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CHEBYSHEV APPROXIMATION OF THE ANALYTICAL
SOLUTION OF DIRICHLET PROBLEM*
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Abstract

In this paper linear programming method for minimax approximation is used to
obtain an approximation to the analytical solution of a Dirichlet problem using the
logarithmic potential function as an approximating function. This approach has
the advantage of producing a better approximation than that using other solution
of the potential equation as an approximating or basis function for a problem in
n = 2 dimensions.

§1. Introduction

It has been stated that a problem involving the position of a point in space may
be regarded as two dimensional whenever it may be made to depend on two real co-
ordinates. An infinite straight wire of constant density A produces such a field. The
attraction is perpendicular to it and it is in accordance with the law of the inverse
first power of the distance. Its magnitude in attraction units is 2A/r where r is the
distance of the attracted unit particle from the wire. The potential of such a parti-
cle is 2)\log(1/r) where the coastant which may be added to the potential has been
determined so that the potential vanishes at a unit distance from the particle.

It is known that continuous distributions of matter attracting according to the law
of inverse first power are interpretable as distributions of matter attracting according to
Newton’s law on infinite cylinders or throughout volumes bounded by infinite cylinders
whose densities are the same at all points of the generators of the cylinders or of lines
parallel to them. Since the total mass of such a cylinder does not vanish, its potential
cannot vanish at infinity. It can only become infinite. In order to make the zero of
the potential to be defined, it is made to vanish at a unit distance from the attracted
particle in the case of a particle, and, in the case of a continuous distribution, by
integrating the potential of a unit particle multiplied by the density over the curve or
area occupied by matter. The potential is then defined by the integrals

u:/cz\log(l/r)ds, u=/A/crlog(1/r)d.s (1.1)
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for distributions on curves and over areas respectively.

These potentials which are regarded as plane material curves or plane laminas whose
elements attract according to the law of the inverse first power are distinguished from
the potentials of curves and laminas whose elements attract according to Newton s law
by calling them the logarithmic potentials. :

Logarithmic potentials are the limiting forms of Newtonian potentials(®].

A Unit Source and Principal Solution

Assuming that the discontinuity of u at @ consists of a unit source, that is, the
yield ¢ of a source @ is defined as the outward gradient of its field u, and denoting the
distance from Q by p, we havellll

du
=3 —d. 152
B (1.2)
where K is a circle of arbitrarily small radius about Q. Assuming that in the immediate
neighbourhood =f the source, u depends only on p, then we get by transformation
™ du du
—_— Lo d = 2 S’ 1.3
q /_ L gt T (1.3)

A unit source is therefore given by

du du 1
1'=2rp— T ;
1rpdp or ;g (1.4)
and 1 ;
el log p + constant for p — 0. (1.5)

For arbitrary p, we have

u=Ulogp+V, p={(z=¢+y-n’}" (1.6)

where U and V. are analytic funcitons of (z,y) and (&,7) such that U becomes 1/2x
when p — 0.
A solution like (1.6) is known as the principal solution of the differential equation
M(u) = 0 where ‘
8% Au 2Bu 2Cu  0Du Eu
M(u) = 527 +2Zzay + 8352 3 Bas o 863/ + Fu. - (1.7]
In the case of the potential equaiton Au = 0, the principal solution ccrresponds to the
logarithmic potential

uis %]ogp for all p. (1.8)
For the three space-dimensional case; the analogue of (1.4) is
o : FaLe + constant (1.9)

dp . dmp?l "7 amp
where p is as defined previously and 4mp? is the surface area of the sphere of radius p
enclosing Q.
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The principal solution of the potential equaiotn Au = 0, is therefore,

" {lozg_(:)) for n =2, (1.10)
P for n > 2
up to a multiplicative constant, for an n space-dimensional problem.
It can be deduced from the foregoing that a unit source at the point Q; gives the
potential

u; = %logp.-ﬁ- constant . (1.11)

as the solution of the potential equation Au; = 0 for n = 2 and that, given a set of
unit sources at the points Q;(¢ = 1,2,3,:--, M),

M
u=ag+ Za,-u,' (1.12)

=1

is the solution of the potential equation
Au=0 (1.13)

where a;(i = 0,1,2,---, M) are constants to be determined such that the boundary
conditions

ug. =Y, (1.14)
where f is a function of the space variables, are satisfied as closely as possible by (1.12).
Such a closeness can be achieved by minimizing the maximum differences between (1.12)
and (1.14). This can be done by the linear programming technique. This approximation
will then be in the L,,-norm.

The solution (1.10) has been referred to by many authors [4, 7] as the fundamental
solution of the Laplacian equation (1.13) and Rudolf Mathon [7], using approximation
in the Ly-norm, has used it as a basis function for an approximate analytical solution
of the problem (1.13), (1.14) in two space variables.

The use of approximation in the L..-norm has, to the knowledge of this author, not
been made in the solution of the Dirichlet’s problem (1.13), (1.14).

In the next section, the L.,-norm approximation technique is described. In section
4, the technique for choosing the positions Q;(¢ = 1,2,3,---, M) of the unit sources
to produce the potential function (1.12) which is the best approximation to (1.14) is
presented. In section 5, results obtained for solved experimental problems are tabulated
with results obtained in the Ls-norm for comparison.

§2. The Aproximation as a Linear Programming Problem

The following notations will be sued:
a= fag| $=0,1,2,-<5 MY,
o= {z‘l i=.1,2%
X = a|ok 51,240 LN} (2.1)
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where z € R™,a € R and a* is the calculated value of a. Let
f = f(zk),  wir = ui(zk). (2.2)
Let D denote the do'main of solution and 6D, its boundaries. If
M
¥(a,z) =ap + Za,-u,-(z), (2.3)
i=1

then the approximation problem becomes
max |¥(a", X) - £(X)] < min { max |¥(a, X) - £(X)|}. (2.4)

Using the notation

max |¥(a,X) - f(X)| = w, (2.5)

the equivalent linear programming problem is

minimize w, (2.6)
subject to the constraints

¥(a", X) + w > f(X),

¥(a", X) - w< f(X). (2.7)

Usually, for a problem of the type we are trying to solve here, N > M. It is then easier
to solve the dual problem

maximize (f(X))" - (s ~¢) ' (28)
subject to the constraints
(s 467 (s +8)/ls +8) <1,
(w(X)T-(s-t)<0, i=0,1,2,---, M, (2.9)
u(X) =1

where

s=1{&l1=1,2-- N}, t={1=1,2,--",N}, s, €Rand t; € R,
(2.10)
;>0 and ¢; =0 when f; >0, s;=0 and ¢; >0 when f; <0,

T denotes transposition and - denotes the dot product. When slack variables are used
to reduce (2.9) to a system of linear algebraic equations, there are more unknowns than
equations and the Simplex Method can then be used to solve the resulting system of
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equations. The initial tableau for the simplex algorithm can be condensed to the form

Table 2.1. Initial Tableau of the Simplex Method

c— Ot 0 > (B> =i fi f2 8 bira o3 L
Variables in Basis | w a9 a1 -+ apm | $ 82 A i
: w POOCONV TR R ey 1 T iy
ag 0 1la- 0 o @ 1 1 Lo, ne 1
a; BioisBiaaalad i 3e 250 Uita i & wsiguasaiian
aym 0.0 0w 1y [ upgy unpe UMz ccc UMN
z—c— G0 Q0 e il sy e S o i ety -l

From the tableau it can be seen that the column under s; or t; has M + 2 rows. It is
unnecessary to store the columns under (ty,ts,t3,:-,tn) since each column is easily
obtainable using relation

8; Fiti = 2w, (2.11)
where each of s;,¢; and w now represents the (M + 2) rows under it in the tableau at
any stage of the solution process.

§3. Location of the Unit Sources

Let the ith unit source be located at the point P; where P; ¢ DUSD and let its
angular distance from the base line, # = 0 be 6;. Let Pg be an arbitrary point on the
boundary §D whose angular distance from the horizontal is §5. Denote the distance
between the point Pg € §D and P; ¢ DUSD by r;. Let 0 € DU6D,|0Pg| = d, and
|0P;| = R; such that

= (R} + d* — 2R;dcos(8p - 6;))*/%, 0<6p,0; < 2. (3.1)

By Fourier series expansion of the general power of the distance between two pomts
(see [1]), we have

oo}

log r; = log R; ZE (d/R;)" cos k(05 — 6;), (3.2)

p—l

From (3.2), we must have

r,:R,-exp{ i

(d/ i) cos kx; } (3.3)

a'-lr—l

where
Xi=0;—0p, =*<x;i<7. (3.4)
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The nearer R; is to d in value, the smaller is the value of the negative exponential
funciton and the farther, the bigger. Therefore, even when 8; = 6;, if R; > R;, then we
must have r; > r; for a given % and j.

As both R; and 6; vary within the limits 0 < R; < oo and 0 < 6; < 27 respectively,
it is required that r; should decrease towards d for the best approximation. In order
to facilitate this decrease the method of steepest descent is proposed for the search for
the optimal values of the set of R; and ;. This method is described subsequently.

After each iteration of the search method, the set of computed values of R; and 6; are
then used to compute a better set of values of the coefficients a; of the approximation
(1.12).

This solution process is continued until the error w is minimized.

When n = 3, x; in (3.3) is given by the equation

cos x; = cos §; cos g + sin §; sin Og cos(¢; — ¥p) (3.5)
where 0 < ;,%p < 27. The range of values of R; and 6; are as defined previously.

Choice of Origin of Approximation

The origin of approximation from which the R;(i = 1,2, -+, M) are to be measured
is fixed in the domain of solution. The positions of the unit sources are variable while
the positions of the sinks (the interpolation points on the boundaries of the domain of
solutibn) are fixed on §D. Any point in the domain of solution D is a variable point
also. Hence, the origin of approximation should be at an interpolation point (a fixed
point on the boundaries). This is consistent with the definition of r; as a function of
the coordinates of the source (the approximation point) and the sink (the interpolation
point). See equation (1.6).

Since each R; is measured from the origin of approximation, it can change only
relative to the origin. The change is independent of the interpolation points.

Therefore, in calculating the changes the error function defined by

e=u-f (3.6)

where u and f are as defined in (1.12) and (1.14), d = 0 since, at the origin of ap-
proximation, d = 0 for all values of 6;. The change in R; is also independent of its
angular position in the domain of solution. The angular position of the approximation
point can, therefore, be arbitrarily fixed in the domain of solution. This is the mode of
approximation followed in this work.

The Search Method

The error funciton is given by (3.6). Consider a column vector function F(Q).

Let the directional derivative of the function F(Q) be denoted by DF(Q(“), v) where
v is a directional vector. Then

= vTVF(QY). (3.7)

DF(Q©,v) = lim 4Lk h’}’l) — F(Q)
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Consider all the directional vectors v € R" such that, for a given Q € R, we have

WTVF(Q®) < 0. ’ (3.8)
Then for sufficiently small positive h, this implies that
F(Q© + hv) > F(QO). (3.9)

That is, if the minimum of F(Q) on R"™ is required and for Q©® ¢ R™, the gradient
of F(Q) does not vanish, then a sufficiently small move in a direction v that satisfies
(3.8) will result in a function decrease. Among all directions v having some bounded
length, say ||v|| < 1, that particular direction that ptoduces the steepest descent in the
value of F(Q) for Q© for which VF(Q(?) #0 is the optimal solution of the nonlinear
programming problem

minv” VF(Q) = }: 2 QJO)) v (3.10)
subject to
lloll = {S(v;)*}* < 1 . (3.11)
is (see [2, p.291]) . : '
v = ~VFQ)/IIVFQ]. (3.12)

The steepest descent in the function value is thus in the direction of the negative
gradient. The method of steepest descent can therefore be described as follows: Given
Q) € R", compute, for k = 0,1, - -, the sequence of values

QMY = QM — B VF(QW) , (3.13)
where hj. > 0 satisfies the condition :
F(QW ~ iV F(Q™)) = min F(Q® — mVF(Q™)). (3.14)
Consider the function = T
: F¥R)= F(QW = hVF(QW)). (3.15)
Then we must have ‘ : | ;
' FH(hy) = F(QW — mVF(Q™)) = F(Q*+Y) O w318

and we can write F(*+1) = P(Q(*+1). Let ¢g*(h) and H*(h) denote the gradient vector
and the Hessian matrix of F*(h) respectively. Then
g"(h) = —gk(RW)VF(Q™) (317)
and

H(h) = VF(Q"™)T HE(h)VF(Q™) (3.18)

where T' denotes transposition. The value of A which minimizes the value of the funciton
(3.15) is the solution of the equation

g*(h) = 0. ; (3.19)
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This can be obtained by the ' Newton’s Iteration .
h = hy = (H*(he))™ (6" (he))" (3.20)

starting with A = hj. The values Q(¥) of the vector Q will become unchanging when
h = 0 is reached. Then, (3.20) will become

he = (H*(h))~2(g"(he))T. (3.21)
Using (3.21), the relation (3.13) becomes
Q¥ = Q) 4 (VF(QW)T Hp(h)VF(QW))~?
x (VF(Q®)T gp(hy)VF(Q®))T. (3.22)

This is the recurrence relation for computing the vector Q ¢ DUSD of the locations
of the unit sources to produce the values of the potential which are specified on the
boundaries § D of the solution domain of the problem. Here

e = F(Q) . (3.23)

where e is as defined in (3.6).
In order to facilitate the comparison of our results with others, the experimental
problem is also solved in the L, norm using the search method proposed here and an

indirect method for computing the best values of the vector a.
In the Euclidean (L) approximation, the function F(Q) is denoted by F(Q)g where

F@E= ), FQ) F(Q) (3.24)

z€6§D
where ( - ) denotes a dot product. Then,

g(h) = =2 37 FM(h)-gh(R)VF(QW). (3.25)
z€AD
Since F*(h) # 0, (3.25) vanishes identically if
g"(h) = ~gr(R)VF(Q™) (3.26)

vanishes identically. Then, this will be the equation (3.17) and the same amount of
computation is equired in both methods for obtaining the final value of the vector of
locations @ ¢ DUSD of the unit sources required to produce the best approximation
to the solution of the problem.

84. Experimental Problems

Problem 1. The stream function 4 for steady irrotational two-dimensional flow,
parallel to the zoy plane, of incompressible, inviscid fluid satisfies Laplace’s equation
at all points inside the field of flow. Calculate a solution for flow through the channel
shown below given that ABCD is the streamline 1 = 0, EFG is the streamline 9 = 1,
and 1 varies linearly across AE and GD. AB = AE = EF = FG=GD = DC = 1.
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An approximation to the continuous solution of this problem was computed in the
domain shown in Fig. 4.1 in the L, norm for p = 2 and p = oo using the logarithmic
potential function solution of the Laplacian equation as approximating function and
the results obtained are shown in Tables 4.1 to 4.3 for comparison.

Computations were done on IBM 370/145 mainframe digital computer.

Table 4.4 shows that the values computed by the use of this method is dependent
on the number (N) of boundary points and the number (m) of approximation points.

Computations were done on the Apple II+ microcomputer. The results obtained
for Problem 2 below show that

(i) this method produces the best results for solution domains where none of the
interior angles is an acute angle,

(ii) the origin of approximation should be situated on the boundary at a corner of
the domain which is on a line of symmetry of the domain since the assumption is that
the sources are equidistant from the chosen centre and outside the domain,

(iii) where the domain of solution has acute-angled corners, other types of approx-
imating (basis) functions (e.g. the harmonic functions) would produce better results.

Problem 2. Boundary values: f(s,t) = sinh(—=(t+1)/2)sin(7(s+1)/2)/ sinh(—7).
Boundary points: 42, spaced 0.2 on AB&BC with additional points (0.05, —1), (0.1, 1),
(0.9,-1), (1,-0.9), and (1,0.9). On AD and DC, uniform spacing with respect to s-
axis at 0.1 and 0.2 respectively, together with the points (0.05, —0.775), (0.75, —0.625),
(0.8, —0.52), and (0.99, —0.92).

True solution: u = f.
Domain of solution: See Figure 4.2.
Computations were done on IBM 370/145 mainframe digital Computer.

Table 4.5 shows the computed values for a centre of approximation at (0.8, —0.6),
a corner boundary point of the domain of solution. The starting line for all angular
measurements is BD. Four of the sources have fixed directions BD, DB for m > 2 and
DA, DC for m > 4.

Table 4.6 shows the results obtained with the approximation centre at the point
(29/34,-3/17) ~ (0.85,—0.18) and an initial radius of 2 units. The starting line for
all angular measurements is BD and the sources are in the directions BD and DB for
m > 2, DA and DC for m > 4.

Computed values of the LP maximum error using Harmonic Functions as approx-
imating functions {3,5} are shown in Table 4.7 for comparison with values in Tables
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4.5 and 4.6.

G

Fig. 4.1. Domain of solution for Problem 1. Fig. 4.2. Domain of solution for Problem 2.
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D

Table 4.1.

(0’ _1)

(1’ "1)

Number of

Unit Sources

Lo
maximum error

at nodal points

L,
maximum error

at nodal points

Ly
maximum error at

non-nodal points

L,
max. error at

non-nodal points

2 0.2359 0.6010 0.2357 0.5884
4 0.1939 0.4494 0.1936 0.4205
6 0.1787 0.4335 0.1787 0.3938
8 0.1779 0.4103 0.1772 0.3686
Table 4.2
No. of Unit Components of the distance vector (R) from the origin F

Sources 1 [ 2 I 3 I 4 l 5 I 6 l 7 l 8

2 1.9364 1.4633

4 1.6678 1.8164 0.9826 1.8163

6 1.6318 1.5480 1.8400 0.9030 1.8400 1.5480

8 1.7188 1.5640 1.6257 1.9192 0.9498 1.9192 1.6257 1.5640
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Table 4.3
No. of Unit Components of coefficient of approximation vector a
Sources [Norm| 0 | 1 | 2 I 3 | 4 I 5 | 6 I 1 l 8
2 L, ]0.2539 —0.3209 0.1759
Lo |1.4408 0.1514 1.5146
4 L, [0.1717 —0.3048 —0.1800 0.4632 —0.1800
L, [0.8763 0.0495 0.0541 1.1687 0.0541
6 L, |0.1718 —0.2293 —0.2687 0.0048 0.5248 0.0048 —0.2687
L. |2.0358 0.5543 0.5366 0.5174 1.5387 0.5174 0.5367 ‘
8 L, |0.1345 —0.2100 —0.2329 —0.2354 0.0936 0.5140 0.0937 -—0.2354 —0.2329
Lo [1.5998 0.1699 0.4042 0.3023 0.0849 1.5631 0.0849 0.3023 0.4042

Table 4.4

m\N — 28 42 56 70 112
2 0.2335 0.2334 0.2333 0.2333 0.9948
4 0.2334 0.2344 0.2336 0.2335 1.8164
6 0.2197 0.2220 0.2210 0.2218 1.9421
8 0.2115 0.2096 0.2115 0.2109 1.5002
10 0.1962 0.1973 0.1978 0.1982 0.6465

Table 4.5
No. of Values of computed LP max. error at the
Sources specified radius (R) from the centre of
approximation 3
17 4.9 5.1

4 0.0198 0.0227 0.0227

4 0.0146 0.0085 0.0085

6 0.0136 0.0081 0.0080

8 0.0051 0.0020 0.0020

10 0.0057 0.0012 0.0012

12 0.0028 0.0002 0.0002

14 0.0025 0.0002 0.0002

16 0.0004 0.4E—-04 0.1IE-04
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Table 4.6

No. of Computed Lp. Distance from the centre of approximation of the
Sources  max. error  unit sources
1 2 3 4 5 6 7 8
0.0124 4.1658 2.2757
0.0111 4.1703 7.2402 4.2829 4.8337
0.0106 2.5914 2.6975 1.7778 2.5507 3.4240 2.4982
0.0101 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

w & N

Table 4.7

No. of approximating computed Lp

functions max. error
2 0.0230
4 0.0088
6 0.0064
8 0.0012
10 24E-04
12 3.9E—-05
14 8.2E—-06
16 7.9E-07
18 7.9E-08

§5. Conclusion

The results of the numerical example sloved in this paper and tabulated in Tables
4.1 to 4.3 have shown that the use of the logarithmic potential as a basis function for
an approximate analytical solution of Dirichlet’s problem produces better results in the
Chebyshev norm than in the Euclidean norm for the same number of unit sources and
about the same amount of computational work. Best results are obtained when the
approximation centre is chosen on the boundary on a line of symmetry of the domain |
of solution.

Although the analyses and the results of the computations showed that the results
become unreliable in the Chebyshev approximation for a fairly large number (much
greater than shown on the Tables) of approximation points, the results in the Euclidean
approximation shows a more normal form at that stage. It is apparent from the results
(Table 4.1) that the tatio of the number of unit sources must be greater than 4(L,) :
1(L~ ) for the errors in the approximations to be equal in magnitude.
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This method produces better results when used on regular domains (domains with-
out acute interior angles).
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