DOUBLE S-BREAKING CUBIC TURNING POINTS AND THEIR COMPUTATION ${ }^{* 1)}$

R.S. Ye Z.H. Yang
(Department of Mathematics, Shanghai University of Science and Technology, Shanghai, China)

Abstract

In the paper we are concerned with double S-breaking cubic turning points of two-parameter nonlinear problems in the presence of \mathcal{Z}_{2}-symmetry. Three extended systems are proposed to determine double S-breaking cubic turning points. We show that there exist two kinds of singular point path passing through double S breaking cubic turning point, One is the simple quadratic turning point path, the other is the pitchfork bifurcation point path.

1. Introduction

Many natural phenomena possess more or less exact symmetries, which are likely to be reflected in any sensible mathematical model. Idealizations such as periodic boundary conditions can produce additional symmetries. Phenomena whose models exhibit both symmetry and nonlinearity lead to problems which are challenging and rich in complexity. Problems with symmetries can show a rich bifurcation behaviour. The occurrence of multiple steady state bifurcation is mostly due to underlying symmetries. This gives rise to the difficulties to numerical computation. However, in the recent years, the tools provided by group theory and representation theory have proven to be highly effective in treating nonlinear problem involving symmetry. By these means, highly complicated situations may be decomposed into a number of simpler ones which are already understood or are at least easier to handle. In the presence of symmetries, the codimension of singularity reduces considerably and the symmetric systems have some special equivariance (see Golubitsky et al. [2], Werner and Spence[6]), which can simplify the bifurcation analysis near the multiple singular points and the numerical computation.

For the bifurcation analysis and numerical computation of double S-breaking quadratic turning points, See Werner[5], [6], also see recently Wu et al. [7] in which the authors presented a detail discussion in two-parameter dependent equations with Z_{2}-symmetry. However, the bifurcation analysis and numerical computation of double S-breaking cubic turning points seems to be rarely considered. The major aim of this

[^0]paper is to present an approach for the computation of double S-breaking cubic turning points. The main idea is that, in a sense to be precise in Theorem 2.2 of Section 2, the double S-breaking cubic turning point is a simple quadratic turning point of the large extended system (1.13) provided certain conditions are satisfied. Hence, we can use the standard methods for simple turning points on this large extended system to give the required double S-breaking cubic turning points.

Consider the nonlinear problem

$$
\begin{equation*}
f(x, \lambda, \mu)=0, f: X \times R^{2} \rightarrow X \tag{1.1}
\end{equation*}
$$

where X is a Hilbert space and $f \in C^{3}$. We assume that f satisfies $\mathcal{Z}_{2^{-}}$symmetry: there exist a linear operator $S \in L(X)$ such that $S \neq I, S^{2}=I$ and

$$
\begin{equation*}
S f(x, \lambda, \mu)=f(S x, \lambda, \mu), \quad \forall(x, \lambda, \mu) \in X \times R^{2} \tag{1.2}
\end{equation*}
$$

Then X and its dual space X^{\prime} are naturally splitted into

$$
\begin{equation*}
X=X_{s} \oplus X_{a}, \quad X^{\prime}=X_{s}^{\prime} \oplus X_{a}^{\prime} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X_{s}=\{x \in X \mid S x=x\}, & X_{a}=\{x \in X \mid S x=-x\} \\
X_{s}^{\prime}=\left\{\psi \in X^{\prime} \mid \psi S=\psi\right\}, & X_{a}^{\prime}=\left\{\psi \in X^{\prime} \mid \psi S=-\psi\right\}
\end{array}
$$

It is easy to show that

$$
\begin{equation*}
\psi x=0, \text { if }(\psi, x) \in X_{s}^{\prime} \times X_{a} \text { or }(\psi, x) \in X_{a}^{\prime} \times X_{s} \tag{1.4}
\end{equation*}
$$

We specify λ as the bifurcation parameter, and μ the auxiliary parameter. (x, λ, μ) is called a singular point of (1.1) if $f(x, \lambda, \mu)=0$ and $\operatorname{dim} N\left(\left(f_{x}(x, \lambda, \mu)\right) \geq 1\right.$. In this paper, we are concerned with double S-breaking cubic turning point.

Definition 1.1. A point $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ is a double S-breaking turning point of (1.1) with respect to λ if

$$
\begin{align*}
& f\left(x_{0}, \lambda_{0}, \mu_{0}\right)=0, x_{0} \in X_{s} \tag{1.5a}\\
& N\left(f_{x}^{\circ}\right)=\operatorname{span}\left\{\phi_{1}, \phi_{2}\right\}, \phi_{1} \in X_{s} \backslash\{0\}, \phi_{2} \in X_{a} \backslash\{0\} \tag{1.5b}\\
& R\left(f_{x}^{\circ}\right)=\left\{x \in X \mid \psi_{1} x=\psi_{2} x=0\right\}, \psi_{1} \in X_{s}^{\prime} \backslash\{0\}, \psi_{2} \in X_{a}^{\prime} \backslash\{0\} \tag{1.5c}\\
& \psi_{1} f_{\lambda}^{\circ} \neq 0, \psi_{i} \phi_{i} \neq 0, \quad i=1,2 \tag{1.5d}
\end{align*}
$$

where $N\left(f_{x}^{\circ}\right)$ is the null space of $f_{x}\left(x_{0}, \lambda_{0}, \mu_{0}\right) . R\left(f_{x}^{\circ}\right)$ is the range of $f_{x}\left(x_{0}, \lambda_{0}, \mu_{0}\right)$.
A double S-breaking turning point is called a double S-breaking quadratic turning point of (1.1) if

$$
\begin{equation*}
D_{111} \neq 0, \quad D_{122} \neq 0, \quad D_{212} \neq 0 \tag{1.6}
\end{equation*}
$$

A double S-breaking turning point is called a double S-breaking cubic turning point of (1.1) if

$$
\begin{equation*}
D_{111}=0, D_{122}=0, D_{212}=0 \tag{1.7}
\end{equation*}
$$

where

$$
D_{i j k}:=\psi_{i} f_{x x}^{\circ} \phi_{j} \phi_{k}, \quad i, j, k=1,2 .
$$

Definition 1.2. A point $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ is called a simple quadratic turning point of (1.1) with respect to λ if

$$
\begin{align*}
& f\left(x_{0}, \lambda_{0}, \mu_{0}\right)=0, \tag{1.8a}\\
& N\left(f_{x}^{\circ}\right)=\operatorname{span}\{\phi\}, \phi \in X \backslash\{0\}, \tag{1.8b}\\
& R\left(f_{x}^{\circ}\right)=\{x \in X \mid \psi x=0\}, \psi \in X^{\prime} \backslash\{0\}, \tag{1.8c}\\
& \psi f_{\lambda}^{\circ} \neq 0, \tag{1.8d}\\
& \psi f_{x x}^{\circ} \phi \phi \neq 0, \tag{1.8e}\\
& \psi \phi \neq 0 . \tag{1.8f}
\end{align*}
$$

Definition 1.3. $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ is called a pitchfork bifurcation point of (1.1) if

$$
\begin{align*}
& f\left(x_{0}, \lambda_{0}, \mu_{0}\right)=0, x_{0} \in X_{s}, \tag{1.9a}\\
& N\left(f_{x}^{\circ}\right)=\operatorname{span}\{\phi\}, \phi \in X_{a} \backslash\{0\}, \tag{1.9b}\\
& R\left(f_{x}^{\circ}\right)=\{x \in X \mid \psi x=0\}, \psi \in X_{a}^{\prime} \backslash\{0\}, \tag{1.9c}\\
& b_{\lambda}:=\psi\left(f_{x x}^{\circ} \phi v_{\lambda}+f_{x \lambda}^{\circ} \phi\right) \neq 0, \tag{1.9d}\\
& \psi \phi \neq 0 \tag{1.9e}
\end{align*}
$$

where v_{λ} is defined by

$$
\begin{equation*}
f_{x}^{\circ} v_{\lambda}+f_{\lambda}^{\circ}=0, \quad v_{\lambda} \in X_{s} \tag{1.10}
\end{equation*}
$$

A pitchfork bifurcation point $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ is called a quadratic pitchfork bifurcation point if

$$
\begin{equation*}
b_{z}:=\psi\left(f_{x x x} \phi^{3}+3 f_{x x} v_{z} \phi\right) \neq 0 \tag{1.11}
\end{equation*}
$$

where v_{z} is defined by

$$
\begin{equation*}
f_{x}^{\circ} v_{z}+f_{x x}^{\circ} \phi \phi=0, \quad v_{z} \in X_{s} \tag{1.12}
\end{equation*}
$$

In [5], [6], the following two extended systems were used to compute double S breaking quadratic turning point.

$$
F_{i}(x, \phi, \lambda, \mu)=\left[\begin{array}{c}
f(x, \lambda, \mu) \tag{1.13}\\
f_{x} \phi \\
l_{i} \phi-1
\end{array}\right]=0, \quad i=1,2
$$

where $l_{1} \in X_{s}^{\prime}, l_{2} \in X_{a}^{\prime}$ such that $l_{1} \phi_{1}-1=0$ and $l_{2} \phi_{2}-1=0$ respectively.
The following theorem ensures that the double S-breaking quadratic turning point can be detected by solving (1.13) via Newton's method.

Theorem 1.1. ${ }^{[6]}$ Let $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ be a double S-breaking quadratic turning point of $f(x, \lambda, \mu)=0$ with respect to λ. With $F_{i}(x, \phi, \lambda, \mu)$ given by (1.13) considered as a mapping on $X_{s} \times X_{\sigma} \times R$ for fixed $\mu=\mu_{0}$, then $F_{i}(x, \phi, \lambda, \mu)=0$ is regular at $\left(x_{0}, \phi_{i}, \lambda_{0}, \mu_{0}\right), i=1,2$. Here and below $\sigma=s$ if $i=1$ and $\sigma=a$ if $i=2$.

An outline of the paper is as follows. Section 2 contains a discussion about double S breaking cubic turning point. We show that there exist two kinds of singular point path passing through the double S-breaking cubic turning point, one pitchfork bifurcation point path and one simple quadratic turning point path. In Section 3, we propose three extended systems, which could be used to calculate double S-breaking cubic turning point. Two numerical examples are given in Section 4.

2. Double S-Breaking Cubic Turning Points

Lemma 2.1. Let $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ be a double S-breaking cubic turning point. With $F_{i}(y, \mu)$ mapping $Y \times R \rightarrow Y=X_{s} \times X_{\sigma} \times R$, we have
(i). For $\sigma=s, N\left(F_{y}^{\circ}\right)=\operatorname{span}\left\{\Phi_{1}^{s}\right\}, R\left(F_{y}^{\circ}\right)=\left\{y \in Y \mid \Psi_{1}^{s} y=0\right\}$, where

$$
\begin{align*}
& F_{y}^{\circ}=F_{1 y}\left(y_{0}, \mu_{0}\right), y_{0}=\left(x_{0}, \phi_{1}, \lambda_{0}\right) \tag{2.1a}\\
& \Phi_{1}^{s}=\left(\phi_{1}, z_{1}, 0\right)^{T}, \Psi_{1}^{s}=\left(\zeta_{1}, \psi_{1}, 0\right) \tag{2.1b}\\
& f_{x}^{\circ} z_{1}+f_{x x}^{\circ} \phi_{1} \phi_{1}=0, z_{1} \in X_{s}, l_{1} z_{1}=0 \tag{2.1c}\\
& \zeta_{1} f_{x}^{\circ}+\psi_{1} f_{x x}^{\circ} \phi_{1}=0, \zeta_{1} f_{\lambda}^{\circ}+\psi_{1} f_{\lambda x}^{\circ} \phi_{1}=0, \zeta_{1} \in X_{s}^{\prime} \tag{2.1d}
\end{align*}
$$

(ii). For $\sigma=a, N\left(F_{y}^{\circ}\right)=\operatorname{span}\left\{\Phi_{1}^{a}\right\}, R\left(F_{y}^{\circ}\right)=\left\{y \in Y \mid \Psi_{1}^{a} y=0\right\}$
where

$$
\begin{align*}
& F_{y}^{\circ}=F_{2 y}\left(y_{0}, \mu_{0}\right), y_{0}=\left(x_{0}, \phi_{2}, \lambda_{0}\right) \tag{2.2a}\\
& \Phi_{1}^{a}=\left(\phi_{1}, z_{0}, 0\right)^{T}, \Psi_{1}^{a}=\left(\zeta_{0}, \psi_{2}, 0\right) \tag{2.2b}\\
& f_{x}^{\circ} z_{0}+f_{x x}^{\circ} \phi_{1} \phi_{2}=0, z_{0} \in X_{a}, l_{2} z_{0}=0, \tag{2.2c}\\
& \zeta_{0} f_{x}^{\circ}+\psi_{2} f_{x x}^{\circ} \phi_{2}=0, \zeta_{0} f_{\lambda}^{\circ}+\psi_{2} f_{\lambda x}^{\circ} \phi_{2}=0, \zeta_{0} \in X_{s}^{\prime} . \tag{2.2d}
\end{align*}
$$

We notice that ζ_{1} in (2.1d) and ζ_{0} in (2.2d) are determined uniquely.
Proof.
(i) For $\sigma=s$, consider

$$
\begin{equation*}
F_{1 y}^{\circ} W=0, w=\left(w_{1}, w_{2}, c_{0}\right)^{T}, \quad w_{1} \in X_{s}, w_{2} \in X_{s}, c_{0} \in R \tag{2.3}
\end{equation*}
$$

Expanding (2.3) we have

$$
\begin{align*}
& f_{x}^{\circ} w_{1}+c_{0} f_{\lambda}^{\circ}=0 \tag{2.4a}\\
& f_{x x}^{\circ} \phi_{1} w_{1}+f_{x}^{\circ} w_{2}+c_{0} f_{\lambda x}^{\circ} \phi_{1}=0 \tag{2.4b}\\
& l_{1} w_{2}=0 \tag{2.4c}
\end{align*}
$$

Applying $<\psi_{1}, \cdot>$ to (2.4a), we have $c_{0} \psi_{1} f_{\lambda}^{\circ}=0$. Thus $c_{0}=0$ since $\psi_{1} f_{\lambda}^{\circ} \neq 0$. We may assume $w_{1}=\alpha_{1} \phi_{1}$. Substituting $w_{1}=\alpha_{1} \phi_{1}$ and $c_{0}=0$ into (2.4b) we derive

$$
\begin{equation*}
\alpha_{1} f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} w_{2}=0 \tag{2.5b}
\end{equation*}
$$

Due to $(2.5 b)$ together with $(2.4 \mathrm{c})$, we may assume $w_{2}=\alpha_{1} z_{1}$, where z_{1} is defined by

$$
f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} z_{1}=0, \quad z_{1} \in X_{s}, l_{1} z_{1}=0
$$

Therefore

$$
N\left(F_{1 y}^{\circ}\right)=\operatorname{span}\left\{\Phi_{1}^{s}\right\}, \quad \Phi_{1}^{s}=\left(\phi_{1}, z_{1}, 0\right)^{T} .
$$

Consider

$$
\begin{equation*}
\xi \cdot F_{1 y}^{\circ}=0 \tag{2.6}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, c_{1}\right) \in X_{s}^{\prime} \times X_{s}^{\prime} \times R$. Expanding (2.6) we derive

$$
\begin{align*}
& \xi_{1} f_{x}^{\circ}+\xi_{2} f_{x x}^{\circ} \phi_{1}=0, \tag{2.7a}\\
& \xi_{2} f_{x}^{\circ}+c_{1} l_{1}=0, \tag{2.7b}\\
& \xi_{1} f_{\lambda}^{\circ}+\xi_{2} f_{\lambda x}^{\circ} \phi_{1}=0 . \tag{2.7c}
\end{align*}
$$

From (2.7b), we obtain $c_{1} l_{1} \phi_{1}=0$, thus $c_{1}=0$ and we may assume $\xi_{2}=\beta_{1} \psi_{1}$. Substituting ξ_{2} into (2.7a), (2.7c), we then assume $\xi_{1}=\beta_{1} \zeta_{1}$ where $\zeta_{1} \in X_{s}^{\prime}$ is defined by

$$
\zeta_{1} f_{x}^{\circ}+\psi_{1} f_{x x}^{\circ} \phi_{1}=0, \zeta_{1} f_{\lambda}^{\circ}+\psi_{1} f_{\lambda x}^{\circ} \phi_{1}=0 .
$$

The proof of (i) is completed. Similarly we could prove (ii).
From Lemma 2.1 we know that $F_{i y}\left(y_{0}, \mu_{0}\right)=0$, with $y \in Y=X_{s} \times X_{\sigma} \times R$, has one dimensional null space spanned by Φ_{1}^{σ}. To guarantee (y_{0}, μ_{0}) $=\left(x_{0}, \phi_{i}, \lambda_{0}, \mu_{0}\right)$ is a simple quadratic turning point of $F_{i}(y, \mu)=0$ with respect to μ, the following condition is assumed

$$
\begin{equation*}
F_{\mu}^{\circ} \notin R\left(F_{i y}^{\circ}\right) \tag{2.8}
\end{equation*}
$$

which is equivalent to $\Psi_{1}^{\sigma} F_{\mu}^{\circ} \neq 0$, i.e.

$$
\begin{align*}
& d_{0}^{s}:=\zeta_{1} f_{\mu}^{\circ}+\psi_{1} f_{\mu x}^{\circ} \phi_{1} \neq 0, \text { for } \sigma=s, \tag{2.8a}\\
& d_{0}^{a}:=\zeta_{0} f_{\mu}^{\circ}+\psi_{2} f_{\mu x}^{\circ} \phi_{2} \neq 0, \tag{2.8b}\\
& \text { for } \sigma=a,
\end{align*}
$$

Now, we are in a position to state our main results.
Theorem 2.2. Assume (2.8). Let $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ be a double S-breaking cubic turning point of (1.1) with respect to λ. Then
(i) For $\sigma=s,\left(y_{0}, \mu_{0}\right)=\left(x_{0}, \phi_{1}, \lambda_{0}, \mu_{0}\right)$ is a simple quadratic turning point of $\left.F_{1}(y, \mu)\right|_{X_{s} \times X_{s} \times R^{2}}=0$ with respect to μ if

$$
\begin{equation*}
D_{0}^{s}:=\psi_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+3 f_{x x}^{\circ} \phi_{1} z_{1}\right) \neq 0 \tag{2.9}
\end{equation*}
$$

(ii) For $\sigma=a,\left(y_{0}, \mu_{0}\right)=\left(x_{0}, \phi_{2}, \lambda_{0}, \mu_{0}\right)$ is a simple quadratic turning point of $\left.F_{2}(y, \mu)\right|_{X_{s} \times X_{a} \times R^{2}}=0$ with respect to μ if

$$
\begin{equation*}
D_{0}^{a}:=\psi_{2}\left(f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 f_{x x}^{\circ} \phi_{1} z_{0}+f_{x x}^{\circ} \phi_{2} z_{1}\right) \neq 0 \tag{2.10}
\end{equation*}
$$

Proof.
(i) By a direct calculation, with $\Phi_{1}^{s}=\left(\phi_{1}, z_{1}, 0\right)^{T}$, and $\Psi_{1}^{s}=\left(\zeta_{1}, \psi_{1}, 0\right)$, we obtain

$$
\Psi_{1}^{s} F_{1 y y}^{\circ} \Phi_{1}^{s} \Phi_{1}^{s}=\zeta_{1} f_{x x}^{\circ} \phi_{1} \phi_{1}+\psi_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+2 f_{x x}^{\circ} \phi_{1} z_{1}\right) .
$$

According to (2.1d) and (2.1c), we derive

$$
\zeta_{1} f_{x x}^{\circ} \phi_{1} \phi_{1}=-\zeta_{1} f_{x}^{\circ} z_{1}=\psi_{1} f_{x x}^{\circ} \phi_{1} z_{1}
$$

Due to (2.9),

$$
\Psi_{1}^{s} F_{1 y y}\left(y_{0}, \mu_{0}\right) \Phi_{1}^{s} \Phi_{1}^{s}=D_{0}^{s} \neq 0
$$

and we complete the proof of (i).
(ii) Similarly,

$$
\Psi_{1}^{a} F_{2 y y}\left(y_{0}, \mu_{0}\right) \Phi_{1}^{a} \Phi_{1}^{a}=\zeta_{0} f_{x x}^{\circ} \phi_{1} \phi_{1}+\psi_{2}\left(f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 f_{x x}^{\circ} \phi_{1} z_{0}\right)
$$

According to (2.1c) and (2.2d), we have

$$
\zeta_{0} f_{x x}^{\circ} \phi_{1} \phi_{1}=-\zeta_{0} f_{x}^{\circ} z_{1}=\psi_{2} f_{x x}^{\circ} \phi_{2} z_{1}
$$

Due to (2.10),

$$
\Psi_{1}^{a} F_{2 y y}\left(y_{0}, \mu_{0}\right) \Phi_{1}^{a} \Phi_{1}^{a}=\psi_{2} f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 \psi_{2} f_{x x}^{\circ} \phi_{1} z_{0}+\psi_{2} f_{x x}^{\circ} \phi_{2} z_{1} \neq 0
$$

The proof of (ii) is completed.
The following corollary is the consequence of Theorem 2.2 .
Corollary 2.3. Assume (2.8), (2.9) and (2.10). Let $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ be a double S breaking cubic turning point of (1.1) with respect to λ. Then there exist only solution branch l_{σ} of $\left.F_{i}(y, \mu)\right|_{X_{s} \times X_{\sigma} \times R^{2}}=0$ passing through $\left(y_{0}, \mu_{0}\right)$. Moreover the solution branch has tangent $\left(\Phi_{1}^{\sigma}, 0\right)$ at $\left(y_{0}, \mu_{0}\right)$.

Theorem 2.2 is important practically as well as theoretically. It indicates clearly a procedure to be followed for the calculation of the double S-breaking cubic turning point $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$. We apply the idea of the extended system once again. The twice extended system

$$
F_{i}^{2}\left(y, \Phi_{1}^{\sigma}, \mu\right) \equiv\left(\begin{array}{c}
F_{i}(y, \mu) \\
F_{i y}(y, \mu) \Phi_{1}^{\sigma} \\
L_{i} \Phi_{1}^{\sigma}-1
\end{array}\right)=0
$$

is regular at double S-breaking cubic turning point. Implicit function theorem insures that there are singular solution branches l_{s} and l_{a} of (1.1), which pass crossly through double S-breaking cubic turning point. Therefore, along l_{s} and $l_{a}, 0$ is always an eigenvalue of f_{x}.

We shall assume the following condition

$$
\begin{equation*}
\Delta:=\operatorname{det} k \neq 0 \tag{2.11}
\end{equation*}
$$

where

$$
k:=\left(\begin{array}{cc}
D_{0}^{s} & d_{0}^{s} \tag{2.12}\\
D_{0}^{a} & d_{0}^{a}
\end{array}\right)
$$

Theorem 2.4. In addition to the conditions in Corollary 2.3, we assume that (2.11) holds. Then l_{s} and l_{a} in Corollary 2.3 correspond to simple quadratic turning
point and pitchfork bifurcation point of (1.1) with respect to λ respectively, except for $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$.

Proof. We divide the proof into two steps.
(a). Let $(y(\varepsilon), \mu(\varepsilon))=(x(\varepsilon), \phi(\varepsilon), \lambda(\varepsilon), \mu(\varepsilon)) \in X_{s} \times X_{\sigma} \times R^{2}$ be the solution branch l_{σ} in Corollary 2.3. We first show that zero is a simple eigenvalue of $f_{x}(\varepsilon):=$ $f_{x}(x(\varepsilon), \lambda(\varepsilon), \mu(\varepsilon))$ for $\varepsilon \neq 0$.

Consider the following system

$$
\begin{equation*}
M(m, \varepsilon)=\binom{f_{x}(\varepsilon) \theta(\varepsilon)-\beta(\varepsilon) \theta(\varepsilon)}{l_{j} \theta(\varepsilon)-1}=0 \tag{2.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& j=2 \text { if } \sigma=s \text { and } j=1 \text { if } \sigma=a . m=(\theta, \beta), m_{0}=\left(\phi_{j}, 0\right), M: X_{\delta} \times R^{2} \rightarrow X_{\delta} \times R, \\
& \delta=a \text { if } \sigma=s \text { and } \delta=s \text { if } \sigma=a .
\end{aligned}
$$

It is easy to check that $M\left(m_{0}, 0\right)=0$ and $M_{m}\left(m_{0}, 0\right): X_{\delta} \times R \rightarrow X_{\delta} \times R$ is regular and hence there exists a unique solution path $m(\varepsilon)=(\theta(\varepsilon), \beta(\varepsilon))$ such that $m(0)=$ $m_{0}, M(m(\varepsilon), \varepsilon)=0$.

As for l_{s} it follows from Corollary 2.3 that $\dot{x}(0)=\phi_{1}, \dot{\lambda}(0)=0, \dot{\mu}(0)=0, \dot{\phi}(0)=z_{1}$. Differentiating $f_{x}(\varepsilon) \theta(\varepsilon)-\beta(\varepsilon) \theta(\varepsilon)=0$ with respect to ε at $\varepsilon=0$ and multiplying by $\psi_{2}\left(\dot{x}(0)=\left.\frac{d x(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}\right.$ etc.) yields

$$
\begin{equation*}
\dot{\beta}(0)=0, \quad f_{x x}^{\circ} \phi_{1} \phi_{2}+f_{x}^{\circ} \dot{\theta}(0)=0 \tag{2.14}
\end{equation*}
$$

(2.14) implies that $\dot{\theta}(0)=z_{0}$.

Differentiating $f_{x}(\varepsilon) \theta(\varepsilon)-\beta(\varepsilon) \theta(\varepsilon)=0$ with respect to ε at $\varepsilon=0$ twice and multiplying by ψ_{2} yields

$$
\begin{equation*}
\psi_{2} f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 \psi_{2} f_{x x}^{\circ} \phi_{1} z_{0}+\psi_{2}\left(f_{x x}^{\circ} \ddot{x}(0)+f_{x \lambda}^{\circ} \ddot{\lambda}(0)+f_{x \mu} \ddot{\mu}(0)\right) \phi_{2}-\ddot{\beta}(0) \psi_{2} \phi_{2}=0 \tag{2.15}
\end{equation*}
$$

Differentiating $f(x(\varepsilon), \lambda(\varepsilon), \mu(\varepsilon))=0$ twice with respect to ε at $\varepsilon=0$ and multiplying by ζ_{0} yields

$$
\begin{equation*}
\zeta_{0} f_{x x}^{\circ} \phi_{1} \phi_{1}+\zeta_{0}\left(f_{x}^{\circ} \ddot{x}(0)+f_{\lambda}^{\circ} \ddot{\lambda}(0)+f_{\mu}^{\circ} \ddot{\mu}(0)\right)=0 \tag{2.16}
\end{equation*}
$$

(2.15) together with (2.16) yields

$$
\begin{equation*}
\psi_{2} f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 \psi_{2} f_{x x}^{\circ} \phi_{1} z_{0}+\psi_{2} f_{x x}^{\circ} \phi_{2} z_{1}+d_{0}^{a} \ddot{\mu}(0)-\ddot{\beta}(0) \psi_{2} \phi_{2}=0 \tag{2.17}
\end{equation*}
$$

Generally,

$$
\begin{align*}
& \left.\frac{d^{2}}{d \varepsilon^{2}} F_{1}(y(\varepsilon), \mu(\varepsilon))\right|_{\varepsilon=0}=F_{1 y y}^{\circ} \dot{y}(0)^{2}+2 F_{1 y \mu} \dot{y}(0) \dot{\mu}(0)+F_{1 \mu \mu} \dot{\mu}(0)^{2} \tag{2.18}\\
& \quad+F_{1 y}^{\circ} \ddot{y}(0)+F_{1 \mu}^{\circ} \ddot{\mu}(0)=0
\end{align*}
$$

Since $\dot{y}(0)=(\dot{x}(0), \dot{\phi}(0), \dot{\lambda}(0))=\left(\phi_{1}, z_{1}, 0\right), \dot{\mu}(0)=0$, we obtain

$$
\begin{align*}
& f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} \ddot{x}(0)+f_{\lambda}^{\circ} \ddot{\lambda}(0)+f_{\mu}^{\circ} \ddot{\mu}(0)=0 \tag{2.19a}\\
& f_{x x x}^{\circ} \phi_{1}^{3}+2 f_{x x}^{\circ} \phi_{1} z_{1}+f_{x x}^{\circ} \phi_{1} \ddot{x}(0)+f_{x}^{\circ} \ddot{\phi}(0)+f_{\lambda x}^{\circ} \phi_{1} \ddot{\lambda}(0)+f_{\mu x}^{\circ} \phi_{1} \ddot{\mu}(0)=0 \tag{2.19b}
\end{align*}
$$

Multiplying (2.19a) by ζ_{1} and (2.19b) by ψ_{1} leads to

$$
\psi_{1} f_{x x x}^{\circ} \phi_{1}^{3}+2 \psi_{1} f_{x x}^{\circ} \phi_{1} z_{1}+\zeta_{1} f_{x x}^{\circ} \phi_{1} \phi_{1}+d_{0}^{s} \ddot{\mu}(0)=0 .
$$

Therefore,

$$
\begin{gather*}
\psi_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+3 f_{x x}^{\circ} \phi_{1} z_{1}\right)+d_{0}^{s} \ddot{\mu}(0)=0 \tag{2.20}\\
\ddot{\mu}(0)=-\frac{D_{0}^{s}}{d_{0}^{s}} \tag{2.21}
\end{gather*}
$$

Substituting (2.21) into (2.17) yields

$$
\begin{equation*}
\ddot{\beta}(0)=-\left(D_{0}^{s} d_{0}^{a}-D_{0}^{a} d_{0}^{s}\right) /\left(\psi_{2} \phi_{2} \cdot d_{0}^{s}\right)=-\operatorname{det} k /\left(\psi_{2} \phi_{2} \cdot d_{0}^{s}\right) \neq 0 \tag{2.22}
\end{equation*}
$$

Similarly for l_{a}, we have

$$
\begin{equation*}
\ddot{\beta}(0)=\operatorname{det} k /\left(\psi_{1} \phi_{1} \cdot d_{0}^{a}\right) \neq 0 \tag{2.23}
\end{equation*}
$$

(2.22) and (2.23) imply that $f_{x}(\varepsilon)$ has a small but nonzero eigenvalue $\beta(\varepsilon)$ for $\varepsilon \neq 0$. Notice that f_{x}° has $n-2$ nonzero eigenvalues, thus the zero eigenvalue of $f_{x}(\varepsilon)$ for $\varepsilon \neq 0$ must be simple.

Let $\psi(\varepsilon)$ and $\phi(\varepsilon)$ be the left and right null vectors of $f_{x}(\varepsilon)$ respectively such that

$$
\begin{array}{ll}
\psi(\varepsilon) f_{x}(\varepsilon)=0, & \psi(\varepsilon) \in X_{\sigma}^{\prime} \backslash\{0\}, \psi(0)=\psi_{i}, i=1,2 \\
f_{x}(\varepsilon) \phi(\varepsilon)=0, & \phi(\varepsilon) \in X_{\sigma} \backslash\{0\}, \phi(0)=\phi_{i}, i=1,2 \tag{2.24b}
\end{array}
$$

(b). In order to prove $(x(\varepsilon), \phi(\varepsilon), \lambda(\varepsilon), \mu(\varepsilon)) \in l_{s}$ correspond to single quadratic turning points of $f(x, \lambda, \mu)=0$ for $\varepsilon \neq 0$, we need only to confirm that, for $\varepsilon \neq 0$,

$$
\begin{align*}
& \psi(\varepsilon) f_{\lambda}(\varepsilon) \neq 0, \quad \psi(\varepsilon) \phi(\varepsilon) \neq 0 \tag{2.25a}\\
& d(\varepsilon):=\psi(\varepsilon) f_{x x}(\varepsilon) \phi(\varepsilon) \phi(\varepsilon) \neq 0 \tag{2.25b}
\end{align*}
$$

(2.25a) holds since $\psi_{1} f_{\lambda}^{\circ} \neq 0, \psi_{1} \phi_{1} \neq 0$. We now prove (2.25b). Obviously,

$$
d(0)=\psi_{1} f_{x x}^{\circ} \phi_{1} \phi_{1}=0
$$

The first derivative of $d(\varepsilon)$ with respect to ε at $\varepsilon=0$ yields

$$
\begin{equation*}
\dot{d}(0)=\dot{\psi}(0) f_{x x}^{\circ} \phi_{1} \phi_{1}+\psi(0)\left(f_{x x x}^{\circ} \dot{x}(0) \phi_{1} \phi_{1}+2 f_{x x}^{\circ} \phi_{1} \dot{\phi}(0)\right) \tag{2.26}
\end{equation*}
$$

Differentiating $\psi(\varepsilon) f_{x}(\varepsilon)=0$ with respect to ε at $\varepsilon=0$ leads to

$$
\dot{\psi}(0) f_{x}^{\circ}+\psi_{1} f_{x x}^{\circ} \phi_{1}=0
$$

Recalling $\dot{x}(0)=\phi_{1}, \dot{\phi}(0)=z_{1}, f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} z_{1}=0$, we obtain

$$
\begin{aligned}
\dot{d}(0) & =-\dot{\psi}(0) f_{x}^{\circ} z_{1}+\psi_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+2 f_{x x}^{\circ} \phi_{1} z_{1}\right) \\
& =\psi_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+3 f_{x x}^{\circ} \phi_{1} z_{1}\right)=D_{0}^{s} \neq 0 .
\end{aligned}
$$

So (2.25b) holds for $\varepsilon \neq 0$.

Next, we deal with l_{a}. In this case, $\psi(\varepsilon) \in X_{a}^{\prime}, \phi(\varepsilon) \in X_{a}, x(\varepsilon) \in X_{s}$. To prove $(x(\varepsilon), \lambda(\varepsilon), \mu(\varepsilon)) \in l_{a}$ is pitchfork bifurcation point of $f(x, \lambda, \mu)=0$ for $\varepsilon \neq 0$, we need only to confirm

$$
\begin{align*}
& \psi(\varepsilon) \phi(\varepsilon) \neq 0 \tag{2.27a}\\
& \psi(\varepsilon)\left(f_{x x}(\varepsilon) v_{\lambda}(\varepsilon)+f_{\lambda x}(\varepsilon)\right) \phi(\varepsilon) \neq 0 \tag{2.27b}
\end{align*}
$$

where $v_{\lambda}(\varepsilon)$ is defined by

$$
\begin{equation*}
f_{x}(\varepsilon) v_{\lambda}(\varepsilon)+f_{\lambda}(\varepsilon)=0, \quad v_{\lambda}(\varepsilon) \in X_{s} . \tag{2.28}
\end{equation*}
$$

(2.27a) is obviously satisfied since $\psi_{2} \phi_{2} \neq 0$.

The difficulty here is that $v_{\lambda}(\varepsilon)$ does not exist for $\varepsilon=0$. To overcome the trouble, we introduce the following system

$$
\begin{equation*}
S(\zeta, \varepsilon)=\binom{f_{x}(\varepsilon) v(\varepsilon)+\tau(\varepsilon) f_{\lambda}(\varepsilon)}{l_{1} v(\varepsilon)-1}=0 \tag{2.29}
\end{equation*}
$$

where $\zeta=(v(\varepsilon), \tau(\varepsilon)), \zeta_{0}=\left(\phi_{1}, 0\right), S: X_{s} \times R^{2} \rightarrow X_{s} \times R$. It is easy to show that $S\left(\zeta_{0}, 0\right)=0, S_{\zeta}\left(\zeta_{0}, 0\right): X_{s} \times R \rightarrow X_{s} \times R$ is regular and there exists a unique solution path $\zeta(\varepsilon)=(v(\varepsilon), \tau(\varepsilon))$ of (2.29) such that $\zeta(0)=\zeta_{0}$. Notice that $\tau(\varepsilon) \neq 0$ for $\varepsilon \neq 0$, otherwise $f_{x}(\varepsilon)$ would have an extra null vector which contradicts (a). Hence

$$
v_{\lambda}(\varepsilon)=\frac{v(\varepsilon)}{\tau(\varepsilon)}, \quad \text { for } \varepsilon \neq 0
$$

and

$$
v(0)=\phi_{1} .
$$

Denote

$$
\begin{equation*}
B(\varepsilon):=\psi(\varepsilon) f_{x x}(\varepsilon) v(\varepsilon) \phi(\varepsilon)+\tau(\varepsilon) \psi(\varepsilon) f_{x \lambda}(\varepsilon) \phi(\varepsilon) \tag{2.30}
\end{equation*}
$$

From the following lemma 2.5 , we know $\dot{B}(0)=D_{0}^{a} \neq 0$. Thus (2.27) holds for $\varepsilon \neq 0$. The proof is completed.

Lemma 2.5. Let $B(\varepsilon)$ be defined by (2.30). Then

$$
\dot{B}(0)=\psi_{2}\left(f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 f_{x x}^{\circ} \phi_{1} z_{0}+f_{x x}^{\circ} \phi_{2} z_{1}\right)=D_{0}^{a} .
$$

Proof. A direct calculation, with $\dot{x}(0)=\phi_{1}, \dot{\phi}(0)=z_{0}, \dot{\lambda}(0)=\dot{\mu}(0)=0$, shows that

$$
\begin{equation*}
\dot{B}(0)=\dot{\tau}(0) \psi_{2} f_{x \lambda}^{\circ} \phi_{2}+\dot{\psi}(0) f_{x x}^{\circ} \phi_{1} \phi_{2}+\psi_{2} f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+\psi_{2} f_{x x}^{\circ} \phi_{1} z_{0}+\psi_{2} f_{x x}^{\circ} \phi_{2} \dot{v}(0) . \tag{2.31}
\end{equation*}
$$

Since $\zeta_{0} f_{x}^{\circ}+\psi_{2} f_{x x}^{\circ} \phi_{2}=0, \zeta_{0} f_{\lambda}^{\circ}+\psi_{2} f_{\lambda x}^{\circ} \phi_{2}=0$, hence

$$
\begin{equation*}
\dot{B}(0)=-\dot{\tau}(0) \zeta_{0} f_{\lambda}^{\circ}-\zeta_{0} f_{x}^{\circ} \dot{v}(0)+\dot{\psi}(0) f_{x x}^{\circ} \phi_{1} \phi_{2}+\psi_{2}\left(f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+f_{x x}^{\circ} \phi_{1} z_{0}\right) . \tag{2.32}
\end{equation*}
$$

Differentiating $\psi(\varepsilon) f_{x}(\varepsilon)=0$ with respect to ε at $\varepsilon=0$ yields

$$
\begin{equation*}
\dot{\psi}(0) f_{x}^{\circ}+\psi_{2} f_{x x}^{\circ} \phi_{1}=0 . \tag{2.33}
\end{equation*}
$$

Differentiating $f_{x}(\varepsilon) v(\varepsilon)+\tau(\varepsilon) f_{\lambda}(\varepsilon)=0$ with respect to ε at $\varepsilon=0$ leads to

$$
\begin{equation*}
f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} \dot{v}(0)+\dot{\tau}(0) f_{\lambda}^{\circ}=0 \tag{2.34}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\zeta_{0} f_{x x}^{\circ} \phi_{1} \phi_{1}+\zeta_{0} f_{x}^{\circ} \dot{v}(0)+\zeta_{0} f_{\lambda}^{\circ} \dot{\tau}(0)=0 \tag{2.35}
\end{equation*}
$$

By (2.35), (2.33) and (2.32), we obtain

$$
\begin{aligned}
\dot{B}(0) & =\zeta_{0} f_{x x}^{\circ} \phi_{1} \phi_{1}+\psi_{2} f_{x x x}^{\circ} \phi_{1} \phi_{1} \phi_{2}+2 \psi_{2} f_{x x}^{\circ} \phi_{1} z_{0} \\
& =\psi_{2}\left(f_{x x x}^{\circ} \phi_{1}^{2} \phi_{2}+2 f_{x x}^{\circ} \phi_{1} z_{o}+f_{x x}^{\circ} \phi_{2} z_{1}\right)=D_{0}^{a}
\end{aligned}
$$

3. Extended Systems

We introduce the following three extended systems. Their regularity at the double S-breaking cubic turning point ensures that conventional Newton's method can be applied. In the sequel, we assume that $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ is a double S-breaking cubic turning point with null vector $\phi_{1} \in X_{s}, \phi_{2} \in X_{a}$.
The first one is

$$
H_{1}(y)=\left[\begin{array}{c}
f(x, \lambda, \mu) \tag{3.1}\\
f_{x} \phi \\
f_{x} z+f_{x x} \phi \phi \\
l_{1} \phi-1 \\
l_{1} z
\end{array}\right]=\begin{aligned}
& H_{1}: X_{s} \times X_{s} \times X_{s} \times R^{2} \rightarrow X_{s} \times X_{s} \times X_{s} \times R^{2} \\
& 0, \\
& y=(x, \phi, z, \lambda, \mu) \\
& y_{0}=\left(x_{0}, \phi_{1}, z_{1}, \lambda_{0}, \mu_{0}\right)
\end{aligned}
$$

Then $H_{1}\left(y_{0}\right)=0$, where z_{1} is defined in (2.1c) $l_{1} \in X_{s}^{\prime}$ such that $l_{1} \phi_{1}-1=0, l_{1} u=0$ for $u \in X_{s} \backslash R\left\{\phi_{1}\right\}$.
The second one is

$$
H_{2}(y)=\left[\begin{array}{c}
f(x, \lambda, \mu) \tag{3.2}\\
f_{x} \phi \\
f_{x} z+f_{x x} \phi \phi \\
l_{2} \phi-1 \\
l_{1} z
\end{array}\right]=\begin{aligned}
& H_{2}: X_{s} \times X_{a} \times X_{s} \times R^{2} \rightarrow X_{s} \times X_{a} \times X_{s} \times R^{2} \\
& 0, \\
& y=(x, \phi, z, \lambda, \mu) \\
& y_{0}=\left(x_{0}, \phi_{2}, z_{2}, \lambda_{0}, \mu_{0}\right)
\end{aligned}
$$

Then $H_{2}\left(y_{0}\right)=0$, where z_{2} is defined by

$$
f_{x}^{\circ} z_{2}+f_{x}^{\circ} \phi_{2} \phi_{2}=0, \quad z_{2} \in X_{s}, l_{1} z_{2}=0
$$

$l_{2} \in X_{a}^{\prime}$ such that $l_{2} \phi_{2}-1=0, l_{2} u=0$ for $u \in X_{a} \backslash R\left\{\phi_{2}\right\}$.

The third one is

$$
H_{3}(y)=\left[\begin{array}{c}
f(x, \lambda, \mu) \tag{3.3}\\
f_{x} \phi_{s}+\alpha \phi_{s} \\
f_{x} \phi_{a} \\
f_{x} z+f_{x x} \phi_{s} \phi_{a} \\
l_{1} \phi_{s}-1 \\
l_{2} \phi_{a}-1 \\
l_{2} z
\end{array}\right]=0, \begin{gathered}
\\
H_{3}: X_{s} \times X_{s} \times X_{a} \times X_{a} \times R^{3} \\
y=X_{s} \times X_{s} \times X_{a} \times X_{a} \times R^{3}, \\
y_{0}=\left(x_{0}, \phi_{1}, \phi_{a}, z, z_{0}, \lambda_{0}, \mu_{0}, 0\right) .
\end{gathered}
$$

Then $H_{3}\left(y_{0}\right)=0$, where z_{0} is defined in (2.2c).
The following theorems describe the regularity of the extended systems.
Theorem 3.1. Assume (2.8) and $D_{0}^{s} \neq 0$. Then $H_{1}(y)=0$ is regular at $y_{0}=$ $\left(x_{0}, \phi_{1}, z_{1}, \lambda_{0}, \mu_{0}\right)$.

Theorem 3.2. Assume (2.8) and $D_{0}^{a s}:=\psi_{1} f_{x x x}^{\circ} \phi_{1} \phi_{2} \phi_{2}+2 \psi_{1} f_{x x}^{\circ} \phi_{2} z_{0}+\psi_{1} f_{x x}^{\circ} \phi_{1} z_{2} \neq$ 0 . Then $H_{2}(y)=0$ is regular at $y_{0}=\left(x_{0}, \phi_{2}, z_{2}, \lambda_{0}, \mu_{0}\right)$.

Theorem 3.3. Assume (2.8) and $D_{0}^{a} \neq 0$. Then $H_{3}(y)=0$ is regular at $y_{0}=$ $\left(x_{0}, \phi_{1}, \phi_{2}, z_{1}, \lambda_{0}, \mu_{0}, 0\right)$.

We only prove Theorem 3.1. The proofs of Theorem 3.2 and Theorem 3.3 are similar.

Proof of Theorem 3.1.
We consider

$$
\begin{equation*}
D H_{1}^{\circ} \cdot Y=W \tag{3.4}
\end{equation*}
$$

where $D H_{1}^{\circ}$ denote the Jacobian of $H_{1}(y)$ at $y_{0}, W=\left(w_{1}, w_{2}, w_{3}, \alpha, \beta\right) \in X_{s} \times X_{s} \times$ $X_{s} \times R^{2}, Y=\left(y_{1}, y_{2}, y_{3}, \lambda, \mu\right) \in X_{s} \times X_{s} \times X_{s} \times R^{2}$. Expanding (3.4) yields

$$
\begin{align*}
& f_{x}^{\circ} y_{1}+\lambda f_{\lambda}^{\circ}+\mu f_{\mu}^{\circ}=w_{1}, \tag{3.5a}\\
& f_{x x}^{\circ} \phi_{1} y_{1}+f_{x}^{\circ} y_{2}+\lambda f_{\lambda x}^{\circ} \phi_{1}+\mu f_{\mu x}^{\circ} \phi_{1}=w_{2}, \tag{3.5b}\\
& \left(f_{x x}^{\circ} z_{1}+f_{x x x}^{\circ} \phi_{1} \phi_{1}\right) y_{1}+2 f_{x x}^{\circ} \phi_{1} y_{2}+f_{x}^{\circ} y_{3}+\lambda\left(f_{\lambda x}^{\circ} z_{1}+f_{\lambda x x}^{\circ} \phi_{1} \phi_{1}\right) \tag{3.5c}\\
& \quad+\mu\left(f_{\mu x}^{\circ} z_{1}+f_{\mu x x}^{\circ} \phi_{1} \phi_{1}\right)=w_{3}, \\
& l_{1} y_{2}=\alpha, \tag{3.5d}\\
& l_{1} y_{3}=\beta . \tag{3.5e}
\end{align*}
$$

Multiplying (3.5a) by ζ_{1} and (3.5b) by ψ_{1} and using $\zeta_{1} f_{x}^{\circ}+\psi_{1} f_{x x}^{\circ} \phi_{1}=0, \zeta_{1} f_{\lambda}+$ $\psi_{1} f_{\lambda x}^{\circ} \phi_{1}=0$ yields

$$
\begin{equation*}
\mu \cdot d_{0}^{s}=\zeta_{1} w_{1}+\psi_{1} w_{2} \tag{3.6}
\end{equation*}
$$

Since $d_{0}^{s} \neq 0$ we can uniquely determine $\mu=\left(\zeta_{1} w_{1}+\psi_{1} w_{2}\right) / d_{0}^{s}$. Substituting μ into (3.5a) and multiplying it by ψ_{1} yields $\lambda=\psi_{1}\left(w_{1}-\mu f_{\mu}^{\circ}\right) / \psi_{1} f_{\lambda}^{\circ}$. Then we may assume that $y_{1}=c_{1} \phi_{1}+\tilde{y}_{1}, \tilde{y}_{1} \in X_{s}$ is uniquely determined by $f_{x}^{\circ} \tilde{y}_{1}=w_{1}-\lambda f_{\lambda}^{\circ}-\mu f_{\mu}^{\circ}, l_{1} \tilde{y}_{1}=0$. Substituting y_{1}, λ and μ into (3.5b), we derive

$$
\begin{equation*}
c_{1} f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} y_{2}=\bar{w}_{2} \tag{3.7}
\end{equation*}
$$

where $\bar{w}_{2}=w_{2}-f_{x x}^{\circ} \phi_{1} \tilde{y}_{1}-\lambda f_{\lambda x}^{\circ} \phi_{1}-\mu f_{\mu x}^{\circ} \phi_{1}$.
From (3.7) and (3.5d), we may assume that $y_{2}=\alpha \phi_{1}+c_{1} z_{1}+\tilde{y}_{2}, \tilde{y}_{2} \in X_{s}$ is uniquely determined by $f_{x}^{\circ} \tilde{y}_{2}=\bar{w}_{2} l_{1} \tilde{y}_{2}=0$. Substituting $y_{1}, y_{2}, \lambda, \mu$ into (3.5c) we have

$$
\begin{equation*}
c_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+3 f_{x x}^{\circ} \phi_{1} z_{1}\right)+\alpha f_{x x}^{\circ} \phi_{1} \phi_{1}+f_{x}^{\circ} y_{3}=\bar{w}_{3} \tag{3.8}
\end{equation*}
$$

where $\bar{w}_{3}=w_{3}-\lambda\left(f_{\lambda x}^{\circ} z_{1}+f_{\lambda x x}^{\circ} \phi_{1} \phi_{1}\right)-\mu\left(f_{\mu x}^{\circ} z_{1}+f_{\mu x x}^{\circ} \phi_{1} \phi_{1}\right)-\left(f_{x x}^{\circ} z_{1}+f_{x x}^{\circ} \phi_{1} \phi_{1}\right) \tilde{y}_{1}-$ $2 f_{x x}^{\circ} \phi_{1} \tilde{y}_{2}$.
Since $D_{0}^{s} \neq 0, c_{1}=\psi_{1} \bar{w}_{3} / D_{0}^{s}$. Substituting c_{1} into (3.8), we derive

$$
f_{x}^{\circ} y_{3}=\bar{w}_{3}-c_{1}\left(f_{x x x}^{\circ} \phi_{1}^{3}+3 f_{x x}^{\circ} \phi_{1} z_{1}\right)
$$

Together with (3.5e), we may determine y_{3} uniquely.
From the preceding procedure, we can easily show that if $W=0$ then $Y=0$. Applying the open mapping theorem, theorem 3.1 is completed.

To compute the double S-breaking cubic turning point, we first restrict our attention in $X_{s} \times X_{s} \times R^{2}$ and use the extended system $F_{1}(x, \phi, \lambda, \mu)=0$ to get the quadratic turning points, which are on l_{s}, by Newton's method. When Newton's method does not work for $F_{1}=0$ for some μ_{0}, we turn to use system (3.1) to find some high singular point $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$. Just as shown theoretically, (3.1) can be solved by Newton's method practically due to its regularity at the double S-breaking cubic turning point. Similarly, we use $F_{2}(x, \phi, \lambda, \mu)=0$ to obtain pitchfork bifurcation points, which are on l_{a}, by Newton's method near $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ and expect to find the signal that Newton's method does not solve $F_{2}=0$. If it is so, we use (3.2) to find the solution $\left(x_{1}, \lambda_{1}, \mu_{1}\right)$. It should holds that $x_{0}=x_{1}, \lambda_{0}=\lambda_{1}, \mu_{0}=\mu_{1}$ at double S-breaking cubic turning point. We finally solve (3.3) to make sure that $\left(x_{0}, \lambda_{0}, \mu_{0}\right)$ is a double S-breaking cubic turning of $f(x, \lambda, \mu)=0$, namely, the solution of (3.3) should be consistent with those of (3.1) and (3.2). We will give a numerical example to show the procedure in section 4.

4. Numerical Examples

Example 4.1. Let $h: R^{n} \times R^{2} \rightarrow R^{n}$ possess a complex analytic extension H

$$
H: C^{n} \times R^{2} \rightarrow C^{n}, H(\bar{z}, \lambda, \mu)=\overline{H(z, \lambda, \mu)}, \quad z \in C^{n},(\lambda, \mu) \in R^{2}
$$

Identifying $z=u+i v \in C^{n}$ with $x=(u, v) \in R^{2 n}, H$ is transformed into $g: R^{2 n} \times R^{2} \rightarrow$ $R^{2 n}$, where

$$
\begin{equation*}
g(u, v, \lambda, \mu)=\binom{g^{r}(u, v, \lambda, \mu)}{g^{i}(u, v, \lambda, \mu)}=\frac{1}{2}\binom{H(u+i v, \lambda, \mu)+H(u-i v, \lambda, \mu)}{-i(H(u+i v, \lambda, \mu)-H(u-i v, \lambda, \mu))} \tag{4.1}
\end{equation*}
$$

Then $g(u, v, \lambda, \mu)$ satisfies \mathcal{Z}_{2}-symmetry, with $S=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$, since

$$
g^{r}(u,-v, \lambda, \mu)=g^{r}(u, v, \lambda, \mu), \quad g^{i}(u,-v, \lambda, \mu)=-g^{i}(u, v, \lambda, \mu)
$$

It is easy to check that

$$
X_{s}=\left\{(u, 0) \mid u \in R^{n}\right\}, \quad X_{a}=\left\{(0, v) \mid v \in R^{n}\right\} .
$$

It can be shown that, $\left(u_{0}, 0, \lambda_{0}, \mu_{0}\right)$ is a double S-breaking cubic turning point if and only if $\left(u_{0}, \lambda_{0}, \mu_{0}\right)$ is a simple cubic turning point of $h(u, \lambda, \mu)=0$ ([1]).

For example, consider $n=2$, and let $h(u, \lambda, \mu)=\left[\begin{array}{c}u_{1}^{3}-\lambda+\mu e^{u_{1}}+1 \\ (\mu+1) u_{2}+u_{2}^{3},\end{array}\right]$. where $u=\left(u_{1}, u_{2}\right),(0,0,1,0)$ is a simple cubic turning point of $h(u, \lambda, \mu)=0$ with respect to λ. Consider the complexification of h.

$$
H(x, \lambda, \mu)=\left[\begin{array}{c}
u_{1}^{3}-3 u_{1} v_{1}^{2}-\lambda+\mu e^{u_{1}} \cos v_{1}+1 \tag{4.2}\\
(\mu+1) u_{2}+u_{2}^{3}-3 u_{2} v_{2}^{2} \\
3 u_{1}^{2} v_{1}-v_{1}^{3}+\mu e^{u_{1}} \sin v_{1} \\
(\mu+1) v_{2}-v_{2}^{3}+3 u_{2}^{2} v_{2}
\end{array}\right]=0
$$

where $x=\left(u_{1}, u_{2}, v_{1}, v_{2}\right)$. Let $x=\left(u_{1}, u_{2}, 0,0\right) \in X_{s}, \phi_{s}=\left(t_{1}, t_{2}, 0,0\right) \in X_{s}, \phi_{a}=$ $\left(0,0, t_{3}, t_{4}\right) \in X_{a}, z=\left(0,0, z_{1}, z_{2}\right) \in X_{a}$. Then (3.3) can be written in the form

$$
H_{3}(y)=\left[\begin{array}{c}
u_{1}^{3}-\lambda+\mu e^{u_{1}}+1 \\
(\mu+1) u_{2}+u_{2}^{3} \\
\left(3 u_{1}^{2}+\mu e^{u_{1}}\right) t_{1}+\alpha t_{1} \\
\left(\mu+1+3 u_{2}^{2}\right) t_{1}+\alpha t_{2} \\
\left(3 u_{1}^{2}+\mu e^{u_{1}}\right) t_{3} \\
\left(\mu+1+3 u_{2}^{2}\right) t_{4} \\
\left(3 u_{1}^{2}+\mu e^{u_{1}}\right) z_{1}+\left(6 u_{1}+\mu e^{u_{1}}\right) t_{1} t_{3} \\
\left(\mu+1+3 u_{2}^{2}\right) z_{2}+6 u_{2} t_{2} t_{4} \\
t_{1}-1 \\
t_{3}-1 \\
z_{1}
\end{array}\right]=0
$$

where $y=\left(u_{1}, u_{2}, t_{1}, t_{2}, t_{3}, t_{4}, z_{1}, z_{2}, \lambda, \mu, \alpha\right)$. Newton's method is applied. The numerical results are shown in Table 4.1.

Table 4.1

iteration	u_{1}	u_{2}	λ	μ	α	$\\|\delta y\\|$
0	0.500000	0.500000	1.500000	0.500000	0.200000	
1	-0.249999	-0.063287	2.062497	1.284792	0.000000	$0.784 \mathrm{E}+00$
2	-0.025000	-0.038281	1.176562	-0.096473	-0.000001	$0.308 \mathrm{E}+00$
3	-0.000000	0.000018	1.000000	-0.000001	-0.000000	$0.332 \mathrm{E}-01$
4	0.000000	0.000000	1.000000	-0.000000	0.000000	$0.140 \mathrm{E}-03$
5	0.000000	0.000000	1.000000	0.000000	0.000000	$0.116 \mathrm{E}-09$

Example 4.2. Consider the following two-point boundary value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 \pi^{2} \lambda x+(x-\lambda \cos 2 \pi t)^{3}+100 \pi \mu \cos 2 \pi t+4 \mu x=0,0<t<1, \tag{4.3}\\
x(0)=x(1), \quad x^{\prime}(0)=x^{\prime}(1) .
\end{array}\right.
$$

Let

$$
X=\left\{x \in C^{2}(0,1) \mid x(0)=x(1), x^{\prime}(0)=x^{\prime}(1)\right\}
$$

It is easy to check that (4.3) is Z_{2}-symmetric with $S: S x(t)=x(1-t)$. Thus X is splitting into:

$$
X=X_{s} \oplus X_{a}
$$

where

$$
\begin{aligned}
& X_{s}=\left\{x \in X \mid x(1-t)=x(t), x^{\prime}(0)=x^{\prime}(1)=0\right\} \\
& X_{a}=\{x \in X \mid x(1-t)=-x(t), x(0)=x(1)=0\}
\end{aligned}
$$

In order to discretize (4.3) we use the central differences on the mesh points $x_{j}=$ $j h(j=1, \cdots, N-1)$, where $N h=1$, and we use the following to discretize $x^{\prime}(0)$,

$$
2 \cdot \frac{x_{1}-x_{0}}{h}-\frac{x_{2}-x_{0}}{2 h} .
$$

Similarly to $x^{\prime}(1)$, we take $N=60$.
First we use the extended system $F_{1}(x, \phi, \lambda, \mu)=0$ restricted on $X_{s} \times X_{s} \times R^{2}$ (cf (3.13)). We can get the following quadratic turning points of $f(x, \lambda, \mu)=0$ with respect to λ, which are on l_{s}, as follows by varying μ :

Table 4.2

μ	λ	$x(0)$	$x\left(\frac{1}{2}\right)$
0.06	0.765439	2.766062	-2.766062
0.04	0.832624	2.522726	-2.522726
0.02	0.906216	2.170575	-2.170575
0.01	0.947741	1.889519	-1.889519
0.005	0.971052	1.668516	-1.668516

when $\mu=0.0$, the system $F_{1}=0$ is not solved by Newton's method. Thus, we turn to solve the system (3.1) by taking the last row of Table 4.2 as initial estimate. We get the following solution:

Table 4.3

μ	λ	$x(0)$	$x\left(\frac{1}{2}\right)$
0.000000	0.999268	0.999229	-0.999229

Similarly, the system $F_{2}(x, \phi, \lambda, \mu)=0$ restricted on $X_{s} \times X_{a} \times R^{2}$ is used to get the following pitchfork bifurcation points of $f(x, \lambda, \mu)=0$ with respect to λ, which are on l_{a}, by varying μ :

Table 4.4

μ	λ	$x(0)$	$x\left(\frac{1}{2}\right)$
0.03	0.606641	5.171305	-5.171305
0.02	0.799543	4.037104	-4.037104
0.01	0.911529	3.049549	-3.049549
0.005	0.957533	2.428533	-2.428533

At $\mu=0.0$, Newton's method also doesn't work for $F_{2}=0$. The system (3.2) is applied by taking the last row of Table 4.4 as the initial guess and the following solution is obtained:

Table 4.5

μ	λ	$x(0)$	$x\left(\frac{1}{2}\right)$
0.000023	0.999084	0.999197	-0.999197

Using the value in Table 4.3 and Table 4.5 as the initial guess for the system (3.3), we can get the following solution by Newton's method:

Table 4.6

μ	λ	$x(0)$	$x\left(\frac{1}{2}\right)$
0.000023	0.999084	0.999016	-0.999016

Table 4.3, 4.5, 4.6 may be regarded as the same point, that is the double S-breaking cubic turning point of $f(x, \lambda, \mu)=0$ with respect to λ under considering the perturbation of discretization. In fact, we can check that $(x, \lambda, \mu)=(\cos 2 \pi t, 1,0)$ is a double S-breaking cubic turning point of (4.1) with $\phi_{1}=\cos 2 \pi t, \phi_{2}=\sin 2 \pi t$.

References

[1] E.L. Allgower, Bifurcation arising in the calculation of critical points via homotopy methods, ISNM70, 1984, 15-28.
[2] M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol.II, Springer-Verlag, 1985.
[3] Ma Ya-nan, Projective approximation of double limit points for nonlinear problems, J. Comput. Math., 8: 3 (1990), 261-275.
[4] A. Spence and B. Werner, Non-simple turning points and cusps, IMA J. Numer. Anal., 2 (1982), 413-427.
[5] B. Werner, Regular systems for bifurcation points with underlying symmetries, ISNM70, (1984), 562-574.
[6] B. Werner, and A. Spence, The computation of symmetry-breaking bifurcation points, SIAM J. Numer. Anal., 21 : 2 (1984), 388-399.
[7] Wu Wei, Wu Bai-sheng, Li Rong-hua, Bifurcation of singular points near a double fold point in Z_{2}-symmetric nonlinear equations, Numerical Mathematics, a Journal of Chinese Universities. 2: 1 (1993), 101-115.
[8] Yang Zhong-hua, A direct method for pitchfork bifurcation points, J. Comput. Mathe., 9 : 2 (1991), 149-153.

[^0]: * Received February 2, 1994.
 ${ }^{1)}$ This work was supported by State Key Project for Basic Research and National Sciences Foundation of China.

