1 — 2" 4 %(zn +zn+1), Fr{l'l] — ¢!(1'1][TB], qb(l,l}()‘) -
. 1_

*

BT | e |0 | D
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For the (2.2) approximant, we have

3 n+1
g S 5-
Z & 2 12 (z = )I ( B)
1it8 transition 1s
A A“
(2.2) (2,2) B [2.2) A ! -2- 12 59)
F,(22) = g2, 2 . .
¢' (T ) ¢ ( ) B }‘ }LE ( )
2 12

Evidently this scheme has fourth-order accuracy. For (3.3), we get

rB s A\* B3
3,n.-{-l - zﬂ e zn 4 zn+1 £ .E'“ _ zn+1
2 ( ) 10 ( )+ 120

A Az a8 A Az a3
F, (35 — 403 (rB) 40N =14 2 4 20 PR T Y
pTrB) 4T A) = 14 5+ 120/( 2 " 10 120) S

This scheme has sixth order accuracy. For {4.4), we obtain

(z" + 2", f5.10)

n+l . .n 7B i n-41 ST‘ZBZ n 1 TEBE n+1
z =z +T(z + 2"t oK (2 —z“+)+—-§a—-(z"+z+}
r*B* n n+1l '
+ooe (e — g™, (5.12)
Ff(l.il] i ¢[4,4)(TB)’¢{4.4}(A)
&1 B+ oy & (1 TN o ’“) (5.13)
ST 727 28 ' 84 1680 2 28 84 1680/ ‘
It has eighth order accuracy.
Theorem 2. The difference schemes
3k+1 = gu(rB)z", [ = 1,2,3, cr
for the system (4.2) are symplectic of 2l-th order accuracy.
§6 (zeneralized Cayley Transformatiom and its Application
A matrix B is called non-exceptional if
det{l + B) # 0. (6.1)
We introduce a matrix S by
I+8=2(I+B)"" (6.2)
with the inversion |
I+B=2(I+8)". (6.3)

S 18 likewise non-exceptional, and we have the Cayley transform|?!

S={I-B){I+B)" ={I+B)"'{I-B), (6.4)
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B={I-S){I+8)'=({I+8)""(I-9). (6.5)

Let A be an ﬁ.rbitrary matrix. The equation
S'AS = A {6.6)

expresses the condition that the substitution of B into both variables z,w leaves invariant
the bilinear form z' Aw.

Lemma 1. If the non-exceptioal matrices B and S are connected by (6.4) and (6.5),
and A i3 any matriz, then

S'AS = A (6.7)

off
B'A+ AB =0. (6.8)

Proof. Take the transpose of (6.5) one gets
I-8'=B'(I+5).
Multiplying on the right by AS and noting (6.6), one finds
’ A(S —I) = B'A(S + 1)
and hence, multiplying (S + I) ™' on the right one gets
—-AB = B'A.
Conversely, if assumeing (6.8) and multiply the transposed equation
S'I+B)=I-H
of (6.4) on the right by A, we have
S'A(I — B) = A(I + B)
which yields (6.7) on post-multiplication by {I + B)".

Let ¢{A) = i :_ i _then the Cayley transform of B is denoted by ¢(B) = (I + B)_I(I -

B). By taking successively A = J and A = A’ in Lemma 1,we get

Theorem 3. The Cayley transform of a non-ezceptional infinitesimal symplectic (sym-
plectic) matriz 13 a non-ezceptional symplectic (infinitesimal symplectic) matriz. Let

B=J"1CC" =C,B € Sp(2n),det(I + rB) # 0, A’ = A. Then
(¢(rB)) A(¢(+B)) = A (6.9)

iff
B'A+ AB =0. (6.10)

In other words, a quadratic form F(z} = 22' Az 1s invariant under the symplectic transfor-
‘mation $(rB) iff F(2) is an invariant integral of the Hamiltonian system (4.1).
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Theorem 4. Let (1)) be a function of complez variable A satisfying
1°  (A) s analytic with real coefficients in a nesghborhood D of A = O.

2° Y(A)p(~A) = 1 in D.
3° 4'(0) # 0,%(0) = 1. Let A be a matriz of order 2n. Then

(¥(rB)) A(¢(rB)) = 4 (6.11)
for all r with sufficiently small |7| sff
B'A+ AB=0. (6.12)
Proof. The condition 2° implies ¥2(0) # 0. so ¥(0) # 0. If
(¥(7B))'A(y(rB)) = A

for all r with sufficiently small |7|, then differentiating both sides of the above equation with
respect to 7, we get

B'(4x(rB)) Ay(7B) + (v(7B)) ABy»(rB) = 0.

Set r =0, it becomes
* (B'A + AB)$(0)$x(0) =0,

1.e.

B'A+ AB = 0.
Conversely, if B’A + AB = 0, then it is not difficult to verify that the equations
Ya(rB')A = Ap\(—7B), v(rB')A = Ay(—rB)

hold for any analytic function . From condition 2° it follows that

© RN — () (=) =0,

30

2 (H(rB) 49(rB)) = 2 (w(rB') A9(+B)
= B'yx(rB')A$(rB) + y(rB') ABy(r B)
= B'AY,(~7B)¢(rB) + ABY(~rB')$) (rB)
= (B'A+ AB)y\(~rB)$(rB) = 0

Le. ¢(rB')A%(rB) = (0)A¥(0) = Ay?(0) = A. The proof is completed.
By taking successively A = J and A’ = A in Theorem 4 and using (4.3) we get
- Theorem 5. Take || sufficiently small so that TB has no eigenvalue at the pole of the
function $(A) tn Lemma 2. Then ¥(rB) € Sp(2n) iff B € Sp(2n). Let B = J~1C,C' =
C,A'= A. Then -
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($(rJ1C)) A($(rI1C)) = A (6.13)

ff
AJC = CJA. (6.14)
In other words, a quadratic form F(z) = 1.r.";ﬂl..‘a: s tnvariant under the symplectic transfor-

2
mation ¥(rB) iff F(z) is an invariant integral of the system {4.1).

The transform v{rB) based on Lemma 2 includes exponential transform exp(rB), Cay-

ley transform qﬁ[-%B) and diagonal Padé transform as special cases. Taking ¥(A) in Lemma
P(A)

P(-X)'’

2 as a rational function, then neﬁeaaarily Y{A) = P(}) is a polynomial, and is often
normalized by setting P(0) = 1, P'{0) # 0.

Theorem 6. Let P()) be a polynomial, P(0) = 1, P'(0) # 0, and

xp(3) - gy = OUA™) (6.15)
Then
P(-rB):™*' = P(rB)2™,
» zm+1 e ;(_:i;) ™M (616)

i3 a symplectic scheme of order m for the linear system (4.1). This difference scheme and
the original system (4.1) have the same set of quadratic invariants.

P(z)
P(-z)

In order to find rational approximants to exp(z), we may express exp(z) in

various ways. For example,

ﬂu(ﬁ] du(—ﬂ:)
1 xplz) ~ = :
(1) exp(z) o dulE
ed 1 , 1 -
(3) exp(z) = g o (4) exp(z} = E(l + e ]/(E(l + e ))
Each denominator and numerator in the above expressions can be expanded about the

origin in Taylor's series. The first term of the approximation gives the function iz) =

(1 + ;)f (1 - -;—) which yields the Euler centered scheme. Keeping m(> 1) terms in the

expansions for both the denominator and numerator we will get function y(z) which will
extend the Euler centered schemes. The schemes obtained in this way are all symplectic
schemes, however the order of accuacy of the first two kinds of schemes is higher than that of
the last two kinds. For example, if in the formula (4) the first three terms of the expansions of
the denominator and numerator are kept, then the 4-th order symplectic scheme is obtained.
However, the same kind of truncation gives 8-th order schemes from (1) and (2).

(2) exp(z) =1+ tanh ;/(1 — tanh ;),
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