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Abstract
In this paper, an explicit expression of the blossom by the means of the B–form

of B-B polynomial defined on a simplex is given. With its help, new but very short
and simple blossom proofs of the most important theorems on B-B polynomials
are derived, such as the degree elevation formula, the subdivision and the change
of the underlying simplex procedure, the control points convergence property, the
Marsden’s identity.

1. Introduction

There are many approaches to polynomial and piecewise polynomial functions and
curves. In the late ’80 an elegant new approach has been developed by Ramshaw
and others under the name of “blossoming”[7,8,2,3]. The idea applied can be traced
to the algebraic geometry under the name polar form. As it turned out, the new
approach successfully reconstructs and generalises the standard univariate polynomial
and spline theory and makes it easier to understand and to explain the theorems and the
computational algorithms involved. This is mainly due to the fact that it is possible
to derive the main properties of splines (and polynomials) just from the recurrence
relation that computes the B-spline basis. And this recurrence is a particular case of
an algorithm that computes a blossom.

The basic idea in the blossom approach is the conclusion that there is a one–to–
one correspondence between polynomials of degree at most n and a certain class of
polynomials of n variables. Let us be precise.

A function f : IR → IR is called affine if it satisfies

f

(∑

i

uixi

)
=

∑

i

uif(xi)

for all affine combinations of xi ∈ IR, i.e.
∑

i

ui = 1, ui ∈ IR.
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A function f : IRm → IR is called m–affine if it is affine with respect to each arguments.
Also, a function f : IRm → IR is called symmetric if it preserves its value under any
permutation of its argument. Let us give now the definition of a blossom for the
univariate polynomial case.

Definition 1.1 Let f be a polynomial of degree ≤ n. The blossom

Bf (u1, u2, · · · , un)

of the polynomial f is the symmetric n–affine multivariate polynomial satisfying the
diagonal property

Bf (t, t, · · · , t) = f(t) .

The blossom is well defined since it turns out to be unique. The definition can
be straightforwardly extended to the splines, polynomial and spline curves, as well as
to the multivariate polynomial case. In the recent years, many authors studied the
problems on the univariate splines and on the spline or more general progressive curves
using blossoming approach and produced fertile results[9,10,6,1,11,4]. The results were
partly extended also to the multivariate polynomial case. But on the other hand, the
analogies of blossoming for general multivariate splines are currently not known and this
problem remains an important open question. In [5], some blossoming facts concerning
splines on a simplicial partition can be found.

In this paper, we give an explicit expression of blossom

Bn(x(1), x(2), · · · , x(n)) := Bn(bn;x(1), x(2), · · · , x(n))

by means of the B–form of B-B polynomial bn on a simplex. Compared to the known
one[5] it turns out to be much simpler to deal with, and gives the important dual
functional property in a natural one row proof. It is also very easy to establish a
necessary and sufficient condition (in the blossom form) for two B-B polynomials bn

and bn+k to be identical. On this basis, the paper continues with very short blossom
proofs of the most important theorems on B-B polynomials defined on simplex.

Although the majority of the theorems in this article is known, the proofs in the
outline are new. The theorems are formulated in the blossoming form and the proofs
are much shorter than the currently known ones and may give further insight into the
basic theory of B-B surfaces and multivariate splines.

2. The Blossoming Proofs of the Facts on the B-B Polynomials

In the beginning, let us introduce the notation used throughout the paper. Let

Vm :=< v(1), v(2), · · · , v(m+1) >:=

{
m+1∑

i=1

λiv
(i) : λi ≥ 0,

m+1∑

i=1

λi = 1

}

denote a non–degenerate simplex in IRm with vertices

v(1), v(2), · · · , v(m+1) ∈ IRm, volume Vm 6= 0.
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Further, for any multindex

α := (α1, α2, · · · , αm+1) ∈ Zm+1
+ ,

let
|α| := α1 + α2 + · · ·+ αm+1,

α! := α1!α2! · · ·αm+1!,

λα := λα1
1 λα2

2 · · ·λαm+1

m+1 , λ = (λi)m+1
i=1 ∈ IRm+1.

For a pair of multiindices α, β the binomial coefficient is given as

(
α

β

)
:=





m+1∏
j=1

(
αj

βj

)
, if βj ≤ αj , all j

0, otherwise .

Any polynomial bn of the total degree ≤ n in IRm can be expressed as

bn(x) =
∑

|α|=n

cαBn
α(λ), (1)

i.e. in a particular barycentric basis that depends on a given Vm, where

Bn
α(λ) :=

n!
α!

λα, α ∈ Zm+1
+ ,

and
λ = (λ1, λ2, · · · , λm+1) := λ(x, Vm)

are the barycentric coordinates of x satisfying

x =
m+1∑

i=1

λiv
(i),

m+1∑

i=1

λi = 1 .

(1) is called B–form of bn with respect to Vm.
Let us recall the blossoming principle[7,8,5]. For any multivariate polynomial bn :

IRm → IR of total degree ≤ n, there exists a unique symmetric n–affine map

Bn : IRm × IRm · · · × IRm
︸ ︷︷ ︸

n

−→ IR

satisfying the diagonal property

Bn(x, x, · · · , x) = bn(x), x ∈ IRm.

Bn(x(1), x(2), · · · , x(n)) is called the blossom of bn.
The explicit representation of Bn in the original variables is well known[5]. However,

the representation is rather clumsy to deal with. We shall show that the barycentric
form is much simpler, and more adequate as a working tool in proving facts on the B-B
surfaces. In the following we give the new explicit expression of Bn by means of the
B–form of bn.
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Theorem 2.1 Let Bn(x(1), x(2), · · · , x(n)) be the blossom of bn, and let the points
x(k) be expressed in the barycentric coordinates as follows

x(k) =
m+1∑

i=1

σ
(k)
i v(i) ,

m+1∑

i=1

σ
(k)
i = 1 , k = 1, 2, · · · , n.

Then

Bn(x(1), x(2), · · · , x(n)) =
n∏

k=1

(
σ

(k)
1 E1 + σ

(k)
2 E2 + · · ·σ(k)

m+1 Em+1

)
c0. (2)

Here Ej denotes the symbolic shift operator, i.e.

Ejcα := cα+ej , j = 1, 2, · · · ,m + 1,

and ej = (δj,`)m+1
`=1 ∈ IRm+1 denotes the jth unit vector.

Proof. Quite clearly the right side of (2) is an affine symmetric multivariate poly-
nomial. Thus one only has to verify the diagonal property: let

x(1) = x(2) = · · · = x(n) = x =
m+1∑

i=1

λiv
(i).

Then the right hand reduces to

(λ1E1 + λ2E2 + · · ·+ λm+1Em+1)nc0 =
∑

|α|=n

cαBn
α(λ) = bn(x) .

Since the blossom is unique, the theorem is proved.
As an application of theorem 2.1, it is easy to get the dual functional property of

the blossom Bn(x(1), x(2), · · · , x(n)).

Corollary 2.1 Let α ∈ Zm+1
+ , |α| = n. Then

Bn(v(1), · · · , v(1)

︸ ︷︷ ︸
α1

, v(2), · · · , v(2)

︸ ︷︷ ︸
α2

, · · · , v(m+1), · · · , v(m+1)

︸ ︷︷ ︸
αm+1

) = cα. (3)

Proof. The representation (2) reduces the left side of (3) to

Eα1
1 Eα2

2 . . . E
αm+1

m+1 c0 = cα .

The explicit representation given in the theorem 2.1 and the dual functional prop-
erty of the blossom yield an easy way to the subdivision (or change of the underlying
simplex) theorem in the blossom form. Let

V̄m :=< v̄(1), v̄(2), · · · , v̄(m+1) >

be another m–simplex in IRm, and

v̄(k)
m =

m+1∑

j=1

λ
(k)
j v(j) ,

m+1∑

j=1

λ
(k)
j = 1, k = 1, 2, · · · ,m + 1.
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Corollary 2.2 Let
bn(x) =

∑

|α|=n

cαBn
α(λ)

be a B-B surface on the simplex Vm, and let Bn(x(1), x(2), · · · , x(n)) be its blossom. Then
on the simplex V̄m, bn can be expressed as

bn(x) =
∑

|α|=n

Bn(v̄(1), · · · , v̄(1)

︸ ︷︷ ︸
α1

, v̄(2), · · · , v̄(2)

︸ ︷︷ ︸
α2

, · · · , v̄(m+1), · · · , v̄(m+1)

︸ ︷︷ ︸
αm+1

) Bn
α(λ̄) (4)

with
Bn(v̄(1), · · · , v̄(1)

︸ ︷︷ ︸
α1

, v̄(2), · · · , v̄(2)

︸ ︷︷ ︸
α2

, · · · , v̄(m+1), · · · , v̄(m+1)

︸ ︷︷ ︸
αm+1

) =

m+1∏

k=1

(
λ

(k)
1 E1 + λ

(k)
2 E2 + · · ·+ λ

(k)
m+1Em+1

)αk
c0.

Here λ̄ denotes the barycentric coordinates of x with respect to the simplex V̄m.

Note that the coefficients Bn can be calculated efficiently by the de Casteljau algo-
rithm, as already pointed out in [5]. The geometric meaning of (4) is the following: the
Bézier coordinates of the restriction of a B-B surface bn to the simplex V̄m are equal to
values of the blossom of bn at the points

v̄(1), · · · , v̄(1)

︸ ︷︷ ︸
α1

, v̄(2), · · · , v̄(2)

︸ ︷︷ ︸
α2

, · · · , v̄(m+1), · · · , v̄(m+1)

︸ ︷︷ ︸
αm+1

, |α| = n.

It is well known that the degree elevation formula is an important tool in the study
of B-B polynomials. With the blossom approach, it is straightforward to establish the
degree elevation formula in its full generality. We first prove the following theorem.

Theorem 2.2 Let Bn(x(1), x(2), · · · , x(n)) and Bn+k(x(1), x(2), · · · , x(n+k)) be the
blossoms of B-B polynomials bn and bn+k respectively. Then

bn = bn+k

if and only if

Bn+k(x(1), x(2), · · · , x(n+k)) =
1(

n+k
k

)
∑
πk

Bn

(
xπk(1), xπk(2), · · · , xπk(n)

)
, (5)

where πk denotes a map from In := {1, 2, · · · , n} to In+k such that πk(i) < πk(j), if
i < j.

Proof. Note that the right side of (5) is (n + k)–affine symmetric polynomial, given
as an average of

(n+k
k

)
n-affine symmetric polynomials. If all the points coincide,

bn+k(x) = Bn+k(x, x, · · · , x)

= 1

(n+k
k )

∑
πk

Bn(x, x, · · · , x) = bn(x).
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But the blossoms are unique, and the theorem is confirmed.
The theorem 2.2 paves the way to the blossoming proof of the general degree ele-

vation formula.

Theorem 2.3 Let bn(x) =
∑
|α|=n

cαBn
α(λ). Then

bn(x) =
∑

|α|=n+k

c(k)
α Bn+k

α (λ) =: bn+k(x). (6)

The coefficients in this basis are given as

c(k)
α =

k! n!
(n + k)!

∑

|β|=n

(
α

β

)
cβ . (7)

Proof. Let

Bn(x(1), x(2), · · · , x(n)), Bn+k(x(1), x(2), · · · , x(n+k))

be the blossoms of bn and bn+k respectively. The dual functional property of the blossom
Bn+k, and the theorem 2.2, used for a particular set of points, yield

c
(k)
α = Bn+k(v(1), · · · , v(1)

︸ ︷︷ ︸
α1

, v(2), · · · , v(2)

︸ ︷︷ ︸
α2

, · · · , v(m+1), · · · , v(m+1)

︸ ︷︷ ︸
αm+1

)

= k! n!
(n+k)!

∑
|β|=n

Bn(v(1), · · · , v(1)

︸ ︷︷ ︸
β1

, v(2), · · · , v(2)

︸ ︷︷ ︸
β2

, · · · , v(m+1) · · · , v(m+1)

︸ ︷︷ ︸
βm

)
(

α
β

)

= k! n!
(n+k)!

∑
|β|=n

(
α
β

)
cβ

The theorem is proved.
From the theorems 2.2, 2.3, and the corollary 2.1, one obtains the blossoming form

of Farin’s theorem immediately.

Corollary 2.3 Let
bn+k = bn, k = 1, 2, . . . ,

and Bn+k(x(1), x(2), · · · , x(n+k)) be the blossom of bn+k. Let α ∈ Zm+1
+ , |α| = n + k. If

lim
k→∞

1
k
α = λ = the barycentric coordinates of x,

then

lim
k→∞

Bn+k


v(1), · · · , v(1)

︸ ︷︷ ︸
α1

, v(2), · · · , v(2)

︸ ︷︷ ︸
α2

, · · · , v(m+1), · · · , v(m+1)

︸ ︷︷ ︸
αm+1


 = bn(x)

We conclude with the blossoming proof of Marsden’s identity for our particular
setup.
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Theorem 2.4 Let

λ = (λ1, λ2, · · · , λm+1),
m+1∑

i=1

λi = 1.

Then
λβ =

∑

|α|=n

(
α

β

)
Bn

α(λ)
/ (

n

β

)
, for any |β| = k ≤ n (8)

Proof. Let Bk(x(1), x(2), · · · , x(k)) be the blossom of λβ , and Bn(x(1), x(2), · · · , x(n))
its n–blossom. The dual functional property of the blossom yields

λβ =
∑
|α|=n Bn(v(1), · · · , v(1)

︸ ︷︷ ︸
α1

, v(2), · · · , v(2)

︸ ︷︷ ︸
α2

, · · · , v(m+1), · · · , v(m+1)

︸ ︷︷ ︸
αm+1

) Bn
α(λ)

=:
∑
|α|=n cαBn

α(λ).

An application of the theorem 2.2 and the corollary 2.1 gives

cα = k! (n−k)!
n!

∑
|σ|=k

Bk(v(1), · · · , v(1)

︸ ︷︷ ︸
σ1

, v(2), · · · , v(2)

︸ ︷︷ ︸
σ2

, v(m+1), · · · , v(m+1)

︸ ︷︷ ︸
σm+1

)
(α

σ

)

=
∑
|σ|=k

δβ,σ
β!
k!

(α
σ

) k! (n−k)!
n!

=
(

α
β

) / (
n
β

)

Hence the formula (8) is proved.
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