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Abstract

We study the sufficient and necessary conditions of the convergence for parameter-
based rational methods in a Banach space. We derive a closed form of error bounds
in terms of a real parameter λ (1 ≤ λ < 2). We also discuss some behaviors when
the family is applied to abstract quadratic functions on a Banach space for λ = 2.

1. Introduction

We consider the problem of solving

F (x) = 0, (1)

where F : D ⊂ X → Y is a nonlinear differential operator defined on some convex
subset D of a Banach space X with values in a Banach space Y . Many problems of
applied mathematics can be brought in the form of equation (1). (see Ortega and
Rheinboldt [1970], Lancaster [1977], Dennis and Schnabel [1983], Cuyt and Rall [1985],
Laub [1991], etc.) A well-known method for solving (1) is the third-order Halley. Given
an approximation xk, compute xk+1 by

xk+1 = xk − [F ′(xk)− 1
2
F ′′(xk)F ′(xk)−1F (xk)]−1F (xk), (2)

Recent years, Kantorovich-type convergence (sufficient conditions for the convergence)
of the Halley method in Banach space setting has been mentioned by many authors:
Candela and Marquina [1990], and Kanno [1992]. In this paper, we introduce a real
parameter λ and design a new parameter-based rational iterations in Banach spaces as
follows:

yk = xk − F ′(xk)−1F (xk)
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H(xk, yk) = F ′(xk)−1F ′′(xk)(yk − xk)

xk+1 = yk − 1
2
H(xk, yk)[I +

λ

2
H(xk, yk)]−1(yk − xk), (3)

which include the Halley method as a specific choice of the parameter. We will not only
provide a complete Kantorovich-type convergence analysis as well as a local convergence
for this one-parameter family for 1 ≤ λ < 2 but also we point out that the maximum
order of convergence for the iteration at λ = 2 is greater than the famous conjecture by
Traub [15]. The conjecture states that their maximum order of convergence is three,
but we will show that it is of order four.

2. Sufficient Conditions for the Convergence

We first need a lemma.
Lemma 2.1. Let F (x) be a nonlinear operator from an open convex domain D in

a Banach space X to another Banach space Y. Suppose that F has 2nd order contin-
uous Frechet derivatives on D. Then the F (xk+1) together with the sequence {xk}∞k=0

generated by (3) has the following approximation for all k ≥ 0 and 1 ≤ λ ≤ 2,

F (xk+1) =
∫ 1

0
F ′′[yk + t(xk+1 − yk)](1− t)dt(xk+1 − yk)2 − 1

2

∫ 1

0
[F ′′[xk + t(yk − xk)]

[1− λ(1− t)]dt(yk − xk)H(xk, yk)[I +
λ

2
H(xk, yk)]−1(yk − xk)

+
∫ 1

0
{F ′′[xk + t(yk − xk)](1− t)− 1

2
F ′′(xk)}dt(yk − xk)

× [I +
λ

2
H(xk, yk)]−1(yk − xk). (4)

Now we can state our main result.
Theorem 2.1. Let F (x) : D ⊂ X → Y , X and Y are real or complex Banach

spaces, and D is an open convex domain. Assume that F has 2nd order continuous
Frechet derivatives on D and satisfies the following standard Newton-Kantorovich con-
ditions:

‖ F ′′(x) ‖≤ M, ‖ F ′′(x)− F ′′(y) ‖≤ N ‖ x− y ‖, for all x, y ∈ D. (5)

For a given initial value x0 ∈ D, assume that F ′(x0)−1 exists and satisfies

‖ F ′(x0)−1 ‖≤ β, ‖ F ′(x0)−1F (x0) ‖≤ η, (6)

M [1 +
2N

3(2− λ)M2β
]
1/3

≤ K, 1 ≤ λ < 2, (7)

h = Kβη ≤ 0.5, (8)

S(x0, t∗) ⊂ D, (9)
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where S(x, r) = {x′ ∈ x |‖ x′ − x ‖≤ r} and

g(t) =
1
2
Kt2 − 1

β
t +

η

β
, (10)

t∗ =
1−√1− 2h

h
η, t∗∗ =

1 +
√

1− 2h

h
η, Θ =

1−√1− 2h

1 +
√

1− 2h
, (11)

where t∗ is the smallest root of equation (10).
Then procedures (3) are convergent for all 1 ≤ λ < 2, and xk, yk ∈ S(x0, t∗) for all

k ∈ N0. The limit x∗ is a unique solution of equation (1) in S(x0, t∗). We have the
following optimal error bound estimate for all k ≥ 1:

‖ xk − x∗ ‖≤ t∗ − tk ≤ (1−Θ2)η
1−Θ3k Θ3k−1, (12)

for all λ in [1, 2), where {tk} and {sk}∞k=0 are defined as

sk = tk − g(tk)
g′(tk)

,

hg(tk, sk) =
g′′(tk)(sk − tk)

g′(tk)
,

tk+1 = sk − 1
2

hg(tk, sk)(sk − tk)

1 +
λ

2
hg(tk, sk)

. (13)

Proof. It suffices to show that the following items are true for all k ≥ 0 by mathe-
matical induction.

xk ∈ S(x0, tk); (14)

‖ F ′(xk)−1 ‖≤ −g′(tk)−1; (15)

‖ yk − xk ‖≤ sk − tk; (16)

yk ∈ S(x0, sk); (17)

‖ xk+1 − yk ‖≤ tk+1 − sk. (18)

It is easy to check in the case when k = 0 by the initial conditions. Now assume that
the above statements are true for a fixed k ≥ 1. Then

‖ xk+1 − x0 ‖ ≤ ‖ xk+1 − yk ‖ + ‖ yk − xk ‖ + ‖ xk − x0 ‖
≤ (tk+1 − sk) + (sk − tk) + (tk − t0)

= tk+1.

It convinces that (14) is true when k is replaced by k + 1.
Since

F ′(xk+1)− F ′(x0) =
∫ 1

0
F ′′[x0 + t(xk+1 − x0)]dt(xk+1 − x0),
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then

‖ F ′(xk+1)− F ′(x0) ‖ ≤ M ‖ xk+1 − x0 ‖
≤ K(tk+1 − t0)

= Ktk+1

< Kt∗

= K
1−√1− 2h

h
η

= K
1−√1− 2h

Kβη
η

= K
1−√1− 2h

β

≤ 1
β

≤ 1
‖ F ′(x0)−1 ‖ ,

and by the Banach lemma, F ′(xk+1)−1 exists and

‖ F ′(xk+1)−1 ‖ ≤ ‖ F (x0)−1 ‖
1− ‖ F ′(x0)−1 ‖ ‖ F ′(xk+1)− F ′(x0) ‖

≤ β

1− βK ‖ xk+1 − x0 ‖
=

1
1
β −K ‖ xk+1 − x0 ‖

≤ 1
1
β −K(tk+1 − t0)

≤ 1
1
β −Ktk+1

= − 1
g′(tk+1)

.

Which implies that (15) is true when k is replaced by k + 1. By using the identity (4),
we can estimate F (xk+1) to obtain

‖ F (xk+1) ‖ ≤ M

2
‖ xk+1 − yk ‖2 + [

1
2
− λ

4
]

M2

1
β
−M‖xk−x0‖ ‖ yk − xk ‖3

1− λ
2

M‖yk−xk‖
1
β
−M‖xk−x0‖

+
N

6
‖ yk − xk ‖3

1− λ
2

M‖yk−xk‖
1
β
−M‖xk−x0‖

≤ M

2
‖ xk+1 − yk ‖2 +

(2−λ)M2

4
+ N

6β
1
β
−M‖xk−x0‖ ‖ yk − xk ‖3

1− λ
2

M‖yk−xk‖
1
β
−M‖xk−x0‖
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≤ M

2
‖ xk+1 − yn ‖2 +

(2−λ)M2/4+N/6β
1/β−M‖xk−x0‖ ‖ yk − xk ‖3

1− λ
2

M‖yk−xk‖
1/β−M‖xk−x0‖

≤ K

2
(tk+1 − sk)2 + (2− λ)

K2

4

(sk−tk)3
1
β
−Ktn

1− λ
2

K(sk−tk)
1
β
−Ktk

= g(tk+1) ,

which yields

‖ yk+1 − xk+1 ‖ = ‖ −F ′(xk+1)−1F (xk+1) ‖
≤ ‖ F ′(xk+1)−1 ‖‖ F (xk+1) ‖
≤ − g(tk+1)

g′(tk+1)
= sk+1 − tk+1.

Then (16) is true when k is replaced by k + 1. Now we conclude

‖ yk+1 − x0 ‖ ≤ ‖ yk+1 − xk ‖ + ‖ xk+1 − yk ‖ + ‖ yk − xk ‖ + ‖ xn − x0 ‖
≤ (sk+1 − tk+1) + (tk+1 − sk) + (sk − tk) + (tk − t0)

= sk+1.

So is (17). Finally we use the fact that

‖ λ

2
F ′(xk+1)−1F ′′(xk+1)(yk+1 − xk+1) ‖ ≤ λ

2
‖ F ′(xk+1)−1 ‖‖ F ′′(xk+1) ‖‖ yk+1 − xk+1 ‖

≤ λ

2
K(sk+1 − tk+1)
−g′(tk+1)

≤ K(sk+1 − tk+1)
1
β −Ktk+1

< 1,

and conclude that [1 + λ
2F ′(xk+1)−1F ′′(xk+1)(yk+1 − xk+1)]−1 exists and

‖ [1 +
λ

2
F ′(xk+1)−1F ′′(xk+1)(yk+1 − xk+1)]−1 ‖

≤ [1− λ

2
‖ F ′(xk+1)−1 ‖‖ F ′′(xk+1) ‖‖ yk+1 − xk+1 ‖]−1

≤ [1 +
λ

2
g′(tk+1)−1K(sk+1 − tk+1)]−1

= [1 +
λ

2
g′(tk+1)−1g′′(tk+1)(sk+1 − tk+1)]−1

= [1 +
λ

2
hg(tk+1, sk+1)]−1.
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From (3), we shall have

xk+2 − yk+1 = −1
2
[I +

λ

2
H(xk+1, yk+1)]−1H(xk+1, yk+1)(yk+1 − xk+1)

and then

‖ xk+2 − yk+1 ‖ ≤ 1
2
‖ [I +

λ

2
H]−1 ‖‖ F ′(xk+1)−1 ‖‖ F ′′(xk+1) ‖‖ yk+1 − xk+1 ‖2

≤ −1
2
[1 +

λ

2
hg(tk+1, sk+1)]−1hg(tk+1, sk+1)(sk+1 − tk+1)

= tk+2 − sk+1,

which convinces that (18) is true when k is replaced by k + 1. Now we are ready to
prove (13). Notice that

g(tk) =
K

2
(t∗ − tk)(t∗∗ − tk),

and
g′(tk) = −K

2
[(t∗ − tk) + (t∗∗ − tk)].

For convenience, we denote ak = t∗ − tk, bk = t∗∗ − tk. Then we have

g(tk) =
K

2
akbk,

g′(tk) = −K

2
(ak + bk),

bk = ak +
(1−Θ2)η

Θ
.

Now from (13), we have

ak = ak−1 −
ak−1bk−1(ak−1 + bk−1)2 + (1− λ)a2

k−1b
2
k−1

(ak−1 + bk−1)3 − λak−1bk−1(ak−1 + bk−1)

=
a4

k−1 + (2− λ)a3
k−1bk−1

(ak−1 + bk−1)3 − λak−1bk−1(ak−1 + bk−1)
.

By the similar way, we have an expression of bk,

bk =
b4
k−1 + (2− λ)b3

k−1ak−1

(ak−1 + bk−1)3 − λak−1bk−1(ak−1 + bk−1)
.

Hence we obtain

ak

bk
= {ak−1

bk−1
}3 ak−1 + (2− λ)bk−1

bn−1 + (2− λ)ak−1

= {ak−1

bk−1
}3

ak−1

bk−1
+ (2− λ)

1 + (2− λ)ak−1

bk−1

.
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Note that 0 ≤ ak−1

bk−1
≤ θ ≤ 1, and if 1 ≤ λ < 2, then

ak−1

bk−1
+ (2− λ)

1 + (2− λ)ak−1

bk−1

≤ 1.

Which implies
ak

bk
≤ {ak−1

bk−1
}3,

and we solve this equation for ak and obtain

ak = t∗ − tk ≤ (1−Θ2)η
1−Θ3k Θ3k−1.

Finally to show uniqueness, we assume that there exists a second solution y∗ of the
equation (1) in S(x0, t∗). We now obtain the estimate:

‖ F ′(x0)−1 ‖
∫ 1

0
‖ F ′(x∗ + t(y∗ − x∗))− F ′(x0) ‖ dt

≤ βM

∫ 1

0
‖ x∗ + t(y∗ − x∗)− x0 ‖ dt

≤ Mβ

∫ 1

0
[(1− t) ‖ x∗ − x0 ‖ +t ‖ y∗ − x0 ‖]dt

≤ 1
2
Mβ(t∗ + t∗)

< 1.

Hence the linear operator
∫ 1
0 F ′(x∗ + t(y∗ − x∗))dt is invertible. It follows from the

approximation
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗) = F (y∗)− F (x∗) = 0,

that x∗ = y∗. The proof of the theorem is now completed.

3. Necessary Conditions for the Convergence

Assume that F : D ⊂ X → Y has the following property: there is an x∗ ∈ D such
that F (x∗) = 0 and F ′(x∗) is nonsingular.

Theorem 3.1. Assume that the oporator F satisfies (6) and (7) in Theorem 2.1
and there exist δ and β∗ such that

‖ xk − x∗ ‖≤ δ, ‖ F ′(x∗)−1 ‖≤ β∗, (19)

then xk+1 is well defined and converges to x∗ with order of convergence four. We have
also the following error estimate:

‖ xk+1 − x∗ ‖≤ C∗ ‖ xk − x∗ ‖3, (20)



274 I.K. ARGYROS, D. CHEN AND Q. QIAN

where C∗ is an expression in terms of M , β∗ , δ and λ.
Proof. Using the fact that

‖ F ′(xk)− F ′(x∗) ‖≤ M ‖ xk − x∗ ‖≤ Mδ,

we can choose δ > 0 such that δ ≤ 1
3Mβ∗ . Thus F ′(xk)−1 exists and

‖ F ′(xk)−1 ‖≤ ‖ F ′(x∗)−1 ‖
1− ‖ F ′(x∗)−1 ‖ ‖ F ′(xk)− F ′(x∗) ‖

≤ β∗

1− β∗Mδ
=

1
1
β∗ −Mδ

<
3
2
β∗,

then
‖ H(xk, yk) ‖≤ 3

4
Mβ∗ ‖ yk − xk ‖ .

Now we can estimate the distance between xk+1 and yk.

‖ xk+1 − yk ‖ ≤ 1
2
‖ H(xk, yk) ‖[1− λ

2
‖ H(xk, yk) ‖]−1 ‖ yk − xk ‖

≤
2
3Mβ∗

1− 2λ
3 Mβ∗ ‖ yk − xk ‖

‖ yk − xk ‖2 .

Here we need an identitity due to Dennis and Schnabel [6] that

x∗ − yk = −F ′(xk)−1
∫ 1

0
F ′′(x∗ + t(xk − x∗))tdt(x∗ − xk)2.

We have
‖ yk − x∗ ‖≤ 3

4
Mβ∗δ2,

and
‖ yk − xk ‖≤ (

3
4
Mβ∗δ + 1)δ,

this gives

‖ H(xk, yk) ‖≤ 2
3
Mβ∗δ(

3
4
Mβ∗δ + 1),

and

‖ xk+1 − yk ‖≤
3
4Mβ∗

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)
‖ yk − xk ‖2 .

Following (3), we have

‖ F (xk+1) ‖ ≤ M

2
‖ xk+1 − yk ‖2 +(

1
2
− λ

4
)

2
3Mβ∗

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)
‖ yk − xk ‖3

+
N
6 ‖ yk − xk ‖3

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)
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≤
M
2 (3

4)2M2β∗2 ‖ yk − xk ‖4

[1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)]2

+
2−λ

6 Mβ∗ ‖ yk − xk ‖3

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)
+

N
6 ‖ yk − xk ‖3

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)

≤ [
9M3β∗2

32 ‖ yk − xk ‖
(1− 2λ

3 Mβ∗δ(3
4Mβ∗δ + 1))2

+
2−λ

6 Mβ∗

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)

+
N
6

1− 2λ
3 Mβ∗δ(3

4Mβ∗δ + 1)
] ‖ yk − xk ‖3

= C ‖ yk − xk ‖3 .

On the other hand, by the continuity of F ′(x∗)−1, there is an α such that

‖ F (xk+1)− F (x∗) ‖≥ α ‖ xk+1 − x∗ ‖,
and so

‖ F (xk+1) ‖
‖ yk − xk ‖3

=
‖ F (xk+1)− F (x∗) ‖

‖ yk − xk ‖3

≥ α ‖ xk+1 − x∗ ‖
‖ yk − xk ‖3

≥ α ‖ xk+1 − x∗ ‖
[‖ yk − x∗ ‖ + ‖ xk − x∗ ‖]3

= α

‖xk+1−x∗‖
‖xk−x∗‖3

[1 + ‖yk−x∗‖
‖xk−x∗‖ ]

3
.

It follows that

‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖3

≤ 1
α

[1 +
‖ yk − x∗ ‖
‖ xk − x∗ ‖ ]3

‖ F (xk+1) ‖
‖ yk − xk ‖3

= C
1
α

[1 +
‖ yk − x∗ ‖
‖ xk − x∗ ‖ ]3 ,

which gives

‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖3

≤ C

α
[1 + Mβ∗ ‖ xk − x∗ ‖] ≤ C

α
(1 + Mβ∗δ) = C∗.

That is (20). The theorem is now proved.

4. A New Method of Order Four

In order to increase the order of convergence, we select λ = 2 and construct a new
Halley-type method as follows:

yk = xk − F ′(xk)−1F (xk)
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H(xk, yk) = F ′(xk)−1F ′′(xk)(yk − xk)

xk+1 = yk − 1
2
H(xk, yk)[I + H(xk, yk)]−1(yk − xk). (21)

We for the first time point out that the maximum order of convergence of this method
could reach up to 4 when the function F (x) is any quadractic function in a Banach
space. Let F (x) be a quadratic operator in an open convex domain D in a Banach
space X to another Banach space Y with the form of

F (x) =
M2

2
x2 + M1x + M0, (22)

where Mi is the ith symmetric bilinear operator defined in [14]. Assume that F ′(x∗)−1

exists and satisfy
‖ F ′(x∗)−1 ‖≤ β∗, ‖ xk − x∗ ‖≤ δ. (23)

From (4) and λ = 2, we obtain

F (xk+1) =
∫ 1

0
F ′′(xk + t(xk+1 − yk))(1− t)dt(xk+1 − yk)2

−1
2

∫ 1

0
F ′′(xk + t(yk − xk))(2t− 1)dt(yk − xk)H(xk, yk)[I + H(xk, yk)]−1

+
∫ 1

0
{F ′′(xk + t(yk − xk))(1− t)− 1

2
F ′′(xk)}(yk − xk)[I + H(xk, yk)]−1dt(yk − xk).

We apply this approximation to a general quadratic operator (20) and obtain

F (xk+1) =
M2

2
(xk+1 − yk)2

=
M2

2
H(xk, yk){−1

2
[I + H(xk, yk)]−1(yk − xk)}2,

and

‖ F (xk+1) ‖ ≤ ‖ M2 ‖
2

{ 1
1− ‖ H(xk, yk) ‖

‖ M2 ‖
2

‖ F ′(xk)−1 ‖‖ yk − xk ‖2}2

≤ ‖ M2 ‖3

8
‖ F ′(xk)−1 ‖

(1− ‖ H(xk, yk) ‖)2 ‖ yk − xk ‖4,

that is
‖ F (xk+1) ‖
‖ yk − xk ‖4

≤ ‖ M2 ‖
8

‖ F ′(xk)−1 ‖2

(1− ‖ H(xk, yk) ‖)2 .

Since

‖ F ′(xk)− F ′(x∗) ‖ ≤ ‖ M2 ‖‖ xk − x∗ ‖
≤ ‖ M2 ‖ δ,
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and we can choose a δ > 0 such that ‖ M2 ‖δ ≤ 1
3β∗ , then by the Banach lemma,

F ′(xk)−1 exists and

‖ F ′(xk)−1 ‖ ≤ ‖ F ′(x∗) ‖
1− ‖ F ′(x∗) ‖‖ F ′(xk)− F ′(x∗) ‖

≤ β∗

1− ‖ M2 ‖ β∗δ

≤ 3
2
β∗,

and

‖ H(xk, yk) ‖ ≤ 3
2
‖ M2 ‖ β∗ ‖ yk − xk ‖

≤ 3
2
‖ M2 ‖ β∗(‖ yk − x∗ ‖ + ‖ xk − x∗ ‖).

In order to estimate the distance between yk and x∗, we need an identity that

x∗ − yk = −F ′(xk)−1
∫ 1

0
F ′′(x∗ + t(xk − x∗))tdt(x∗ − xk)2.

Now we shall have
‖ yn − x∗ ‖≤ 3

2
‖ M2 ‖ β∗δ2,

and
‖ H(xk, yk) ‖≤ 3

2
‖ M2 ‖ β∗δ(

3
2
‖ M2 ‖ β∗δ + 1).

this gives
‖ F (xk+1) ‖
‖ yk − xk ‖4

≤ 1
8

9
4 ‖ M2 ‖ β∗2

(1− (3
2 ‖ M2 ‖ β∗δ(3

2 ‖ M2 ‖ β∗δ + 1))2
.

On the other hand, by the continuity of F ′(x∗)−1, there is a γ > 0 such that

‖ F (xk+1)− F (x∗) ‖≥ γ ‖ xk+1 − x∗ ‖,

and yields

‖ F (xk+1) ‖
‖ yk − xk ‖4

=
‖ F (xk+1)− F (x∗) ‖

‖ yk − xk ‖4

≥ γ ‖ xk+1 − x∗ ‖
‖ yk − xk ‖4

≥ γ
‖ xk+1 − x∗ ‖

{‖ xk − x∗ ‖ + ‖ yk − x∗ ‖}4
.

Hence
‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖4

≤ 1
γ
{1 +

‖ yk − x∗ ‖
‖ xk − x∗ ‖}

4 ‖ F (xk+1) ‖
‖ xk+1 − xk ‖4

.
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It follows immediately
‖ xk+1 − x∗ ‖≤ C∗ ‖ xk − x∗ ‖4, (24)

where C∗ =
1
γ

(1 +
3
2
‖ M2 ‖ β∗δ)

9 ‖ M2 ‖3 β∗2

32[1− 3
2 ‖ M2 ‖ β∗δ(3

2 ‖ M2 ‖ β∗δ + 1)]2
. 5. Applications

In this section, we first use the Theorem 2.1 to suggest some new approaches to the
solution of quadratic integral equations of the forms:

x(s) = y(s) + αx(s)
∫ 1

0
q(s, t)x(t)dt, (25)

in the space X = C[0, 1] of all continuous functions on the interval [0, 1] with the norm

‖ x ‖= max
0≤s≤1

| x(s) | . (26)

Here, we assume that α is a real number called the “albedo” for scattering and the
kernal q(s, t) is a continuous function of two variables with 0 ≤ s, t ≤ 1 and satisfying

0 < q(s, t) < 1, 0 ≤ s, t ≤ 1, (27)

q(s, t) + q(t, s) = 1, 0 ≤ s, t ≤ 1. (28)

The function y(s) is given by a continuous function defined on [0, 1], and x(s) is the
unknown function sought in [0, 1]. Equations of this type are related with the work of
S. Chandrasokhar [3], and arise in the theories of radiative transfer, neutron transport
and in the kinetic theory of gases. There exists an extensive literature on equations
like (25) under various assumptions on the kernel q(s, t) and α is a real or complex
number. One can refer to the recent work in [1] and the references there. Here, we
demonstrate that the theorem via the iterative procedures (3) provide existence results
for (23). Moreover, the iterative procedures (3) converge faster than the solution of
all the previous known ones. Furthermore, a better information on the location of
the solution is given. Note that the cost is not higher than the corresponding one of
previous methods. For simplicity, we shall assume that

q(s, t) =
s

s + t
, 0 ≤ s, t ≤ 1. (29)

Notice that q(s, t) satisfies (27) and (28) above. Let us now choose y(s) = 1 for all s in
[0, 1] and define the operator F on X = C[0, 1] by

F (x) = αx(s)
∫ 1

0

s

s + t
x(t)dt− x(s) + 1. (30)

Note that every root of the equation F (x) = 0 satisfies the equation(25). Set x0(s) = 1
and α = 0.25, use the definition of the first and second Frechet derivatives of the
operator F to obtain

M = 2 | α | max
0≤s≤1

|
∫ 1

0

s

s + t
dt |= (2 ln 2) | α |= 0.34657359,
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N = 0,K = M, β =‖ F ′(1)−1 ‖= 1.53039421,

t∗ = 0.28704852,Θ = 0.08239685

and

‖ xk(λ)− x∗ ‖≤ (1−Θ2)η
1−Θ3k Θ3k−1 =

0.26339662
1− (0.08239685)3k (0.08239685)3

k−1

for 1 ≤ λ < 2 which shows that x∗ is unique in S(x0, t∗). We now discuss the deter-
mination of the parameter λ so that the iterative procedures (3) will produce better
solutions by spending the same amount of computations. Our numerical example do
convince the above theoretical conclusions. Let us consider F (x) = x3 − 2x− 5, where
x∗ = 2.094551481, and

E0(λ) =‖ x0(λ)− x∗ ‖, E1(λ) =‖ x1(λ)− x∗ ‖ . (31)

We have the following numerical results.
Table

λ x0 x1 E0(λ) E1(λ)
1.0 2.0 2.0943396 0.95 ∗ 10−1 0.21 ∗ 10−3

2.0 2.0 2.0946429 0.95 ∗ 10−1 0.91 ∗ 10−4

3.0 2.0 2.0949152 0.95 ∗ 10−1 0.36 ∗ 10−3

4.0 2.0 2.0951612 0.95 ∗ 10−1 0.61 ∗ 10−3
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