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A DIRECT METHOD FOR THE LINEAR
COMPLEMENTARITY PROBLEM *!)

Zhou Shu-zi
(Dept. of Math, Hunan Univeraily, Changsha, Hunan, China)

One of the effective approaches for finding the numerical solutions of some free boundary
problems is to reduce the problems into corresponding variational inequalities and then to
discretize them by finite difference methods or finite element methods (see, for instance,
|1-5]). Following this way we often obtain the so-called linear complementarity problem:

find w € R™ such that
Aw>p, w2gq, (Aw-p)T(w-gq)=0, (1)

where A is an n X n real matrix, and p,q € R™. Let u = w — q. Then (1) is reduced to the

following form: find u € B" such that
»

Au > b,u>0,u’ (Au—1b) =0, (2)

Most of the conventional algorithms for solving Problem (2) are iterative methods, and none
of the exisiting direct methods for (2) are polynomial time algorithms!?. We propose in this
paper a new direct method for (2) which is a polynomial time method provided matrix A is
a Stieltjes matrix.

Denote by v; the :-th component of vector v, and by a;; the _‘element of matrix A. The
subscript set N = {1,---,n}. Suppose B C N. Denote by v(B) and A(B) respectively the
subvector of v and the principal submatrix of A corresponding to the subscript set B. Let
t be the solution of Problem (2). Denote by P and Z the subscript sets corresponding to
the positive components and zero components of u respectively, i.e.

P={ieN:yu>0},Z={iec N:u =0}

It 18 easy to see that

A(P)u(P) = b{P). (3)

If u(P) is known, then so0 is u. But there is a difficulty for finding u(P)—the subscript set P
18 unknown. This difficulty 1s similar to that appearing in solving free boundary problems.
In the latter case the free boundary 18 unknown.

Suppose A is a stieltjes matrix (or simply S-matrix). It means that: (i) A is symmetric
and positive definite; and (ii) a,; < O for ¢ 3¢ j. It is well known that (2} has a unique
solution in this case. We now establish a lemma.

Lemma 1. If A is a S-matriz and u 13 the solution of (2), then

2T 3P D Pn, (4)
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where Z* 13 the subscript set corresponding to the zero components of Au— b, and Py the
subscript set corresponding to the positive components of b.

Proof. It follows from (2) that if u; > 0, then (Au — b); = 0. This means Z* > P. If
b; > 0, then it follows from (Au — b); > 0,u > 0 and a;; < 0 for ¢z # 7 that

i 2 ag (— ) aiyuy + ;) > azlh > 0.
J#1
It means Py C P. The lemma has been proved.

The basic i1dea for constructing our new direct method is as follows: starting from the

given subscript set Py, expand it step by step and obtain finally the subscript set P in finite
steps. Now we give the inductive definition of the algorithm.

Algorithm DM. (a) Suppose a subscript set Py is known. Solve the following system
by Gauss elimination:

A(Pe)ut® (Pe) = b(Pe). (5)
Let
. (k) *
‘ ul®) = { v (Fe), LA, (6)
: 0, t € N\Pk
{b) Calculate for 1 € N\ F;
C® = (Au®) —p);. (7)

(c) Let My, = {i € N\D, : C}H < 0}. If M, = @, then stop computing and output ul¥),
If My #9, then let Py = P, UM; and repeat (a)-(c) after replacing k by k + 1.
The following two theorems indicate that solution u of (2} is obtained in finite steps of

Algorithm DM.

Theorem 1. Suppose A 3s a S-matriz and My, 1s defined in Algorithm DM. If M, = @, .
then ulk) = o,

Theorem 2. Suppose A 15 a S-matriz and mg, m are respectively the cardinals of Py, P.
Then there erists a nonnegative integer kg < m — mg such that My, = 0.

These theorems also indicate that we may find solution u of (2) by solving systems (5)

for k = 0,1, ---,ko. Because kg < n, Algorithm DM is a polynomial time algorithm. In
order to prove these theorems we need the following lemmas.

Lemma 2. Suppose A is a S-matriz and ul® (Py) 1s defined by (5) for k = 0. Then
H{DJ (Pu] > (.

Proof. Since A 1s a S-matrix, so is its principal submatrix A(F;). Suppose A(Fp) is
reducible. Because A(F,) iz symmetric, we may reduce the system

A(Pg;)u(u} [Pu) — b(P{})

to several irreducible subsystems

A(QI)H(GJ(Q‘) = b(Q')l {= PN
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where Q|s are subscript sets, @;NQ, = Bforis §and QUQLU--UQ, = Py. Since A(Qy)
is still a principal submatrix of A, it is an irreducible S-matrix. So we have A" Q) >0
([8, p.61]) and

uw)(Q;] = A_I(Q[]b(Q;] > (.

The proof 13 complete. _
Lemma 3. Suppose A 5 a S-matniz and ul®) s defined by Algorithm DM. Then we

have
ul®) > ulk—1) > g,

Proof. According to Lemma 2, we have ul® (P;) > 0. By (8),

(0 _ [ wO(R), i€ P,
A 0, t € N\PD

So ul® > 0. Letting &£ = 0 in (5), we obtain

0 ;
Z a,-jug- ) = bs, 1 € .
JEPF,
It may be rewritten as,
0D .
Z a;_fu;. ) = b,;, Pg {3)
JEFR:

because P, = Py U My O P and u;('.ﬂ} = 0 for 1 € P\ P,. It follows from the definition of
My that we have for 1 € Pl\P[} = M,

Z ﬂ;jug-u} = CEU) +b; < b;.

=1

Then

Y aul® <bi, i€ P\Po. (9)
JeR,

Combining (8) and (9) we obtain
A(P)uO(P) < b(Py).

On the other hand, we know that
A(P)uD(P) = b(Py).
So it 1s clear that

A(P) sV (P) — w!D(P)] 2 0.

Since A{P;) is a S-matrix, it must be a monotone matrix/8!. Then we have ull}(P}) 2

u{ﬂ} (Pl) and

u(l) > ul® > 0.
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The proof may be completed by induction.
Lemma 4. Suppose the conditions of Lemma 3 hold. Then P, C P and u'¥) < u.

Proof. We have Py C P by Lemma 1. Noting that u; > 0 and ai; < 0 for 7 # 1, we
obtain for 2 € F, that |

(A(PG)U{PD))i = Z diyU; = Z AiyUy — Z @ity 2 Z aiju; = b;.
JEPqg JEP JEP\ Py JEP

It means

A(PQ)H(PQ) 2 b(Pﬂ}

[t follows from this fact and (5) that

A(Po)|u(Po) — w9 (BR)] > 0.

Since A(Fp) is a monotone matrix, we obtain

u(Fp) > u!0) (Po).

On the other hand, uw; > 0 = u‘{ﬂ] for : e N\F,. So u > ut),

Now we show that P; C P. Suppose it is not true. Then there exists a subscript ¢ such
that 2 € P; and 1€ P. Since P, = FouU My and Py C P, we have 1 € M. It follows from
1 € P that u; = 0. By the definition of My we know ugm = 0. We have proved u > ul% . So

(0)

; 2 Qi;U; for 7 # 1.

a-iju
Then we have

n

Cjn] = Z a,-_,-ug-ﬂ} == b,’ = Z a,-‘,-u}u] e b{ z Z iy Uy — b,* = (Au — b)‘ 2 0.

j=1 IF T#e

It contradicts + € M. This contradiction proves P, c P.
We conclude by similar argument and induction that P, c P and u(*) < u.

Proof of Theorem 1. Since My = @, we have

CH = (aul® ~p); >0, e N\B.
It follows from (5} and (6) that

(Au.{k} = b),, = (), 1 € P,

So we obtain Au'*) > b. On the other hand, we know that ul®*) > ( by Lemma 3. Then wu(¥)
satisfies the first and second inequalities of (2). It follows from (5) and (6) that {Au(*¥) —p); =
Oforz € Py and ufk} = 0 for ¢ € N\ Py. So u'® satisfies the third equation of (2). According
to the uniqueness of the solution of (2) we conclude that ul¥) = u.

Proof of Theorem 2. If it 1s not the case, then we have

ML AR, k=00 — i

Denote by my the cardinal of Py. Since the intersection of Py and M. 1s empty, and since
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Piy1 = Pr U M,

we obtain

mry1 2 mg + 1, k=0,1,---,m— myg.

We derive from 1t that

mm_mﬂ+13mm_mﬂ+12---3_>mu+m—mg+l=m+1. (10)

On the other hand, by Lemma 4 we have

S0

Mm-mo+1 S M.

It contradicts (10) and the theorem has been proved.

Remark 1. We may construct a similar algorithm for Problem (1) and it 18 not necessary
to reduce this propledi into Problem (2).

Remark 2. Numerical experiments indicate that we may replace Fy by any given
subset of P in Algorithm DM. But it is an open problem to prove the reasonableness of this
replacement.
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