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Abstract

A simple one-dimensional 2 × 2 hyperbolic system is considered in the paper.

The model contains a linear hyperbolic equation, as well as a hyperbolic equation of

which the coefficients are about the solution of the linear one. The exact solution is

presented and discussed, then numerical experiments are given by TVD (or MmB)

type schemes for Riemann problems. From the results, we know that the solutions

do have δ−waves for some suitable initial data.

1. Introduction

The classical solution structure has been studied from general hyperbolic system in

conservation laws. Mathematicians focused on the existences and uniqueness of solu-

tions and looked for a way to study for practical problems, and with the development of

computer sciences, the study has got a great success by using of computational meth-

ods, such as finite difference, finite element and spectral methods, to describe natural

phenomena.

In recent years, a new singular phenomenon has been discovered, called δ−wave.

The first result was presented by Korchinski[1] in 1977, he proved that no classical

solutions exist for the following 2 × 2 system.
{

ut + (u2/2)x = 0

vt + (uv)x = 0 .
(1.1)

In 1993, Joseph proved that the viscosity solution contains delta-measures for Rie-

mann problem of the above problem [2].

In 1989, our group began to study for 2-D Riemann problem of 2-D 2× 2 nonlinear

hyperbolic system in conservation laws on both theoretical analyses and numerical

computations, {
ut + (u2)x + (uv)y = 0

vt + (uv)x + (v2)y = 0
(1.2)
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with the 2-D Riemann data

(u, v)|t=0 = (ui
0, v

i
0), (i) = 1, 2, 3, 4 (1.3)

where (i)-states are described to

(4)(3)

(2) (1)

Here (1.2) is called 2-D inviscid Burger’s equations.

In the processes of the study on the solution structure of the problem, then firstly,

we found a new kind of phenomenon by numerical computations for some distributions

of Riemann initial data. The phenomenon in numerical results performed that there is

a narrow region near shock waves that solution may produce infinity even though the

initial data are bounded[3]. The theoretical analyses for (1.2) and (1.3) are given in

[4,5]. From the 2-D model, we go back to some 1-D cases, then consider the 1-D 2 × 2

nonlinear hyperbolic system in conservation laws[4,6], with initial data

(u, v)|t=0 = (u0(x), v0(x)). (1.5)

The general model was first presented in [4]. The several special system were pro-

posed and studied in [7] and some results that solutions may produce δ−waves were

presented in [8] for 1-D and 2-D hyperbolic systems.

In this paper, we consider the special case of system (1.1). The exact solution is

presented and discussed for the Riemann initial data in section 2, then in section 3

the numerical experiments are given for the corresponding Riemann data by TVD (or

MmB) schemes. From the exact solutions and numerical solutions, δ−wave do exist in

some cases.

2. Exact Solutions

Here we consider the following simple 2 × 2 hyperbolic system,
{

ut + aux = 0

vt + (uv)x = 0
(2.1)

with initial data

(u, v)|t=0 = (u0(x), v0(x)). (2.2)

For the first equation of (2.1) and (2.2), the solution can easily be obtained,

u(x, t) = u0(x − at). (2.3)
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We first consider the Riemann problem for the system,
{

ut = 0

vt + (uv)x = 0.
(2.4)

and Riemann data

(u, v)|t=0 =

{
(ul, vl), x < 0

(ur, vr), x > 0
(2.5)

In order to get the exact solution of (2.4)(2.5), smoothe u0 by linear interpolation,

then we have the function uε
0,

uε
0 =





ul, x < −ε
ul(ε − x) + ur(x + ε)

2ε , −ε ≤ x ≤ ε

ur, x > ε

and uε(x, t) = uε
0(x) for (2.4)(2.5).

Now consider the second equation of (2.4),

vt + uvx + vux = 0.

From the function uε(x, t), we have,

uε
x(x, t) =

{
0, x ∈ [−ε, ε]
ur − ul

2ε , x ∈ (−ε, ε)

then we divide the equation into three parts of the equation:

vt + ulvx = 0, ∞ < x < −ε

vt + urvx = 0, ε < x < ∞

vt + (ul + ur
2 +

(ur − ul)x
2ε )vx = 0, x ∈ (−ε, ε).

Obviously, the solution for the former two equations is vl and vr; for the last equa-

tion, we consider the case ul = −ur and have the solution,

v(x, t) =





−v0ε
x , x ∈ (−ε,−ε exp(ur − ul

2ε t))
v0ε
x , x ∈ (ε exp(ur − ul

2ε )t, ε)

v0 exp(−ur − ul
2ε t), x ∈ (−ε exp(ur − ul

2ε )t, ε exp(ur − ul
2ε t)).

By the approximation in the sense of distribution for ε → 0, we obtain the exact

solution of (2.4)(2.5) as follows,

v(x, t) =

{
v0, x 6= 0

v0 − v0(ur − ul)δx=0t, x = 0.

For (2.1) and (2.5), we may do the transformations, τ = t, y = x − at then we

have {
uτ = 0

vτ + ((u − a)v)y = 0.
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For the Riemann data, the solution is described as,

{
u(x, t) = u0(x − at),

v(x, t) = v0 − v0(ur − ul)δx=att.

Remark. In the process of getting the exact solution, we assume that ul = −ur.

If not, the term ul + ur
2 6= 0, then the solution v(x, t) will travel by speed a + ul + ur

2 ,

that is, we should have that v(x, t) = v(x − (a + ul + ur
2 )(t − t0), t0), so we guess that

there is no the solution structure in the form of δ−wave.

Therefore for the general Riemann data, we present some theoretical results in the

following subcases:

i) ul < ur

In this case, due to the structure of (2.1), we know that v(x, t) is rarefied as time t

increases, see figure 2.1
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Figure 2.1. a. u(x,t) in (x,t) b. v(x,t) in (x,t)

In this case, there is no other singular solution structure in the model.

(ii) ul > ur

From (2.1), we know that v(x, t) will tend to infinity along x = at if u0(x−at) = 0.

Hence here we divide the case into three subcases to discuss.

1) ul > ur > 0, the solution structure is figured in (x,t) plane as following,
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Figure 2.2. a. u(x,t) in (x,t) b. v(x,t) in (x,t)

In this subcase there is no δ−wave.

2) 0 > ul > ur, then we have the solution structure,
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Figure 2.3. a. u(x,t) in (x,t) b. v(x,t) in (x,t)

There is also no δ−wave in the subcase.

3) ul ≥ 0 ≥ ur, then from the data, we have u(x, t) = 0 along x = at when ul = −ur

definitely. See Figure 2.4,
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Figure 2.4. a. u(x,t) in (x,t) b. v(x,t) in (x,t)

So v(x, t) will tend to infinity along x = at and constant in the other region of (x, t)

plane. Therefore we can say that there is δ−wave in this subcase. In the following

section, numerical solutions are given for the case ul > ur.

3. Numerical Experiments

Here consider numerical solutions of (2.1) and (2.5) to the corresponding three

subcases for ul > ur by TVD (or MmB) scheme[9].

1) ul > ur > 0

The initial data are taken to

Data 1. ul = 8, ur = 1.8, vl = vr = 2

See Figure 3.1 and 3.2,

2) 0 > ul > ur

Here the initial data are given as follows,

Data 2. ul = −1, ur = −8, vl = vr = 2

See Figure 3.3 and 3.4,
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data1 u=: v=: data2 u=: v=: data3 u=: v=:

i=43 8.00 2.00 i=141 -1.00 9.00 i=69 1.00 0.10E+01

i=44 8.00 2.00 i=142 -1.00 9.00 i=70 1.00 0.32E+01

i=45 8.00 2.00 i=143 -1.00 9.00 i=71 1.00 0.12E+03

i=46 8.00 2.00 i=144 -1.00 9.00 i=72 1.00 0.71E+04

i=47 7.99 2.00 i=145 -1.00 8.99 i=73 1.00 0.40E+06

i=48 7.99 2.00 i=146 -1.00 8.98 i=74 1.00 0.22E+08

i=49 7.99 2.00 i=147 -1.01 8.93 i=75 1.00 0.12E+10

i=50 7.99 2.00 i=148 -1.05 8.77 i=76 0.99 0.73E+11

i=51 7.99 2.00 i=149 -1.18 8.25 i=77 0.99 0.35E+13

i=52 7.95 2.01 i=150 -1.64 6.86 i=78 0.90 0.22E+15

i=53 7.83 2.04 i=151 -3.13 4.45 i=79 0.31 0.36E+16

i=54 7.43 2.17 i=152 -5.44 2.82 i=80 -0.41 0.41E+16

i=55 6.10 2.70 i=153 -7.53 2.11 i=81 -0.84 0.19E+15

i=56 4.06 3.80 i=154 -7.98 2.00 i=82 -0.96 0.85E+13

i=57 2.21 11.40 i=155 -7.99 2.00 i=83 -0.99 0.32E+12

i=58 1.81 17.25 i=156 -8.00 2.00 i=84 -0.99 0.14E+11

i=59 1.80 17.50 i=157 -8.00 2.00 i=85 -1.00 0.40E+08

i=60 1.80 17.55 i=158 -8.00 2.00 i=86 -1.00 0.11E+04

i=61 1.80 17.55 i=159 -8.00 2.00 i=87 -1.00 0.10E+01

3) ul ≥ 0 ≥ ur

Here we take the initial data to the case ul = −ur, it is listed to

Data 3. ul = −ur = 1, vl = vr = 1

The numerical results are presented in Figure 3.5 and Figure 3.6.
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For the detail solution data locally, see the table before front page. It clearly gives

the quantity in the region which contains δ−wave.

Here M-P is mesh point, n is time step. From the table and Figures 3.5 and 3.6, we

can see that v(x, t) tends to inifinity along x = at the region of shock wave u(x, t) with

time t. There is no the solution structure for the other cases. So we get the conclusion

that there is δ−wave solution structure for some initial data for the 2 × 2 hyperbolic

system.
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