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Abstract

We formulate a coupled vibration between plate and acoustic field in math-
ematically rigorous fashion. It leads to a non-standard eigenvalue problem. A
finite element approximation is considered in an abstract way, and the approxi-
mate eigenvalue problem is written in an operator form by means of some Ritz
projections. The order of convergence is proved based on the result of Babuška
and Osborn. Some numerical example is shown for the problem for which the exact
analytical solutions are calculated. The results shows that the convergence order
is consistent with the one by the numerical analysis.

1. Introduction

In this paper, we study a numerical method to calculate eigen-frequencies of a
coupled vibration between acoustic field and plate. A typical application of this research
is to reduce a noise inside a car caused by an engine or other sources of the sound. Our
study was motivated by the work of Hagiwara et al.[5]. The background of the research
and some applications can be seen in [5]. We restrict our research to the problems
where exact solutions can be given in a special case.

The main feature of our research is the mathematically rigorous approach to the
problem. We formulate the problem as an eigenvalue problem in some Hilbert space
and approximate it using the finite element method. We prove the convergence of the
approximate eigenvalues. We show some numerical example for a two-dimensional test
problem and check the validity of our method and analysis.

The authors would like to express their hearty thanks to Professor T. Tayoshi and
Mr. D. Koyama for their valuable comments and discussions throughout the prepara-
tion of this paper.

2. Formulation of a Problem

We study the vibrations of an acoustic field coupled with a plate which consists of a
part of the boundary (Fig. 1). We assume that a shape of the plate is rectangular. This
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condition together with a special boundary condition enables us to reduce the problem
to a two-dimensional one (Fig. 2).

Fig. 1 Fig. 2

The time evolution problem for this coupled system is described by the follow-
ing system of partial differential equations(cf. [3], where the boundary conditions are
slightly different):





∂2

∂t2
P0 − c2∇2

x,y,z P0 = 0 in Ω0, ∇x,y,z =
( ∂

∂x
,

∂

∂y
,

∂

∂z
),

∂P0

∂n
= −ρ0

∂2U0

∂t2
on S0,

P0|Γ0
= 0 on Γ0,

ρ1
∂2U0

∂t2
+ D∇4

y,zU0 = P0|S0
on S0, ∇y,z =

( ∂

∂y
,

∂

∂z

)
,

U0|∂S0
=

∂2U0

∂σ2

∣∣∣
∂S0

= 0 on ∂S0,

(1)

where

Ω : two-dimensional bounded region,

Ω0 = Ω× (0, π) : three-dimensional acoustic field,

S0 = S × (0, π) : domain of plate,

Γ0 = Γ× (0, π) : a part of the boundary of acoustic field, ∂Ω0 = S0 ∪ Γ0,

∂S0 : boundary of plate,

P0 : acoustic pressure in Ω0,

U0 : vertical plate displacement,

c : sound velocity,

ρ0 : air mass density,

D : flexural rigidity of plate,

ρ1 : plate mass density,

n : outward normal vector on ∂Ω0,

σ : outward normal vector on ∂S0.
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Let us consider the following eigen-oscillation solution to (1) with a time frequency ω:
{

P0 = eiωtP (x, y, z) in Ω0,

U0 = eiωtU(y, z) on S0.

This leads to the eigenvalue problem:




−c2∇2
x,y,zP − ω2P = 0 in Ω0,

∂P

∂n
|S0

= ρ0ω
2U on S0,

P |Γ0
= 0 on Γ0,

D∇4
y,zU − ω2ρ1U = P |S0

on S0,

U |∂S0
=

∂2U

∂σ2
|∂S0

= 0 on ∂S0.

(2)

Because of a symmetry of the domain Ω0 and the boundary conditions, we can make
the Fourier mode decomposition in z direction:

{
P = p sinmz,

U = u sinmz,

with the Fourier mode number m (= integer). Then the problem (2) is transformed
into the following problem (3):





−∇2
x,yp + (−ω2/c2 + m2)p = 0 in Ω,

p|Γ = 0 on Γ,

∂p

∂x
|S = ρ0ω

2u on S (= (0, π)),

D(u
′′′′ − 2m2u

′′
+ m4u)− ω2ρ1u = p|S on S,

u(0) = u
′′
(0) = 0,

u(π) = u
′′
(π) = 0.

(3)

3. Operator Theoretical Approach to a Two-Dimensional Eigenvalue
Problem

For a rather general 2-dimensional bounded domain Ω with its boundary ∂Ω = Γ∪S,
the eigenvalue problem (3) for a coupled system has a weak formulation:





1
ρ0

[¿ p, q À +m2((p, q))] = ω2
[ 1
ρ0c2

((p, q)) + (u, γSq)
]
,

D[(u
′′
, v

′′
) + 2m2(u

′
, v′) + m4(u, v)]− (γSp, v) = ω2ρ1(u, v),

(4)

where γSp denotes a restriction of p onto the set S and

¿ p, q À=
∫

Ω
∇x,yp · ∇x,y q̄ dxdy,
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((p, q)) =
∫

Ω
pq̄ dxdy,

(u, v) =
∫ π

0
uv̄ dy.

We use the standard notations of the Sobolev spaces[2], and introduce the following
function spaces Vs, Vp and various bilinear forms:

Vs ≡ {p : p ∈ H1(Ω), p|Γ = 0},
Vp ≡ {u : u ∈ H2(S), u|∂S = 0},
as(p, q) =

1
ρ0

[¿ p, q À +m2((p, q))],

bs(p, q) =
1

ρ0c2
((p, q)),

cθ(u, q) = (u, γSq),

c̄θ(p, v) = (γSp, v),

ap(u, v) = D[(u
′′
, v

′′
) + 2m2(u

′
, v

′
) + m4(u, v)],

bp(u, v) = ρ1(u, v).

Then the eigenvalue problem (4) leads to the following compact form:
{

as(p, q) = ω2[bs(p, q) + cθ(u, q)],

ap(u, v)− c̄θ(p, v) = ω2bp(u, v).
(5)

The function spaces Vs and Vp are Hilbert spaces with inner products as(p, q) and
ap(u, v), respectively. The Riesz representation theorem implies that there exist bounded
operators As (in Vs) and Ap (in Vp) such that

{
bs(p, q) = as(Asp, q) for all q ∈ Vs,

bp(u, v) = ap(Apu, v) for all v ∈ Vp.
(6)

By the theory of elliptic equations and Rellich’s lemma, the operators As and Ap are
compact. The Hermitian symmetricity of as and ap implies that As and Ap are both
self-adjoint. We define the operators T : Vs → Vp and T ∗ : Vp → Vs as follows:

{
cθ(u, q) = as(T ∗u, q) for all q ∈ Vs,

c̄θ(p, v) = ap(Tp, v) for all v ∈ Vp.
(7)

Then these operators are also compact. The operator T ∗ is the adjoint of T and the
operator TT ∗ is self-adjoint in Vp because

as(T ∗u, q) = cθ(u, q) = c̄θ(q, u) = ap(Tq, u) = ap(u, Tq),

ap(TT ∗u, v) = as(T ∗u, T ∗v) = ap(u, TT ∗v).

By using the operators As, Ap, T and T ∗, the eigenvalue problem (5) is transformed
into the form:

{
as(p, q) = ω2[as(Asp, q) + as(T ∗u, q)] for all q ∈ Vs,

−ap(Tp, v) + ap(u, v) = ω2ap(Apu, v) for all v ∈ Vp.
(8)
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This is equivalent to the following eigenvalue problem expressed by operators:
{

p = ω2(Asp + T ∗u),

u− Tp = ω2Apu.
(9)

We can write it in a matrix form:[
I 0
−T I

] [
p

u

]
= ω2

[
As T ∗

0 Ap

] [
p

u

]
. (10)

This eigenvalue problem is not of a standard self-adjoint form. But we can transform
it into the self-adjoint formulation. Since

[
I 0
−T I

]−1

=
[

I 0
T I

]
,

we get
[

p

u

]
= ω2

[
I 0
T I

] [
As T ∗

0 Ap

] [
p

u

]
= ω2

[
As T ∗

TAs TT ∗ + Ap

] [
p

u

]
. (11)

Multiplying an operator [
A

1/2
s 0
0 I

]

from the left, we obtain
[
A

1/2
s p

u

]
= ω2

[
As A

1/2
s T ∗

TA
1/2
s TT ∗ + Ap

] [
A

1/2
s p

u

]
. (12)

We introduce a Hilbert space V ≡ Vs × Vp with an inner product
((

q1

u1

)
,

(
q2

u2

))

V
≡ as(q1, q2) + ap(u1, u2).

We define a vector x and an operator A in V as follows:

x ≡
(

A
1/2
s p

u

)
, A ≡

[
As A

1/2
s T ∗

TA
1/2
s TT ∗ + Ap

]
. (13)

Then we have finally the following symmetric eigenvalue problem in V:

Ax =
1
ω2

x. (14)

Since the operator As is compact and self-adjoint, the operator A
1/2
s is also compact

and self-adjoint. It is clear that A is a compact and self-adjoint operator in V. Summing
up these results, we have the following theorem.

Theorem 3.1. The eigenvalue problem (4) is reduced to the symmetric eigenvalue
problem:

Ax =
1
ω2

x (15)

with a compact self-adjoint operator A in V, and hence the spectrum of A consists of

zero and discrete eigenvalues λn ≡ 1
ω2

n

, n = 1, 2, 3, · · ·, which are real and at most

countable with the property: lim
n→∞λn = 0.

Remark. The idea to symmetrize the eigenvalue problem was first introduced by
Irons[3] for the related discretized matrix eigenvalue problem.
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4. Finite Element Approximation

Let us introduce finite dimensional spaces Vsh ⊂ Vs and Vph ⊂ Vp, and consider the
finite element approximation problem (16) for (5):

Find ph ∈ Vsh and uh ∈ Vph such that
{

as(ph, qh) = ω2
h[(bs(ph, qh) + cθ(uh, qh))] for all qh ∈ Vsh,

ap(uh, vh)− c̄θ(ph, vh) = ω2
hbp(uh, vh) for all vh ∈ Vph.

(16)

We define orthogonal projections Psh : Vs → Vsh and Pph : Vp → Vph as follows:
{

as(p, qh) = as(Pshp, qh) for all qh ∈ Vsh,

ap(u, vh) = ap(Pphu, vh) for all vh ∈ Vph.
(17)

Then, (16) is changed into (18) by using (6), (7) and (17):
Find ph ∈ Vsh and uh ∈ Vph such that
{

as(ph, qh) = ω2
h[as(PshAsph, qh) + as(PshT ∗Pphuh, qh)] for all qh ∈ Vsh,

ap(uh, vh)− ap(PphTph, vh) = ω2
hap(PphApPphuh, vh) for all vh ∈ Vph.

(18)

This is equivalent to the equation:
{

ph = ω2
h(PshAsph + PshT ∗Pphuh),

uh − PphTph = ω2
hPphApPphuh,

(19)

which leads to the matrix form:
[

I 0
−PphT I

] [
ph

uh

]
= ω2

h

[
PshAs PshT ∗Pph

0 PphApPph

] [
ph

uh

]
. (20)

This eigenvalue problem is not of a standard self-adjoint form. But we can transform
it into the self-adjoint formulation. Since

[
I 0

−PphT I

]−1

=
[

I 0
PphT I

]
,

we get: [
ph

uh

]
= ω2

h

[
PshAs PshT ∗Pph

PphTPshAs PphTPshT ∗Pph + PphApPph

] [
ph

uh

]
. (21)

Multiplying [
A

1/2
s 0
0 I

]

from the left, we obtain:

[
A

1/2
s ph

uh

]
= ω2

h

[
A

1/2
s PshA

1/2
s A

1/2
s PshT ∗Pph

PphTPshA
1/2
s PphTPshT ∗Pph + PphApPph

] [
A

1/2
s ph

uh

]
. (22)
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We introduce a finite element approximation subspace Vh ≡ A
1/2
s Vsh × Vph, and

define a vector xh and an operator Ah in Vh as follows:

xh =
[
A

1/2
s ph

uh

]
,

Ah =

[
A

1/2
s PshA

1/2
s A

1/2
s PshT ∗Pph

PphTPshA
1/2
s PphTPshT ∗Pph + PphApPph

]
. (23)

It is clear that Ah is a compact self-adjoint operator in V(Ah : V → V) as well as in
Vh(Ah : Vh → Vh). The difference between the spectrum of Ah in V and the one in Vh

consists of only zero.
The approximate problem (16) is reduced to the following eigenvalue problem in

Vh:

Ahxh = λnhxh

(
λnh =

1
ω2

h

, λ1h ≥ λ2h ≥ · · · ≥ λnh ≥ λ(n+1)h ≥ · · ·
)
, (24)

where we enumerate the eigenvalues repeatedly according to their multiplicity.

5. Error Estimation of Eigenvalues

In the previous section, Vh = A
1/2
s Vsh × Vph was an abstract finite dimensional

subspace of V. In this section, we assume that the domain Ω is a polygon, and introduce
the following condition.

Condition R. For p ∈ Vs and u ∈ Vp, there exists a unique solution q of the
following elliptic boundary value problem:





−∇2q + m2q =
p

c2
in Ω,

q|Γ = 0,

∂q

∂x
|S = ρ0u,

and the elliptic regularity estimate:

‖q‖H2(Ω) ≤ C{‖p‖L2(Ω) + ‖u‖Vp}

holds for some constant C which is independent of p and u.
Remark. When the domain Ω is a polygon and the angles between S and Γ is π/2,

the above Condition R is satisfied (see Section 4 in Grisvard[4]).
We apply the finite element method with the spaces

Vsh = {q ∈ Vs : q|K ∈ P1(K), for K ∈ Th} (25)

for a polygonal domain Ω and

Vph = {v ∈ Vp : v|K′ ∈ P3(K
′
), for K

′ ∈ T ′
h(S)} (26)
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for a straight line S, where Th is a regular triangulation of Ω with maximum mesh size
h, T ′

h(S) is a regular partition of S with maximum mesh size h and, for r ∈ N ,

Pr(K) =
{
q : q(x) =

∑

0≤i+j≤r

aijx
i
1x

j
2 for x ∈ K, aij ∈ R

}
, (27)

and
Pr(K

′
) =

{
v : v(x) =

∑

0≤i≤r

aix
r for x ∈ K

′
, ai ∈ R

}
. (28)

Then we have the following estimate for the error |λn − λnh|.
Theorem 5.1. Let λn 6= 0 be the n-th eigenvalue of A in (15) and λnh be the

corresponding approximate n-th eigenvalues of Ah in (24) where Vh is defined through
(25) and (26). Then we have the estimate

|λn − λnh| ≤ Cλnh2

with positive constant Cλn which does not depend on h but may depend on λn.
Proof. At first we calculate a difference A−Ah and define operators Aij (i, j = 1, 2)

as

A−Ah =

[
As −A

1/2
s PshA

1/2
s A

1/2
s T ∗ −A

1/2
s PshT ∗Pph

TA
1/2
s − PphTPshA

1/2
s TT ∗ + Ap − PphTPshT ∗Pph − PphApPph

]

≡
[
A11 A12

A21 A22

]
. (29)

Then we can prove that
lim
h↓0

‖A−Ah‖V = 0. (30)

In fact, since the operators As, A
1/2
s , T and T ∗ are compact, using the basic properties

of the Ritz projections Psh and Pph (see [2]):

s− lim
h↓0

Psh = I in Vs and s− lim
h↓0

Pph = I in Vp,

we have the following estimates for Aij (i, j = 1, 2) :

‖A11‖Vs = ‖As −A1/2
s PshA1/2

s ‖Vs = ‖A1/2
s (I − Psh)A1/2

s ‖Vs → 0 as h → 0;

‖A12‖Vp→Vs = ‖A1/2
s T ∗ −A1/2

s PshT ∗Pph‖Vp→Vs = ‖A1/2
s (T ∗ − PshT ∗Pph)‖Vp→Vs

= ‖A1/2
s {(I − Psh)T ∗ + PshT ∗(I − Pph)}‖Vp→Vs

≤ ‖A1/2
s (I − Psh)T ∗‖Vp→Vs + ‖A1/2

s PshT ∗(I − Pph)‖Vp→Vs → 0 as h → 0;

‖A21‖Vs→Vp = ‖TA1/2
s − PphTPshA1/2

s ‖Vs→Vp

= ‖((I − Pph)T + PphT (I − Psh))A1/2
s ‖Vs→Vp

≤ ‖(I − Pph)TA1/2
s ‖Vs→Vp + ‖PphT (I − Psh)A1/2

s ‖Vs→Vp → 0 as h → 0;

and

‖A22‖Vp = ‖TT ∗ + Ap − PphTPshT ∗Pph − PphApPph‖Vp
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≤ ‖TT ∗ − PphTPshT ∗Pph‖Vp + ‖Ap − PphApPph‖Vp

≤ ‖(T − PphTPsh)T ∗‖Vp + ‖PphTPshT ∗(I − Pph)‖Vp + ‖(I − Pph)Ap‖Vp

+ ‖PphAp(I − Pph)‖Vp → 0 as h → 0.

Hence we have

‖A−Ah‖V ≤ ‖A11‖Vs + ‖A12‖Vp→Vs + ‖A21‖Vs→Vp + ‖A22‖Vp → 0 as h → 0.

From this result, the n-th eigenvalue of Ah converges to the corresponding n-th eigen-
value of A (see Babuška and Osborn[1]).

Let E(λ) be the orthogonal projection in V onto the space of eigenvectors of A

associated with an eigenvalue λ and let x ∈ E(λ)V. Then from the expression of A in
(13), the eigenvector x can be written as

x =
(

A
1/2
s p

u

)
= (A1/2

s p, u)t, with p ∈ Vs and u ∈ Vp.

For the later use, we note that

((A−Ah)x, x)V =

((
A11A

1/2
s p + A12u

A21A
1/2
s p + A22u

)
,

(
A

1/2
s p

u

))

V
≡ as(A11A

1/2
s p,A1/2

s p) + as(A12u,A1/2
s p) + ap(A21A

1/2
s p, u) + ap(A22u, u).

Before continuing our proof, we introduce some lemmas which will be used later. In the
following, we use C as a general constant and Cλ as a general constant which depends
on λ.

Lemma 5.1. For every x = (A1/2
s p, u)t ∈ E(λ)V, the following inequality holds:

‖A11A
1/2
s p‖Vs ≤ Ch‖x‖V .

Lemma 5.2. For every x = (A1/2
s p, u)t ∈ E(λ)V, the following inequality holds:

‖A12u‖Vs ≤ Cλh‖x‖V .

Lemma 5.3. For every x = (A1/2
s p, u)t ∈ E(λ)V, the following inequalities hold:

‖A21A
1/2
s p‖Vp ≤ Cλh‖x‖V ;

and
‖A22u‖Vp ≤ Cλh‖x‖V .

Lemma 5.4. For xj = (A1/2
s pj , uj)t ∈ E(λ)V, j = i or k, the following inequalities

hold:

|as(A11A
1/2
s pi, A

1/2
s pk)| ≤ Ch2‖xi‖V‖xk‖V ;

|as(A12ui, A
1/2
s pk)| ≤ Cλh2‖xi‖V‖xk‖V ;

|ap(A21A
1/2
s pi, uk)| ≤ Cλh2‖xi‖V‖xk‖V ;
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|ap(A22ui, uk)| ≤ Cλh2‖xi‖V‖xk‖V .

Proof of Theorem 5.1. (continued) Let λ ≡ λn and λh ≡ λnh and E(λ)V be as
above, and ϕ1, · · · , ϕm be an orthonormal basis of E(λ)V. Then due to Theorem 7.3
by Babuška and Osborn in [2], we have the estimate:

|λ− λh| ≤ C
{∣∣∣

( m∑

i,k=1

(A−Ah)ϕi, ϕk

)
V

∣∣∣ + ‖(A−Ah)|E(λ)V‖2
V
}
.

From Lemma 5.1 Lemma 5.2 and Lemma 5.3, we obtain

‖(A−Ah)|E(λ)V‖V ≡ sup
x∈E(λ)V,‖x‖V=1

‖(A−Ah)x‖V

≡ sup
x∈E(λ)V,‖x‖V=1

{(‖A11A
1/2
s p + A12u‖Vs)

2 + (‖A21A
1/2
s p + A22u‖Vp)

2}1/2

≤ sup
x∈E(λ)V,‖x‖V=1

(‖A11A
1/2
s p‖Vs + ‖A12u‖Vs + ‖A21A

1/2
s p‖Vp + ‖A22u‖Vp)

≤ Ch + Cλh + Cλh + Cλh ≤ Cλh,

which implies
‖(A−Ah)|E(λ)V‖V ≤ Cλh. (31)

Using Lemma 5.4 and (31), we obtain our estimate with convergence order 2 as follows
and complete our proof. Let ϕi = (A1/2

s pi, ui)t, i = 1, 2, · · · ,m, then we have

|λ− λh| ≤ C
{∣∣∣

( m∑

i,k=1

(A−Ah)ϕi, ϕk

)
V

∣∣∣ + Cλh2
}

≤ C
{ m∑

i,k=1

(|as(A11A
1/2
s pi, A

1/2
s pk)|+ |as(A12ui, A

1/2
s pk)|

+ |ap(A21A
1/2
s pi, uk)|+ |ap(A22ui, uk)|) + Cλh2

}
≤ Cλh2.

6. Proof of Lemmas

Proof of Lemma 5.1. Note that, for every p ∈ Vs, q ≡ Asp satisfies the following
equation: 




−∇2q + m2q =
p

c2
in Ω,

q|Γ = 0,

∂q

∂x
|S = 0.

From Condition R with u = 0, there exists a constant C such that ‖q‖H2(Ω) ≤
C‖p‖L2(Ω). On the other hand, by definition (17), qh ≡ Pshq is the finite element
approximation of q in Vsh. Hence, we have the following estimate for the error q − qh

in H1(Ω) -norm(see [2]; Theorem 18.1):

‖(I − Psh)Asp‖Vs ≤ Ch‖Asp‖H2 ≤ Ch‖p‖L2 ≤ Chas(Asp, p)1/2
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= Chas(A1/2
s p,A1/2

s p)1/2 = Ch‖A1/2
s p‖Vs ≤ Ch‖x‖V . (32)

Then we get the estimate for ‖A11A
1/2
s p‖Vs as follows:

‖A11A
1/2
s p‖Vs = ‖(As −A1/2

s PshA1/2
s )A1/2

s p‖Vs = ‖A1/2
s (A1/2

s − PshA1/2
s )A1/2

s p‖Vs

≤ ‖A1/2
s ‖Vs‖(I − Psh)Asp‖Vs ≤ Ch‖x‖V .

Proof of Lemma 5.2. Note that for every u ∈ Vp, q ≡ T ∗u satisfies the following
equation: 




−∇2q + m2q = 0 in Ω,

q|Γ = 0,

∂q

∂x
|S = ρ0u.

Then using the results of finite element approximation and Condition R with p = 0,
we obtain the following estimate:

‖(I − Psh)T ∗u‖Vs ≤ Ch‖T ∗u‖H2 ≤ Ch‖u‖Vp ≤ Ch‖x‖V . (33)

Hence we have the estimate for ‖A12u‖Vs as follows:

‖A12u‖Vs =‖(A1/2
s T ∗ −A1/2

s PshT ∗Pph)u‖Vs ≤ ‖A1/2
s (I − Psh)T ∗u‖Vs

+ ‖A1/2
s PshT ∗‖Vp→Vs‖(I − Pph)u‖Vp ≤ ‖A1/2

s ‖Vs‖(I − Psh)T ∗u‖Vs

+ ‖A1/2
s PshT ∗‖Vp→Vs‖(I − Pph)(Tp + (1/λ)Apu)‖Vp , (34)

here to prove the second inequality, we used the second equation in (9). The operator
T has the following relation to Ap and γS :

ap(Tp, v) = c̄θ(p, v) = (γSp, v) =
1
ρ1

bp(γSp, v) =
1
ρ1

ap(ApγSp, v),

which implies

T =
1
ρ1

ApγS .

Note that for every u ∈ Vp, v ≡ Apu satisfies the following equation:




D(v
′′′′ − 2m2v

′′
+ m4v) = ρ1u on S (S = (0, π)),

v(0) = v
′′
(0) = 0,

v(π) = v
′′
(π) = 0.

From the results of the Fourier analysis, there exists a constant C such that ‖Apu‖H4(S) ≤
C‖u‖L2(S). Since, by definition (17), vh ≡ Pphv is the finite element approximation of
v in Vph, we have the following estimates in the H2(S)−norm(see [2]; Theorem 18.1):

‖(I − Pph)Apu‖Vp ≤ Ch2‖Apu‖H4 ≤ Ch2‖u‖L2 ≤ Ch2‖u‖Vp ≤ Ch2‖x‖V , (35)

‖(I − Pph)Tp‖Vp ≤ Ch2‖Tp‖H4 ≤ Ch2‖γSp‖L2 ≤ Ch2‖p‖Vs

≤ Ch2 1
λ
{‖Asp‖Vs + ‖T ∗u‖Vs} ≤ Cλh2‖x‖V , (36)
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where we used the first equation in (9) to estimate ‖p‖Vs .
Applying these estimates (35) and (36) as well as (33) to (34), we have

‖A12u‖Vs ≤ Cλh‖x‖V .

Note that here we have proved the estimate

‖(I − Pph)u‖Vp ≤ Cλh2‖x‖V (37)

which will be used later.
Proof of Lemma 5.3. We get the following estimates for ‖A21A

1/2
s p‖Vp :

‖A21A
1/2
s p‖Vp = ‖(T − PphTPsh)Asp‖Vp

≤ ‖(I − Pph)TAsp‖Vp + ‖PphT‖Vp→Vph
‖(I − Psh)Asp‖Vs

≤ Cλh2‖Asp‖Vs + Ch‖x‖V ≤ Cλh2‖x‖V + Ch‖x‖V ≤ Cλh‖x‖V .

and

‖A22u‖Vp = ‖(TT ∗ + Ap − PphTPshT ∗Pph − PphApPph)u‖Vp

≤ ‖(TT ∗ − PphTPshT ∗Pph)u‖Vp + ‖(Ap − PphApPph)u‖Vp

≤ ‖(T − PphTPsh)T ∗u‖Vp + ‖PphTPshT ∗(I − Pph)u‖Vp

+ ‖(I − Pph)Apu‖Vp + ‖PphAp(I − Pph)u‖Vp

≤ ‖(I − Pph)TT ∗u‖Vp + ‖PphT‖Vs→Vph
‖(I − Psh)T ∗u‖Vs

+ ‖PphTPshT ∗‖Vp‖(I − Pph)u‖Vp

+ ‖(I − Pph)Apu‖Vp + ‖PphAp‖Vp‖(I − Pph)u‖Vp

≤ Cλh2‖x‖V + Ch‖x‖V + Cλh2‖x‖V + Ch2‖x‖V + Cλh2‖x‖V
≤ Cλ(h2 + h)‖x‖V ≤ Cλh‖x‖V .

Proof Lemma 5.4. From Lemma 5.1, Lemma 5.2 and Lemma 5.3, we get the fol-
lowing estimates. Let xj = (A1/2

s pj , uj)t ∈ E(λ)V, j = i or k. Then we have

|as(A11A
1/2
s pi, A

1/2
s pk)| = |as(A1/2

s (I − Psh)Aspi, A
1/2
s pk)|

= |as(I − Psh)Aspi, (I − Psh)Aspk)|
≤ Ch2‖A1/2

s pi‖Vs‖A1/2
s pk‖Vs ≤ Ch2‖xi‖V‖xk‖V .

Next, we have

|as(A12ui, A
1/2
s pk)| = |as((A1/2

s T ∗ −A1/2
s PshT ∗Pph)ui, A

1/2
s pk)|

= |as((I − Psh)T ∗ui, Aspk) + as(PshT ∗(I − Pph)ui, Aspk)|
= |as((I − Psh)T ∗ui, (I − Psh)Aspk)

+ ap((I − Pph)ui, (I − Pph)TPshAspk)|
≤ Ch2‖xi‖V‖xk‖V + Cλh4‖xi‖V‖xk‖V ≤ Cλh2‖xi‖V‖xk‖V .
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Further, we have

|ap(A21A
1/2
s pi, uk)| = |ap((T − PphTPsh)Aspi, uk)| = |ap((I − Pph)TAspi, (I − Pph)uk)

+ as((I − Psh)Aspi, (I − Psh)T ∗Pphuk)|
≤ Cλh4‖xi‖V‖xk‖V + Ch2‖xi‖V‖xk‖V ≤ Cλh2‖xi‖V‖xk‖V .

Finally, we have

|ap(A22ui, uk)| = |ap((TT ∗ − PphTPshT ∗Pph)ui, uk) + ap((Ap − PphApPph)ui, uk)|
= |ap((I − Pph)TT ∗ui, uk) + ap(PphT (I − Psh)T ∗ui, uk)

+ ap(PphTPshT ∗(I − Pph)ui, uk) + ap((I − Pph)Apui, uk)

+ ap(PphAp(I − Pph)ui, uk)| = |ap((I − Pph)TT ∗ui, (I − Pph)uk)

+ as((I − Psh)T ∗ui, (I − Psh)T ∗Pphuk)

+ ap((I − Pph)ui, (I − Pph)TPshT ∗Pphuk)

+ ap((I − Pph)Apui, (I − Pph)uk) + ap((I − Pph)ui, (I − Pph)ApPphuk)|
≤ Cλh4‖xi‖V‖xk‖V + Ch2‖xi‖V‖xk‖V + Cλh4‖xi‖V‖xk‖V

+ Cλh4‖xi‖V‖xk‖V + Cλh4‖xi‖V‖xk‖V
≤ Cλh2‖xi‖V‖xk‖V .

7. Numerical Results

We show some numerical results for the problem (3) where Ω0 is a cube with side
length π and the plate consists of a side of the cube (Fig.1 and 2). We apply the finite
element method using Vsh and Vph in (25), (26) of Section 5. We calculated the test
problem by FORTRAN77 on SONY NWS-5000 with double precision until n = 32 of
partitions in x and y directions. The approximate eigenvalues are solved by the QR
method[6] and also by the inverse iteration method. The numerical results are compared
with the exact eigenvalues (see Appendix)
and their convergence order is a bit greater
than 2 (Fig.3) which is consistent with the
results of numerical analysis.

Table 1 Example (ρ0 = 5, ρ1 = 50,
D = 2, m = 1, n = 1, c = 2.5.)

number of 1st. eigen- error =

partitions value λ1h |λ1 − λ1h|
4 6.5088995 0.1855771

8 6.6567066 0.0377700

16 6.6871783 0.0072983

32 6.6929724 0.0015042

exact 6.6944766 ————
Fig. 3 Convergence Order

Appendix: Exact Solution for a Test Problem

To check the validity of numerical computation by the finite element method, a test problem
is chosen for which the exact solution is known. Namely since the acoustic field is a cube and the
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boundary condition for the acoustic field is the Dirichlet condition, and the boundary condition
for plate is the pinned condition, by the Fourier mode decomposition in y direction, the solution
p(x, y) to problem (3) can be written as

p(x, y) = Bn(x) sin ny,

which satisfies boundary condition. Then the exact eigenvalue ω can be given by solving the
following transcendental equations for ω2:

ω2 =





(ρ0π + ρ1)c4/D, with m2 + n2 − ω2/c2 = 0 (at most one),
Dg(m2 + n2)2

ρ1g + ρ0 tanh gπ
, with m2 + n2 − ω2/c2 = g2 > 0 (g : real),

Dg(m2 + n2)2

ρ1g + ρ0 tan gπ
, with m2 + n2 − ω2/c2 = −g2 < 0 (g : real).
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