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Abstract

A Legendre pseudospectral scheme is proposed for solving initial-boundary
value problem of nonlinear Klein-Gordon equation. The numerical solution keeps
the discrete conservation. Its stability and convergence are investigated. Numerical
results are also presented, which show the high accuracy. The technique in the the-
oretical analysis provides a framework for Legendre pseudospectral approximation
of nonlinear multi-dimensional problems.

1. Introduction

As we know, the Klein-Gordon equation is an important mathematical model in

quantum mechanics. It is of the form






∂2U

∂t2
(x, t) −△U(x, t) + bU(x, t) + g(U(x, t)) = f(x, t), x ∈ Ω, 0 < t ≤ T,

U(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T,

∂U

∂t
(x, 0) = U1(x), x ∈ Ω,

U(x, 0) = U0(x), x ∈ Ω,

(1.1)

where Ω = (−1, 1)n, x = (x1, x2, · · · , xn), △ =
n∑

j=1

∂2

∂x2
j

, g(z) = |z|αz, p = α + 2 and b

is a real number. Assume that U0(x) = U1(x) = 0 on ∂Ω and






α ≥ 0, for n ≤ 2,

0 ≤ α ≤
2

n− 2
, for n ≥ 3.

(1.2)

As in [1], it can be shown that if U0 ∈ H1
0 (Ω) ∩ Lp(Ω), U1 ∈ L2(Ω) and f ∈

L2(0, T ;L2(Ω)), then (1.1) has unique solution U ∈ C(0, T ;H1
0 (Ω) ∩ Lp(Ω)). If U0, U1

and f are smoother, then U is smoother also. On the other hand, some finite difference

schemes were proposed with strict proof of generalized stability and convergence. Their

numerical solutions keep the discrete conservations. One of special cases (α = 2) was

considered also in [4]. But for all these finite difference approximations, the conver-

gence rate is of order 2 in the space. To overcome it, some Fourier spectral and Fourier
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pseudospectral schemes were studied for periodic problems (see [5,6]). Their numerical

solutions possess the convergence rate of “infinite order”. Recently, Legendre spectral

scheme was also studied for the initial-boundary value problem(see[7]). Its numeri-

cal results also show that it is more accurate than the corresponding finite difference

scheme. However, because of the nonlinear term g(U), it is very difficult to implement

the spectral method strictly, unless α is a small integer. In this paper, we discuss the

pseudospectral method for solving (1.1). In the next section, we construct a Legen-

dre pseudospectral scheme which simulates the energy conservation law reasonably. In

particular, it can be easily implemented for all α. We present the numerical results in

section 3, which show the advantages of such approximation. Then we list some lem-

mas and prove the generalized stability and convergence in the last three sections. The

technique in the theoretical analysis provides a framework for Legendre pseudospectral

approximation of nonlinear multi-dimensional problems arising in quantum mechanics

and other fields.

2. The Scheme

Let Lq(Ω) = {v|v is Lebesgue measureable on Ω and ‖v‖Lq <∞}, where

‖v‖Lq(Ω) =







( ∫

Ω
|v|qdx

)1
q , if 1 ≤ q <∞,

ess · sup
x∈Ω

|v(x)|, if q = ∞.

For q = 2, we denote the inner product and the norm of L2(Ω) by (·, ·) and ‖ · ‖

respectively. Let Z be the set of all non-negative integers, and γl ∈ Z. Set γ =

(γ1, γ2, · · · , γn), |γ| = γ1 + γ2 + · · · + γn and Dγ =
∂|γ|

∂x1
γ1∂x2

γ2 · · · ∂xn
γn

. For any

non-negative integer m, define Hm(Ω) = {v|Dγv ∈ L2(Ω), 0 ≤ |γ| ≤ m}, with the

semi-norm | · |m and the norm ‖ · ‖m as follows

|v|m =
( ∑

|γ|=m

‖Dγv‖2
)1/2

, ||v||m = (||v||2m−1 + |v|2m)1/2.

For non–negative real number s, we define Hs(Ω) by the interpolation between the

spaces H [s](Ω) and H [s+1](Ω). Its norm and semi-norm are denoted by || · ||s and | · |s
respectively.

Let jl ∈ Z, j = (j1, j2, · · · , jn) and |j| = max
1≤l≤n

|jl|. Set Lj(x) =
n∏

l=1

Ljl
(xl), Ljl

(xl)

being the Legendre polynomial of degree jl with respect to xl. For Legendre spectral

approximation in spatial directions, we define that for any positive integer N ,

SN = span{Lj(x) | |j| ≤ N}, VN = SN ∩H1
0 (Ω).

Let PN : L2(Ω) 7−→ VN be the L2-orthogonal projection operator, i.e., for any v ∈

L2(Ω), we have (PNv − v, ϕ) = 0, ∀ϕ ∈ VN .

In this paper, we consider the n-dimensional interpolation. Let kl ∈ Z, k =

(k1, k2, · · · , kn), |k| = max
1≤l≤n

|kl|. Set x(k) = (x
(k1)
1 , x

(k2)
2 , · · · , x

(kn)
n ) and ω(k) = ω

(k1)
1
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ω
(k2)
2 · · ·ω

(kn)
n , x

(kl)
l and ω

(kl)
l being the nodes and weights of the Gauss-Lobatto quadra-

ture formula on I l = [−1, 1], i.e., x
(0)
l = −1, x

(N)
l = 1, x

(kl)
l are the zeroes of L′

N (xl),

kl = 1, · · · , N − 1, and

ω
(kl)
l =

2

N(N + 1)
·

1

[L′
N (x

(kl)
l )]2

, kl = 0, · · · , N.

Let ΩN = {x(k)|x(k) ∈ Ω}. Then
∫

Ω
v(x)dx =

∑

x(k)∈ΩN

v(x(k))ω(k), ∀v ∈ S2N−1.

Let Pc : C(Ω) 7−→ SN be the interpolation operator, i.e., for any v ∈ C(Ω), Pcv ∈ SN

satisfies Pcv(x
(k)) = v(x(k)), ∀x(k) ∈ ΩN . We introduce the discrete Lq-norm and the

discrete L2-inner product associated with the above collocation points as

||v||Lq ,N =







( ∑

x(k)∈ΩN

|v(x(k))|qω(k)
)1

q , if 1 ≤ q <∞,

sup
x(k)∈ΩN

|v(x(k))|, if q = ∞

and (v,w)N =
∑

x(k)∈ΩN

v(x(k))w(x(k))ω(k). It is not difficult to verifty that (see [8])

Pcv = v, ∀v ∈ SN ,

(v,w)N = (Pcv, Pcw)N , ∀v,w ∈ C(Ω).

Let τ be the mesh size in variable t, Sτ =
{

t = kτ |k = 1, 2, · · · ,
[T

τ

]}

and Sτ =

Sτ ∪ {0}. For simplicity, we denote v(x, t) by v(t) or v sometimes. Define

v̂(t) =
1

2
(v(t+ τ) + v(t− τ)),

vt̂(t) =
1

2τ
(v(t+ τ) − v(t− τ)),

vt(t) =
1

τ
(v(t+ τ) − v(t)),

vt̄(t) = vt(t− τ),

vtt̄(t) =
1

τ
(vt(t) − vt̄(t)).

It can be verified that

2(vt̂(t), v̂(t))N = (||v(t)||2N )t̂, (2.1)

2(vt̂(t), vtt̄(t))N = (||vt̄(t)||
2
N )t. (2.2)

It is well known that the solution of (1.1) possesses the conservation

E(U, t) = E(U, 0) + 2

∫ t

0

(∂U

∂t′
(t′), f(t′)

)

dt′ (2.3)
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where E(U, t) =
∥
∥
∥
∂U

∂t
(t)

∥
∥
∥

2
+ |U(t)|21 + b||U(t)||2 +

2

p
||U(t)||pLp . Clearly, a reasonable

discretization of (1.1) should simulate this property. The key point is to approximate

the nonlinear term g(U(x, t)) suitably. To do this, let (see [2, 3])

G(v(x, t)) =

∫ 1

0
g(σv(x, t + τ) + (1 − σ)v(x, t − τ))dσ. (2.4)

Clearly, G(v(x, t)) is an approximate to g(v(x, t)). Futhermore, since

g(z) =
1

p

d

dz
|z|p, (2.5)

we have 2vt̂(x, t)G(v(x, t)) =
1

τp
(|v(x, t+ τ)|p − |v(x, t− τ)|p), and so

(G(v(t)), vt̂(t))N =
1

p
(||v(t)||pLp ,N )t̂. (2.6)

Now, let u be the approximation to U . We approximate the nonlinear term g(U)

by PcG(u) instead of Pcg(u). Then the Legendre pseudospectral scheme for (1.1) is to

find u(t) ∈ VN for all t ∈ Sτ such that







(utt̄(t) + bû(t) +G(u(t)), v)N + (▽û(t),▽v)N = (f̂(t), v)N , ∀v ∈ VN , t ∈ Sτ ,

ut(0) = u1,

u(0) = u0,
(2.7)

where u0 = PcU0 and u1 = PcU1 +
τ

2
Pc(△U0 − bU0 − g(U0) + f(0)). We next check the

conservation. By taking v = 2ut̂ in the first equation of (2.7), we have from (2.1), (2.2)

and (2.6) that

(||ut̄(t)||
2
N )t + (|| ▽ u(t)||2N )t̂ + b(||u(t)||2N )t̂ +

2

p
(||u(t)||pLp ,N )t̂ = 2(f̂(t), ut̂(t))N .

A summation of the above equality for t ∈ Sτ yields that

E∗(u, t) = E∗(u, τ) + 2τ
∑

t′≤t−τ

(ut̂(t
′), f̂(t′))N (2.8)

where

E∗(u, t) =||ut̄(t)||
2
N +

1

2
(|| ▽ u(t)||2N + || ▽ u(t− τ)||2N ) +

b

2
(||u(t)||2N + ||u(t− τ)||2N )

+
1

p
(||u(t)||pLp ,N + ||u(t− τ)||pLp,N ).

Obviously (2.8) is a reasonable analogy of (2.3). Thus scheme (2.7) can give better

numerical results.
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3. Numerical Results

This section is devoted to numerical experiments. We shall use (2.7) to solve (1.1).

For comparison, we also consider a Legendre spectral scheme (see[7]) and a finite dif-

ference scheme (see[3, 4]). Let us be the Legendre spectral approximation to U . We

approximate the nonlinear term g(U) by PNG(us) instead of PNg(u
s). The Legendre

spectral scheme for (1.1) is







(us
tt̄(t) + bûs(t) +G(us(t)), v) + (▽ûs(t),▽v) = (f̂(t), v), ∀v ∈ VN , d t ∈ Sτ ,

us
t (0) = PNU1 +

τ

2
PN (△U0 − bU0 − g(U0) + f(0)),

us(0) = PNU0.
(3.1)

We now consider the finite difference scheme. Let h =
1

N
and Ωh = {x|x = (j1h, j2h, · · ·,

jnh),−N + 1 ≤ jl ≤ N − 1, 1 ≤ l ≤ n}. Define ej = (0, · · · , 0
︸ ︷︷ ︸

j−1

, 1, 0, · · · , 0), and

△hv(x, t) =
1

h2

n∑

j=1

(v(x + hej , t) − 2v(x, t) + v(x− hej , t)).

The finite difference scheme is






uh
tt̄(x, t) −△hû

h(x, t) + bûh(x, t) +G(uh(x, t)) = f̂(t), x ∈ Ωh, t ∈ Sτ ,

uh(x, t) = 0, x ∈ ∂Ωh, t ∈ Sτ ,

uh
t (x, 0) = U1(x) +

τ

2
(△hU0(x) − bU0(x) − g(U0(x)) + f(x, 0)), x ∈ Ωh,

uh(x, 0) = U0(x), x ∈ Ωh.
(3.2)

For describing the error, let

Ẽ(u, t) =
||U(t) − u(t)||N

||U(t)||N
, Ẽs(us, t) =

||U(t) − us(t)||

||U(t)||

and

Ẽh(uh, t) =

(
∑

x∈Ωh
|U(x, t) − uh(x, t)|2

)1/2

(
∑

x∈Ωh
|U(x, t)|2

)1/2
.

For simplicity, we take n = b = T = 1 and α = 2 in all calculations. The test function

is as follows U(x, t) = A(x2 − 1) cos(B(x+ t))eωt.
In Table 1, the calculation is carried out with A = 0.5, B = ω = 1.0, N = 8 and

τ = 0.005. The numerical results show that scheme (2.7) gives much better results than
(3.2). Scheme(2.7) and (3.1) provide the numerical solutions with very high accracy
even if N is small. We also know from Table 1 that scheme(2.7) and (3.1) have the same
accuracy. Whereas for scheme(3.1), we have to calculate the coefficients of Legendre
expansion by numerical integration, which is quite difficult job. In particular, it takes
much time for the nonlinear terms. Table 2 shows the numerical results of scheme(2.7)
and (3.2) with A = B = 1.0 and ω = 2.0. We find that if N increases and τ decreases
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proportionally, then the errors become smaller quickly. Table 2 shows the convergences
of scheme(2.7) and (3.2). But scheme(2.7) gives much better numerical results and
possesses higher convergence rate than (3.2).

Table 1. The errors Ẽ(u, t), Ẽs(us, t) and Ẽh(uh, t).

Scheme(2.7) Scheme(3.1) Scheme(3.2)

t=0.2 9.21281E-7 9.50890E-7 1.23154E-3
t=0.4 5.91656E-7 6.52785E-7 4.34661E-3
t=0.6 1.52947E-6 1.39562E-6 8.66063E-3
t=0.8 3.82931E-6 3.64652E-6 1.36452E-2
t=1.0 6.61214E-6 6.31079E-6 1.88353E-2

Table 2. The errors Ẽ(u, 1.0) and Ẽh(uh, 1.0).

Scheme(2.7) Scheme(3.2)
N τ = 0.005 τ = 0.001 τ = 0.0005 τ = 0.005 τ = 0.001 τ = 0.0005

4 1.52081E-3 1.54167E-3 1.54159E-3 8.79735E-3 8.78729E-3 8.78698E-3
8 2.95840E-5 1.16568E-6 2.97163E-7 2.65475E-3 2.63820E-3 2.63768E-3
16 2.94326E-5 1.16412E-6 2.93173E-7 6.76090E-4 6.58751E-4 6.58222E-4
32 2.92907E-5 1.16264E-6 2.90184E-7 1.83250E-4 1.64651E-4 1.64116E-4
64 2.91293E-5 1.16087E-6 2.87146E-7 6.33188E-5 4.16680E-5 4.11237E-5

128 2.88781E-5 1.15844E-6 2.83207E-7 3.66429E-5 1.09870E-5 1.04145E-5

4. Some Lemmas

In order to derive the error estimations, we need some notations and lemmas. Let

B be a Banach space. Define C(0, T ;B) = {v|v : [0, T ] 7−→ B is strongly continuous },

equipped with the norm ||v||C(0,T ;B) = max
0≤t≤T

||v(t)||B . Furthermore

Cm(0, T ;B) =
{

v
∣
∣
∣
∂kv

∂tk
∈ C(0, T ;B), 0 ≤ k ≤ m

}

and

||v||Cm(0,T ;B) = max
0≤k≤m

∥
∥
∥
∂kv

∂tk

∥
∥
∥

C(0,T ;B)
.

Let I = (−1, 1) and L2(I;B) = {v|v : I 7−→ B is strongly measurable and ||v||L2(I;B) <

∞}, equipped with the norm

||v||L2(I;B) =
( ∫

I
||v(z)||2Bdz

)1
2 .

Furthermore, for any non-negative integer m, we have

Hm(I;B) =
{

v
∣
∣
∣
∂kv

∂zk
∈ L2(I;B), 0 ≤ k ≤ m

}

and

||v||Hm(I;B) =
( m∑

k=0

∥
∥
∥
∂kv

∂zk

∥
∥
∥

2

L2(I;B)

)1
2 .

For non-negative real number s, we define Hs(I;B) by the interpolation between the

spaces H [s](I;B) and H [s+1](I;B).
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Let c be a positive constant independent of τ,N and any function. But its value

could be different in different cases. We shall list some lemmas which are the modifi-

cations of results in [3,5,7].

Lemma 1. If 0 ≤ r ≤ 1 and s >
n

2
+
r

2
, then there exists a positive constant c

depending on s such that for any function v ∈ Hs(Ω), ||v − Pcv||r ≤ cN r−s||v||s.

Proof. We know from section 4 and section 5 of [9] that

(i) There exists a positive conctant c such that for any v ∈ H1(I),

||Pcv||H1(I) ≤ c||v||H1(I). (4.1)

(ii) If 0 ≤ r ≤ 1 and s >
1

2
+
r

2
, then there exists a positive constant c depending on s

such that for any function v ∈ Hs(I),

||v − Pcv||Hr(I) ≤ cN r−s||v||Hs(I). (4.2)

(iii) If 0 ≤ r ≤ 1 and s > 1 +
r

2
, then there exists a positive constant c depending on s

such that for any function v ∈ Hs(I2),

||v − Pcv||Hr(I2) ≤ cN r−s||v||Hs(I2). (4.3)

We shall apply the above results and the induction to prove this lemma. Firstly, (4.2)

and (4.3) that show the conclusion is true for n = 1 and n = 2. Now, we assume

that the result is true for n − 1, i.e., for any real numbers s and r, 0 ≤ r ≤ 1 and

s >
n− 1

2
+
r

2
, there exists a positive constant c depending on s such that for any

function v ∈ Hs(In−1),

||v − Pcv||Hr(In−1) ≤ cN r−s||v||Hs(In−1). (4.4)

Let P
xj
c be the one-dimensional interploation operator with respect to the variable xj

and Pc = P
xj
c · P

x̂j
c = P

x̂j
c · P

xj
c , where P

x̂j
c = P x1

c · P x2
c · · · · · P

xj−1
c · P

xj+1
c · · · · · P xn

c .

We first deal with the case with r = 0. Let ϑ be the identity operator. Then

||v − Pcv||L2(In) ≤||v − P
xj
c v||L2(I;L2(In−1)) + ||v − P

x̂j
c v||L2(I;L2(In−1))

+ ||(ϑ − P
xj
c ) · (ϑ− P

x̂j
c )v||L2(I;L2(In−1)).

Let s1 =
1

n
s and s2 =

n− 1

n
s. Since s >

n

2
, we have s1 >

1

2
and s2 >

n− 1

2
. By (4.2)

and (4.4),

||v − Pcv||L2(In) ≤ c(N−s||v||Hs(I;L2(In−1)) +N−s||v||L2(I;Hs(In−1))

+N−s1||(ϑ − P
x̂j
c )v||Hs1 (I;L2(In−1)))

≤ c(N−s||v||Hs(I;L2(In−1)) +N−s||v||L2(I;Hs(In−1))

+N−s||v||Hs1 (I;Hs2 (In−1))).
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Since Hs(In) →֒ Hs(I;L2(In−1)), Hs(In) →֒ L2(I;Hs(In−1)), and Hs(In) →֒ Hs1

(I;Hs2(In−1)), we obtain ||v−Pcv||L2(In) ≤ cN−s||v||Hs(In). We next consider the case

with r = 1. Using (4.1), (4.2), (4.4) and embedding theory, we have that for 1 ≤ j ≤ n,

∥
∥
∥
∂

∂xj
(v − Pcv)

∥
∥
∥

L2(In)
≤

∥
∥
∥
∂

∂xj
(v − P

xj
c v)

∥
∥
∥

L2(I;L2(In−1))

+
∥
∥
∥
∂

∂xj
(P

xj
c · (ϑ − P

x̂j
c )v)||L2(I;L2(In−1))

≤ cN1−s||v||Hs(I;L2(In−1)) + c
∥
∥
∥
∂

∂xj
((ϑ − P

x̂j
c )v)

∥
∥
∥

L2(I;L2(In−1))

≤ cN1−s||v||Hs(I;L2(In−1)) + c||(ϑ − P
x̂j
c )

∂v

∂xj
||L2(I;L2(In−1))

≤ cN1−s||v||Hs(I;L2(In−1)) + cN1−s||v||H1(I;Hs−1(In−1))

≤ cN1−s||v||Hs(In).

Finally, by an argument for the interpolation between the spaces L2(In) and H1(In),

we can obtain the desired result.

Lemma 2. If v ∈ SN , then ||v|| ≤ ||v||N ≤ cN ||v||, cN =
(

2 +
1

N

)n
2 .

Proof. Let

ϕjl
(xl) =

( 2

2jl + 1

)−
1
2Ljl

(xl), ϕj(x) =
n∏

l=1

ϕjl
(xl).

Then

v(x) =
∑

|j|≤N

ajϕj(x), ||v||2 =
∑

|j|≤N

a2
j .

We define the discrete inner product in PN (I l) as

(v,w)
(l)
N =

N∑

k=0

v(x
(kl)
l )w(x

(kl)
l )ω

(kl)
l , ∀v,w ∈ PN (I l).

By the orthogonality of Legendre polynomials,

(ϕjl
, ϕj′

l
)
(l)
N =







0, if jl 6= j′l ,

1, if jl = j′l < N,

2 +
1

N
, if jl = j′l = N.

We have

(ϕj , ϕj′)N =
n∏

l=1

(ϕjl
, ϕj′

l
)
(l)
N

and so

||v||2N =
∑

|j|<N

a2
j +

∑

|j|=N

a2
j

n∏

l=1

(ϕjl
, ϕj′

l
)
(l)
N .
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Since

1 ≤
n∏

l=1

(ϕjl
, ϕj′

l
)
(l)
N ≤

(

2 +
1

N

)n
,

we obtain the desired result.

Lemma 3. For all v ∈ SN ,

||v||L∞ ≤ an
N ||v||, aN =

(1

2
(N + 1)(N + 2)

)1/2

and ||v||Lq ,N ≤ c

2
q
Na

n(q−2)
q

N ||v||, q ≥ 2.

Proof. The first conclusion comes from Lemma 2 of [7]. By Lemma 2, for q ≥ 2,

||v||qLq ,N ≤ ||v||q−2
L∞ ,N ||v||2N ≤ c2N ||v||q−2

L∞ ||v||2 ≤ c2Na
n(q−2)
N ||v||q.

Lemma 4. (Lemma 3 of [7]). For all v ∈ SN ,

|v|1 ≤ qn
1
2N2||v||, q = 1 +

1

2N
≤

3

2
.

Lemma 5. For all v ∈ VN , ||v||qLq ,N ≤ cnq ||v||
q
Lq , where cq is a positive constant

dependent of q.

Proof. Let Ñ be a positive integer and PÑ (I) be the set of all polynomials of degree

≤ Ñ on I. Nevai proved the following result (Theorem 9.25 of [10], also see Section 2

of [11]).

Let µ be a Jacobi weight, 1 ≤ q < ∞. If c∗ > 1 is a fixed number and f are an

arbitrary, not necessarily integrable Jacobi weight, then for any v ∈ Pc∗Ñ (I),

Ñ∑

i=1

|v(ξi)|
qf(ξi)ρi(µ) ≤ cq

∫ 1

−1
|v(y)|qf(y)µ(y)dy, (4.5)

where ξi and ρi are the nodes and the weights of Gauss quadrature with respect to the

weight µ on I = (−1, 1).

We shall use the above inequality and the induction to prove this lemma. Firstly, let

n = 1. As we know, the Legendre polynomial Lk1(x1) satisfies the differential equation

((1 − x2
1)L

′
k1

(x1))
′ + k1(k1 + 1)Lk1(x1) = 0.

Therefore {L′
k1

(x1)} is an orthogonoal system with respect to the weight 1 − x2
1. This

leads to that the interior nodes x
(k1)
1 (0 ≤ k1 ≤ N) of a Gauss-Lobatto quadrature with

N + 1 nodes coincide with the nodes ξk1(1 ≤ k1 ≤ N − 1) of a Gauss quadrature with

N − 1 nodes, i.e., x
(k1)
1 = ξk1, 1 ≤ k1 ≤ N − 1. Besides the weights are linked by the

following equality ω
(k1)
1 = (1 − ξ2k1

)−1ρk1, 1 ≤ k1 ≤ N − 1, where ω
(k1)
1 (0 ≤ k1 ≤ N)

are the Gauss-Lobatto weights and ρk1(1 ≤ k1 ≤ N − 1) are the Gauss weights. Let

f(x1) = (1 − x2
1)

−1 and µ(x1) = 1 − x2
1, we have

||v||qLq ,N =
N∑

k1=0

|v(x
(k1)
1 )|qω

(k1)
1 =

N−1∑

k1=1

|v(x
(k1)
1 )|qω

(k1)
1 =

N−1∑

k1=1

|v(ξk1)|
q(1 − ξ2k1

)−1ρk1(µ).
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Thus by (4.5),

||v||qLq ,N ≤ cq

∫ 1

−1
|v(x1)|

q(1 − x2
1)

−1(1 − x2
1)dx1 = cq

∫ 1

−1
|v(x1)|

qdx1 = cq||v||
q
Lq . (4.6)

Next, assume that the result is true for n− 1. Then we have from (4.6) that

||v||qLq ,N =
∑

x(k)∈ΩN

|v(x(k))|qω(k)

≤
N∑

kn=0

cn−1
q

∫

· · ·

∫

In−1
|v(x1, x2, · · · , xn−1, x

(kn)
n )|qdx1dx2 · · · dxn−1ω

(kn)
n

= cn−1
q

∫

· · ·

∫

In−1

N∑

kn=0

|v(x1, x2, · · · , xn−1, x
(kn)
n )|qω(kn)

n dx1dx2 · · · dxn−1

≤ cnq

∫

· · ·

∫

In
|v(x1, x2, · · · , xn−1, xn)|qdx1dx2 · · · dxn−1dxn = cnq ||v||

q
Lq .

Lemma 6. For all v ∈ H1
0 (Ω), ||v||2 ≤

4

nπ2
|v|21. If v ∈ VN , then

||v||2N ≤
4eN
nπ2

|| ▽ v||2N , eN = 2 +
1

N
.

Proof. The first conclusion is Lemma 9 of [7]. Let Il = (−1, 1). By Lemma 2 and

the first conclusion,

N∑

kl=0

|v(x1, · · · , x
(kl)
l , · · · , xn)|2ωl

(kl) ≤
4

π2

(

2 +
1

N
)

N∑

kl=0

∣
∣
∣
∂v

∂xl
(x1, · · · , x

(kl)
l , · · · , xn)

∣
∣
∣

2
ωl

(kl)

Hence

||v||2N ≤
4

π2

(

2 +
1

N

)∥
∥
∥
∂v

∂xl

∥
∥
∥

2

N

which leads to the second conclusion.

Lemma 7. For all v ∈ C4(0, T ;C(Ω)),

||v̂(t) − v(t)||N ≤ cτ2||v||C2(0,T ;L∞(Ω)),

∥
∥
∥vtt̄(t) −

∂2v

∂t2
(t)

∥
∥
∥

N
≤ cτ2||v||C4(0,T ;L∞(Ω)),

∥
∥
∥vt(t) −

∂v

∂t
(t) −

τ

2

∂2v

∂t2
(t)

∥
∥
∥

N
≤ cτ2||v||C3(0,T ;L∞(Ω)).

Proof. By the mean value theorem, we have

|v̂(t) − v(t)| =
∣
∣
∣
1

2
(v(t+ τ) − v(t)) −

1

2
(v(t) − v(t− τ))

∣
∣
∣

=
∣
∣
∣
τ

2

∂v

∂t
(t0) −

τ

2

∂v

∂t
(t1)

∣
∣
∣ =

τ2

2

∣
∣
∣
∂2v

∂t2
(t2)

∣
∣
∣
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where t ≤ t0 ≤ t+ τ , t − τ ≤ t1 ≤ t and t − τ ≤ t2 ≤ t + τ . Hence ||v̂(t) − v(t)||N ≤

τ2||v||C2(0,T ;L∞(Ω)). We can prove the other conclusions similarly.

Lemma 8. For all v ∈ C1(0, T ;C(Ω)),

||G(Pcv(t)) − ĝ(v(t))||N ≤

{
cτ ||v||α+1

C1(0,T ;L∞(Ω)), for 0 ≤ α < 1,

cτ2||v||α+1
C1(0,T ;L∞(Ω)), for α ≥ 1.

Proof. By Taylor’s expansion,

g(σv(x, t + τ) + (1 − σ)v(x, t− τ)) = g(v(x, t − τ)) + σ(v(x, t + τ) − v(x, t− τ))

·
dg

dz
(θ(σ)v(x, t+ τ) + (1 − θ(σ))v(x, t− τ))

where 0 ≤ θ(σ) ≤ σ. Thus the first mean value theorem leads to

G(v(x, t)) = g(v(x, t − τ)) +
1

2
(v(x, t+ τ) − v(x, t− τ))

·
dg

dz
(θ1v(x, t + τ) + (1 − θ1)v(x, t− τ)), 0 ≤ θ1 ≤ 1.

Similarly,

G(v(x, t)) = g(v(x, t + τ)) −
1

2
(v(x, t+ τ) − v(x, t− τ))

·
dg

dz
(θ2v(x, t + τ) + (1 − θ2)v(x, t− τ)), 0 ≤ θ2 ≤ 1.

Moreover, we have
dg

dz
(z) = (α+ 1)|z|α

and

|v(x, t+ τ) − v(x, t− τ)| ≤ 2τ
∣
∣
∣
∂v

∂t
(x, t0)

∣
∣
∣ t− τ ≤ t0 ≤ t+ τ. (4.7)

Also we know that G(Pcv(x, t)) = G(v(x, t)) for all x ∈ ΩN . Therefore

||G(Pcv(t)) − ĝ(v(t))||N ≤ cτ ||v||αC(0,T ;L∞(Ω))

∥
∥
∥
∂v

∂t

∥
∥
∥

C(0,T ;L∞(Ω))
≤ cτ ||v||α+1

C1(0,T ;L∞(Ω)).

If α ≥ 1, then by the expression of remainder term of trapezoidal quadrature, we have

|G(v(t))− ĝ(v(t))| =
1

12

∣
∣
∣
d2g

dz2
(θ3v(x, t+ τ)+ (1− θ3)v(t− τ))| · |v(x, t+ τ)− v(x, t− τ)|2

where 0 ≤ θ3 ≤ 1. Moreover,

d2g

dz2
(z) = α(α+ 1)|z|α−2z

which together with (4.7), yields the desired conclusion for α ≥ 1.
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Lemma 9. For all v,w ∈ C(0, T ;VN ), G(v(x, t) + w(x, t)) = G(v(x, t)) + R(x, t),

with

||R(t)||2N ≤ c(||v||2α
C(0,T ;H1(Ω)) + ||w||2α

C(0,T ;H1(Ω)))(||w(t + τ)||21 + ||w(t− τ)||21).

Proof. Let

V (σ) = σv(x, t+ τ) + (1 − σ)v(x, t − τ),

W (σ) = σw(x, t+ τ) + (1 − σ)w(x, t− τ).

Then by Taylor’s expansion and that (see [12])

(a1 + a2)
α ≤ c(aα

1 + aα
2 ), ∀a1, a2 ≥ 0,

we have

|R(x, t)| ≤

∫ 1

0
|g(V (σ) +W (σ)) − g(V (σ))|dσ

= (α+ 1)

∫ 1

0
|V (σ) + θ(σ)W (σ)|α|W (σ)|dσ

≤ c(|v(x, t + τ)|α + |v(x, t− τ)|α + |w(x, t + τ)|α + |w(x, t− τ)|α)

· (|w(x, t + τ)| + |w(x, t − τ)|)

where 0 ≤ θ(σ) ≤ 1. Taking β = max
(3

2
,
n

2
,

1

2α

)

, we have from Hölder inequality that

||R(x, t)||2N ≤ c(||v(x, t + τ)||2α
L2αβ ,N + ||v(x, t− τ)||2α

L2αβ ,N

+ ||w(x, t+ τ)||2α
L2αβ ,N + ||w(x, t − τ)||2α

L2αβ ,N )

· (||w(x, t + τ)||2

L

2β
β−1 ,N

+ ||w(x, t − τ)||2

L

2β
β−1 ,N

)

Since H1(Ω) →֒ L2αβ(Ω) and H1(Ω) →֒ L
2β

β−1 (Ω), we complete the proof by Lemma 5.

We now consider a special case, i.e.,







1 ≤ α ≤ 2, for n = 1,

1 ≤ α < 2, for n = 2,

α = 1, for n = 3.

(4.8)

In this case, we can improve the result of the previous lemma.

Lemma 10. If α satisfies (4.8), then for all v,w ∈ C(0, T ;VN ), we have

G(v(x, t) + w(x, t)) = G(v(x, t)) +G(w(x, t)) +R(x, t)

with

||R(t)||2N ≤ d(v)(||w(t + τ)||21 + ||w(t− τ)||21 + ||w(t+ τ)||pLp,N + ||w(t− τ)||pLp,N )
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where d(v) is a positive constant depending on α and ||v||C(0,T ;H1(Ω)).

Proof. Let V (σ) and W (σ) be the same as in the proof of lemma 8. Then by

Taylor’s expansion

|V (σ) +W (σ)|α = |V (σ)|α + α|V (σ) + θ1W (σ)|α−2(V (σ) + θ1W (σ))W (σ),

|V (σ) +W (σ)|α = |W (σ)|α + α|W (σ) + θ2V (σ)|α−2(W (σ) + θ2V (σ))V (σ)

where 0 ≤ θ1, θ2 ≤ 1. Hence g(V (σ) +W (σ)) = g(V (σ)) + g(W (σ)) +R(σ), where

|R(σ)| ≤c(|v(x, t + τ)|α + |v(x, t− τ)|α)(|w(x, t + τ)| + |w(x, t− τ)|)

+ c(|w(x, t + τ)|α + |w(x, t − τ)|α)(|v(x, t + τ)| + |v(x, t − τ)|).

By taking β = max
(3

2
,
n

2
,

1

2α

)

, we have from Hölder inequality and Lemma 5 that

|| |v(t+ τ)|αw(t+ τ)||2N ≤ ||v(t+ τ)||2α
L2αβ ,N ||w(t+ τ)||2

L

2β
β−1 ,N

≤ ||v(t+ τ)||2α
1 ||w(t+ τ)||21.

We can estimate the term || |v(t+ τ)|αw(t− τ)||N similarly, etc. Next we consider the

norm || |w(t + τ)|αv(t + τ)||N . If n = 1 or n = 2, then H1(Ω) →֒ L
2(α+2)
2−α (Ω). Thus

Hölder inequality and Lemma 5 lead to

|| |w(t+ τ)|αv(t+ τ)||2N ≤ ||v(t+ τ)||2

L

2(α+2)
2−α ,N

||w(t+ τ)||2α
Lα+2,N

≤ ||v(t+ τ)||21||w(t+ τ)||2α
Lp,N .

Note that (see [12]) for q, q′ ≥ 1 satisfying
1

q
+

1

q′
= 1,

a1a2 ≤
a

q
1

q
+
a

q′

2

q′
, ∀a1, a2 ≥ 0. (4.9)

Hence we obtain from Lemma 5 that

||w(t+ τ)||2α
Lp,N ≤

2 − α

α
||w(t + τ)||2Lp,N +

2(α− 1)

α
||w(t+ τ)||pLp,N

≤ c(||w(t + τ)||21 + ||w(t+ τ)||pLp,N )

which leads to the conclusion for n = 1, 2 and 1 ≤ α < 2. If n = 1 and α = 2, we can

prove the conclusion directly. We can also obtain the same result for n = 3 and α = 1.

Lemma 11. (Lemma 4.16 of [13]). Assume that

(i) Q(t) and ρ(t) are non-negative functions defined on Sτ , and ρ(t) is non-decreasing

in t;

(ii) M is a non-negative constant;

(iii) Q(0) ≤ ρ(0) and for t ∈ Sτ ,

Q(t) ≤ ρ(t) +M
∑

t′≤t−τ

Q(t′).
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Then for all t ∈ Sτ ,

Q(t) ≤ ρ(t)eMt.

5. The Analysis of Generalized Stability

Firstly we derive a priori estimation for the approximate solution of (2.7). Assume

τN2 = r < ∞. By the conservation (2.8), we need only to bound the initial values

E∗(u, τ) and 2τ
∑

t′∈Sτ ,t′≤t−τ

(f̂(t′), ut̂(t
′))N . By Lemma 2 and Lemma 4, we have

||u(τ)||2N ≤ 2c2N ||u0||
2 + 2c2N τ

2||u1||
2, || ▽ u(τ)||2N ≤ 2c2N |u0|

2
1 +

9

2
c2Nnr

2||u1||
2. (5.1)

It is not difficult to show that

∣
∣
∣2τ

∑

t′∈Sτ
t′≤t−τ

(f̂(t′), ut̂(t
′))N

∣
∣
∣ ≤ τ ||ut̄(t)||

2
N + 2τ

∑

t′∈Sτ
t′≤t−τ

(||ut̄(t
′)||2N + ||f̂(t′)||2N ) (5.2)

and
1

p
||u(τ)||pLp ,N ≤

2p−1

p
(||u0||

p
Lp,N + τp||u1||

p
Lp,N ). (5.3)

Then we have from (2.8) that

(1 − τ)||ut̄(t)||
2
N +

1

2
(|| ▽ u(t)||2N + || ▽ u(t− τ)||2N ) +

b

2
(||u(t)||2N + ||u(t− τ)||2N )

+
1

p
(||u(t)||pLp ,N + ||u(t− τ)||pLp,N ) (5.4)

≤c(||u0||
2
1 + ||u0||

p
Lp,N + ||u1||

2 + τp||u1||
p
Lp,N )

+ 2τ
∑

t′∈Sτ
t′≤t−τ

(||ut̄(t
′)||2N + ||f̂(t′)||2N ).

On the other hand,

(u(t))2 =
(

u0 + τ
∑

t′∈Sτ
t′≤t

ut̄(t
′))2 ≤ 2u2

0 + 2tτ
∑

t′∈Sτ
t′≤t

u2
t̄ (t

′)

which implies

||u(t)||2N ≤ 2||u0||
2
N + 2tτ

∑

t′∈Sτ
t′≤t

||ut̄(t
′)||2N .

Hence

∣
∣
∣
b

2
(||u(t)||2N + ||u(t− τ)||2N )

∣
∣
∣ ≤ |b|tτ ||ut̄(t)||

2
N + 2|b|(||u0||

2
N + tτ

∑

t′∈Sτ
t′≤t−τ

||ut̄(t
′)||2N ). (5.5)
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Let b0 > 0 and

ϕ(b) =







0, for b > −
nπ2

8eN
,

|b| −
nπ2

4eN

(1

2
− b0), for b ≤ −

nπ2

8eN
,

ψ(b) =







1

2
, for b ≥ 0,

1

2
−

4eN |b|

nπ2
, for −

nπ2

8eN
< b < 0,

b0, otherwise,

χ(b) =







b

2
, for b ≥ 0,

0, otherwise.

By Lemma 2, Lemma 6 and the above functions, we have from (5.4) that

(1 − τ − τtϕ(b))||ut̄(t)||
2
N + ψ(b)(|| ▽ u(t)||2N + || ▽ u(t− τ)||2N )

+ χ(b)(||u(t)||2N + ||u(t− τ)||2N ) +
1

p
(||u(t)||pLp ,N + ||u(t− τ)||pLp,N )

≤ρ(u0, u1, f) + 2τ(1 + tϕ(b))
∑

t′∈Sτ
t′≤t−τ

||ut̄(t
′)||2N (5.6)

where

ρ(u0, u1, f) = c(||u0||
2
1 + ||u0||

p
Lp,N + ||u1||

2 + τp||u1||
p
Lp,N ) + cτ

∑

t′∈Sτ
t′≤t

||f(t′)||2N .

Let τ be sufficiently small and define

E∗∗(u, t) = ||ut̄(t)||
2
N + || ▽ u(t)||2N + ||u(t)||pLp,N .

By applying Lemma 11 to (5.6), we get

E∗∗(u, t) ≤ cρ(u0, u1, f)ect. (5.7)

Remark 1. Indeed we have from (1.2) and Lemma 5 that ||u0||
p
Lp,N ≤ c||u0||

2
1.

Also by Lemma 3 and τ = O
( 1

N2

)

, τp||u1||
p
Lp,N ≤ cτpNn(p−2)||u1||

p ≤ c||u1||
p. Hence

ρ(u0, u1, f) only depends on ||u0||1, ||u1|| and
∑

t′∈Sτ ,t′≤t

||f(t′)||2N . On the other hand, if

b ≥ 0, then we do not use (5.1). Also τp||u1||
p
Lp,N ≤ c||u1||

p when τ = O(N
2n−np

p ).

Now we consider the generalized stability of (2.7). Suppose that u0, u1 and Pcf

have the errors ũ0, ũ1 and f̃ respectively which induce the error of u denoted by ũ.

Then they satisfy the following error equation






(ũtt̄(t) + bˆ̃u(t) + G̃(u(t)), v)N + (▽ˆ̃u(t),▽v)N = (
ˆ̃
f(t), v)N , ∀v ∈ VN ,

ũt(0) = ũ1,

ũ(0) = ũ0

(5.8)
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where G̃(x, t) = G(u(x, t)+ ũ(x, t))−G(u(x, t)). By taking v = 2ũt̂ in the first formula

of (5.8), we have from (2.1) and (2.2) that

(||ũt̄(t)||
2
N )t + (|| ▽ ũ(t)||2N )t̂ + b(||ũ(t)||2N )t̂ + 2(G̃(t), ũt̂(t))N = 2(

ˆ̃
f(t), ũt̂(t))N . (5.9)

Let d(u) and d(ũ) be two positive constants depending only on ||u||C(0,T ;H1(Ω)) and

||ũ||C(0,T ;H1(Ω)) respectively. Then we get from Lemma 2 and Lemma 9 that

|2(G̃(t), ũt̂(t))N | ≤ ||ũt(t)||
2
N + ||ũt̄(t)||

2
N + (d(u) + d(ũ))(||ũ(t+ τ)||21 + ||ũ(t− τ)||21)

≤ ||ũt(t)||
2
N + ||ũt̄(t)||

2
N + (d(u) + d(ũ))(|| ▽ ũ(t+ τ)||2N + || ▽ ũ(t− τ)||2N ).

By an argument similar to the derivation of (5.6), we obtain

(1 − 2τ − 2τtϕ(b))||ũt̄(t)||
2
N + (ψ(b) − τd(u) − τd(ũ))(|| ▽ ũ(t)||2N + || ▽ u(t− τ)||2N )

+ χ(b)(||ũ(t)||2N + ||ũ(t− τ)||2N )

≤ρ̃1(ũ0, ũ1, f̃) + τ(2 + 2tϕ(b) + d(u) + d(ũ))
∑

t′∈Sτ
t′≤t−τ

(||ũt̄(t
′)||2N + || ▽ ũ(t)||2N )

(5.10)

where

ρ̃1(ũ0, ũ1, f̃) = (c+ τd(u0) + τd(ũ0))(||ũ0||
2
1 + ||ũ1||

2) + cτ
∑

t′∈Sτ
t′≤t

||f̃(t′)||2N .

On the other hand, by a priori estimation (5.7), we have ||u||C(0,T :H1(Ω)) ≤ cρ(u0, u1, f)ecT .

Similarly ||u+ ũ||C(0,T :H1(Ω)) ≤ cρ(u0 + ũ0, u1 + ũ1, f + f̃)ecT . Thus if ρ̃1 ≤M0 for cer-

tain M0 > 0, then we conclude that ρ(u0 + ũ0, u1 + ũ1, f + f̃), and furthermore d(ũ)

are bounded above by a positive constant depending only on ρ(u0, u1, f) and M0. Con-

sequently if τ is sufficiently small, then (5.10) implies that

||ũt̄(t)||
2
N + || ▽ ũ(t)||2N ≤M1ρ1(ũ0, ũ1, f̃)eM2t.

Theorem 1. Let (1.2) hold, τN2 < r for b < 0 and τ = O(N
2n−np

p ) for b ≥ 0. If

ρ̃1(ũ0, ũ1, f̃) ≤ M0, then for suitably large N and all t ∈ Sτ , ||ũt̄(t)||
2
N + || ▽ ũ(t)||2N ≤

M1ρ̃1(ũ0, ũ1, f̃)eM2t, M1 and M2 being positive constants depending only on ||u0||1,

||u1||, ||f ||C(0,T ;L2(Ω)) and M0.

Remark 2. Theorem 1 shows that scheme (2.7) is not stable in the sense of Lax

(see [14]). But if the errors of data are bounded, then the error of numerical solution

is still controlled by the errors of data. Indeed, it means that (2.7) is of generalized

stability with the index s ≤ 0 (see[15]).

Next we consider the case with (4.8). We have from Lemma 10 that G̃(x, t) =

G(ũ(x, t)) + R̃(x, t), with

||R̃(t)||2N ≤ d(u)(||ũ(t+ τ)||21 + ||ũ(t− τ)||21 + ||ũ(t+ τ)||pLp,N + ||ũ(t− τ)||pLp,N )

≤ d(u)(|| ▽ ũ(t+ τ)||2N + || ▽ ũ(t− τ)||2N + ||ũ(t+ τ)||pLp,N + ||ũ(t− τ)||pLp,N ).
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By taking the inner product with 2ũt̂(t) in the first equation of (5.8). We get

(||ũt̄(t)||
2
N )t + (|| ▽ ũ(t)||2N )t̂ + b(||ũ(t)||2N )t̂ +

2

p
(||ũ(t)||pLp,N )t̂ + 2(R̃(t), ũt̂(t))N

=2(
ˆ̃
f(t), ũt̂(t))N . (5.11)

Besides, (5.3) implies

1

p
||ũ(τ)||pLp,N ≤

2p−1

p
(||ũ0||

p
Lp,N + τp||ũ1||

p
Lp,N ).

By an argument similar to the derivation of (5.6), we obtain that

(1 − 2τtϕ(b))||ũt̄(t)||
2
N + (ψ(b) − τd(u))|| ▽ ũ(t)||2N

+ χ(b)||ũ(t)||2N +
(1

p
− τd(u)

)

||ũ(t)||pLp,N

≤ρ̃2(ũ0, ũ1, f̃) + τ(c+ d(u))
∑

t′∈Sτ
t′≤t−τ

(||ũt̄(t
′)||2N + || ▽ ũ(t′)||2N + ||ũ(t′)||pLp,N )

(5.12)

where

ρ̃2(ũ0, ũ1, f̃) =(c+ τd(u0))(||ũ0||
2
1 + ||ũ1||

2) +
(1

p
+

2p−1

p
+ τd(u0)

)

||ũ0||
p
Lp,N

+
2p−1

p
τp||ũ1||

p
Lp,N + 2τ

∑

t′∈Sτ
t′≤t

||f̃(t′)||2N .

If N is suitably large, then we can verify the boundedness of d(u) as before. Thus by

applying Lemma 11 to (5.12), we get

||ũt̄(t)||
2
N + || ▽ ũ(t)||2N + ||ũ(t)||pLp,N ≤M3ρ2(ũ0, ũ1, f̃)eM4t.

Theorem 2. Let τN2 < r and (4.8) hold, Then for suitably large N and all t ∈ Sτ ,

||ũt̄(t)||
2
N + || ▽ ũ(t)||2N + ||ũ(t)||pLp,N ≤M3ρ̃2(ũ0, ũ1, f̃)eM4t

where M3 and M4 are positive constants depending only on b, α and ||u||C(0,T ;H1(Ω)).

Remark 3. If the conditions of Theorem 2 are fulfilled, then scheme (2.7) is of

generalized stability with the index s = −∞ (see [15]). It means that there is no

restriction on the errors of data and so (2.7) is stabler.

6. The Convergence

Setting w = PcU , we get from (1.1) that






(wtt̄(t) + bŵ(t) +G(w(t)), v)N + (▽ŵ(t),▽v)N

= (f̂(t) +
3∑

i=1

fi(t), v)N , ∀v ∈ VN , t ∈ Sτ ,

wt(0) = PcU1 +
τ

2
Pc(△U0 − bU0 − g(U0) + f(0)) + f4,

w(0) = PcU0

(6.1)
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where 





f1(t) = wtt̄(t) −
∂2ŵ

∂t2
(t),

f2(t) = Pc[G(w(t)) − ĝ(U(t))],

f3(t) = Pc △ Û(t) −△PcÛ(t),

f4 = wt(0) −
∂w

∂t
(0) −

τ

2

∂2w

∂t2
(0).

Setting Ũ = u−w, we get from (2.7) and (6.1) that






(Ũtt̄(t) + b
ˆ̃
U(t) +G(w(t) + Ũ(t)) −G(w(t)), v)N + (▽ ˆ̃

U(t),▽v)N

= −
( 3∑

i=1

fi(t), v)N , ∀v ∈ VN , t ∈ Sτ ,

Ũt(0) = −f4,

Ũ(0) = 0.

(6.2)

By taking v = 2Ũt̂ in the first formula of (6.2), we have from (2.1) and (2.2) that

(||Ũt̄(t)||
2
N )t + (|| ▽ Ũ(t)||2N + b||Ũ (t)||2N )t̂

+ 2(G(w(t) + Ũ(t)) −G(w(t)), Ũt̂(t))N = −2
3∑

i=1

(fi(t), Ũt̂(t))N .

Evidently we can get the results similar to Theorem 1 and Theorem 2. But ||ũt̄(t)||N ,

|| ▽ ũ(t)||N and ||ũ(t)||pLp,N are replaced by ||Ũt̄(t)||N , || ▽ Ũ(t)||N and ||Ũ(t)||pLp,N

respectively, while ρ̃1(ũ0, ũ1, f̃) and ρ̃2(ũ0, ũ1, f̃) become

ρ∗1(t) = (c+ τd(w(0)))||Ũt(0)||
2 + cτ

3∑

i=1

∑

t′∈Sτ
t′≤t−τ

||fi(t
′)||2N , (6.3)

and

ρ∗2(t) = (c+ τd(w(0)))||Ũt(0)||
2 +

2p−1

p
τp||Ũt(0)||

p
Lp ,N + cτ

3∑

i=1

∑

t′∈Sτ
t′≤t−τ

||fi(t
′)||2N . (6.4)

For the convergence, we have to estimate ρ∗1(t) and ρ∗2(t). We have from Lemma 7 that

||f1(t)||
2
N ≤ cτ4||U ||2C4(0,T ;L∞(Ω)).

By Lemma 8, we know that if U ∈ C1(0, T ;C(Ω)), then

||f2(t)||
2
N ≤ cτβ(α)||U ||2α+2

C1(0,T ;L∞(Ω))

where β(α) = 4 for α ≥ 1 and β(α) = 2 for 0 ≤ α ≤ 1. On the other hand, the inverse

inequality, Lemma 1 and Lemma 2 lead to that for s >
n

2
+

1

2

||f3(t)||
2
N = ||Pc △ Û(t) −△PcÛ(t)||2N ≤ c||Pc △ Û(t) −△PcÛ(t)||2
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≤ c||Pc △ Û(t) −△Û(t)||2 + c|| △ Û(t) −△PcÛ(t)||2

≤ cN−2s|| △ Û(t)||s + cN4|| ▽ Û(t) −▽PcÛ(t)||2

≤ cN−2s||Û (t)||2s+2 + cN−2s||Û (t)||2s+3 ≤ cN−2s||U ||2C(0,T ;Hs+3(Ω)).

We obtain from Lemma 7 that

||Ũt(0)||
2 ≤ ||Ũt(0)||

2
N = ||f4(t)||

2
N ≤ cτ4||U ||2C3(0,T ;L∞(Ω)).

So we can get the following result.

Theorem 3. Let the conditions of Theorem 1 hold. We conclude that if s >
n

2
+

1

2
and U ∈ C(0, T ;H1

0 (Ω) ∩Hs+3(Ω)) ∩ C4(0, T ;C(Ω)), then for all t ∈ Sτ ,

||Ũt̄(t)||
2
N + || ▽ Ũ(t)||2N ≤M∗

1 (τβ(α) +N−2s)

where M∗
1 is a positive constant depending only on the norms ||U ||C(0,T ;Hs+3(Ω)) and

||U ||C4(0,T ;L∞(Ω)).

We now consider the special case with (4.8). In this case, by Lemma 3 and Lemma

7, τp||Ũt(0)||
p
Lp ,N ≤ cτpNn(p−2)||Ũt(0)||

p ≤ cτ3pNn(p−2)||U ||pC3(0,T ;L∞(Ω)).

Theorem 4. Let the conditions of Theorem 2 hold. We conclude that if s >
n

2
+

1

2
and U ∈ C(0, T ;H1

0 (Ω) ∩Hs+3(Ω)) ∩ C4(0, T ;C(Ω)), then for all t ∈ Sτ ,

||Ũt̄(t)||
2
N + || ▽ Ũ(t)||2N + ||Ũ(t)||pLp,N ≤M∗

2 (τ4 + τ3pNnα +N−2s)

where M∗
2 is a positive constant depending only on the norms ||U ||C(0,T ;Hs+3(Ω)) and

||U ||C4(0,T ;L∞(Ω)).

If we analyze the generalized stability and the convergence with the negative norm,

then we can get better results. The negative norm || · ||−1 is defined as

||v||−1 = sup
ϕ∈H1

0 (Ω)

|(v, ϕ)N |

|| ▽ ϕ||N
.

We also note that (9.7.15 of [16]) for any v ∈ H1
0 (Ω) and s ≥ 2, there exists vN ∈ VN

with the same boundary behavior as v, such that

||v − vN ||r ≤ cN r−s||v||s, 0 ≤ r ≤ 2. (6.5)

We can use the above techniques to improve the results. In these cases, the right terms

f1(t), f2(t) and f3(t) in (6.1) are replaced by F1(t), F2(t) and F3(t)+ F̃3(t) respectively,

where F1(t) = f1(t), F2(t) = f2(t), F3(t) = Pc △ Û(t)−△ÛN (t) and F̃3(t) = △ÛN (t)−

△PcÛ(t) . And so

(F1(t) +F2(t) +F3(t) + F̃3(t), v)N = (F1(t) +F2(t) +F3(t), v)N + (F̃3(t), v)N ,∀v ∈ VN .

We also note that (Lemma 1.5 of [17])

2τ
∑

t′∈Sτ
t′≤t−τ

(v(t′), ut̂(t
′))N = (v(t− τ), u(t))N + (v(t− 2τ), u(t− τ))N − (v(2τ), u(τ))N
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− (v(τ), u(0))N − 2τ
∑

t′∈S′
τ

t′≤t−2τ

(vt̂(t
′), u(t′))N ,

where S′
τ = Sτ\{τ}. Hence we have

2τ
∑

t′∈Sτ
t′≤t−τ

(F̃3(t
′), ut̂(t

′))N = (F̃3(t− τ), u(t))N + (F̃3(t− 2τ), u(t − τ))N − (F̃3(2τ), u(τ))N

− (F̃3(τ), u(0))N − 2τ
∑

t′∈S′
τ

t′≤t−2τ

(F̃3t̂(t
′), u(t′))N .

Evidently we can get the results similar to Theorem 3 and Theorem 4, but ρ∗1(t) and

ρ∗2(t) become

ρ̃∗1(t) = (c+ τd(w(0)))||Ũt(0)||
2 + cτ

3∑

i=1

∑

t′∈Sτ
t′≤t−τ

||Fi(t
′)||2N + ||F̃3(t− τ)||2−1

+ ||F̃3(t− 2τ)||2−1 + ||F̃3(2τ)||
2
−1 + ||F̃3(τ)||

2
−1 +

∑

t′∈S′
τ

t′≤t−2τ

||F̃3t̂(t
′)||2−1,

(6.6)

and

ρ̃∗2(t) = (c+ τd(w(0)))||Ũt(0)||
2 +

2p−1

p
τp||Ũt(0)||

p
Lp ,N + cτ

3∑

i=1

∑

t′∈Sτ
t′≤t−τ

||Fi(t
′)||2N

+ ||F̃3(t− τ)||2−1 + ||F̃3(t− 2τ)||2−1 + ||F̃3(2τ)||
2
−1 + ||F̃3(τ)||

2
−1

+
∑

t′∈S′
τ

t′≤t−2τ

||F̃3t̂(t
′)||2−1. (6.7)

If U ∈ C(0, T ;H1
0 (Ω) ∩Hs+2(Ω)), then Lemma 1 and the inequality (6.5) lead to that

for s > max
(n

2
, 2

)

,

||F3(t)||
2
N = ||Pc △ Û(t) −△ÛN (t)||2N ≤ c||Pc △ Û(t) −△ÛN (t)||2

≤ c||Pc △ Û(t) −△Û(t)||2 + c|| △ Û(t) −△ÛN (t)||2

≤ cN−2s|| △ Û(t)||s + cN−2s||Û (t)||2s+2 ≤ cN−2s||Û (t)||2s+2

≤ cN−2s||U ||2C(0,T ;Hs+2(Ω)).

If U ∈ C(0, T ;H1
0 (Ω) ∩ Hs+1(Ω)), then Lemma 1 and (6.5) lead to that for s >

max
(n

2
+

1

2
, 2

)

,

|(F̃3(t
′), v)N | = |(▽(ÛN (t′) − PcÛ(t′)),▽v)N | ≤ c||ÛN (t′) − PcÛ(t′)||1|| ▽ v||N

≤ c(||ÛN (t′) − Û(t′)||1 + ||Û(t′) − PcÛ(t′)||1)|| ▽ v||N

≤ c(N−s||Û(t′)||s+1 +N−s||Û (t′)||s+1)|| ▽ v||N
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≤ cN−s||U ||C(0,T ;Hs+1(Ω))|| ▽ v||N

where t′ = t− τ, t− 2τ, 2τ and τ . Hence, ||F̃3(t
′)||−1 ≤ cN−s||U ||C(0,T ;Hs+1(Ω)).

If U ∈ C1(0, T ;H1
0 (Ω) ∩ Hs+1(Ω)), then Lemma 1 and (6.5) lead to that for s >

max
(n

2
+

1

2
, 2

)

,

|(F̃3t̂(t
′), v)N | = |(▽(ÛN

t̂
(t′) − PcÛt̂(t

′)),▽v)N | ≤ c||Ût̂(t
′) − PcÛt̂(t

′)||1|| ▽ v||N

≤ c(||ÛN
t̂

(t′) − Ût̂(t
′)||1 + ||Ût̂(t

′) − PcÛt̂(t
′)||1)|| ▽ v||N

≤ c(N−s||Ût̂(t
′)||s+1 +N−s||Ût̂(t

′)||s+1)|| ▽ v||N

≤ cN−s||U ||C1(0,T ;Hs+1(Ω))|| ▽ v||N

where t′ ∈ S′
τ and t′ ≤ t − 2τ . Finally, we get ||F̃3t̂(t

′)||−1 ≤ cN−s||U ||C1(0,T ;Hs+1(Ω)).

So we obtain the following results.

Theorem 5. Let the conditions of Theorem 1 hold. We conclude that if s >

max
(n

2
+

1

2
, 2

)

and U ∈ C(0, T ;H1
0 (Ω) ∩ Hs+2(Ω)) ∩ C1(0, T ;H1

0 (Ω) ∩ Hs+1(Ω)) ∩

C4(0, T ;C(Ω)), then for all t ∈ Sτ ,

||Ũt̄(t)||
2
N + || ▽ Ũ(t)||2N ≤M∗

1 (τβ(α) +N−2s)

where M∗
1 is a positive constant depending only on the norms ||U ||C(0,T ;Hs+2(Ω)),

||U ||C1(0,T ;Hs+1(Ω)) and ||U ||C4(0,T ;L∞(Ω)).

Theorem 6. Let the conditions of Theorem 2 hold. We conclude that if s >

max
(n

2
+

1

2
, 2

)

and U ∈ C(0, T ;H1
0 (Ω) ∩ Hs+2(Ω)) ∩ C1(0, T ;H1

0 (Ω) ∩ Hs+1(Ω)) ∩

C4(0, T ;C(Ω)), then for all t ∈ Sτ ,

||Ũt̄(t)||
2
N + || ▽ Ũ(t)||2N + ||Ũ(t)||pLp,N ≤M∗

2 (τ4 + τ3pNnα +N−2s)

where M∗
2 is a positive constant depending only on the norms ||U ||C(0,T ;Hs+2(Ω)),

||U ||C1(0,T ;Hs+1(Ω)) and ||U ||C4(0,T ;L∞(Ω)).

Remark 4. The above estimations for the convergence rate are not optimal. This

is caused by our comparison between u(t) and PcU(t) in the proof, which generates the

terms Pc(△U(t)) − △(PcU(t)), and so decreases the convergence rate. However, if α

is an integer, then we can compare u(t) with P̃ 1
NU(t), the H1-orthogonal projection of

U(t) onto VN , instead. Indeed, let P 1
N : H1

0 (Ω) 7−→ VN be the orthogonal projection,

i.e., for any v ∈ H1
0 (Ω), (▽(P 1

Nv − v),▽ϕ) = 0, ∀ϕ ∈ VN . Furthermore for any

v ∈ H1
0 (Ω), we define (▽P̃ 1

Nv,▽ϕ)N = (▽v,▽ϕ), ∀ϕ ∈ VN . Then for any v ∈ H1
0 (Ω),

we have (▽P̃ 1
Nv,▽ϕ)N = (▽v,▽ϕ) = (▽P 1

Nv,▽ϕ), ∀ϕ ∈ VN . Moreover for v ∈ Hs(Ω)

and s ≥ 1,

||v − P̃ 1
Nv||r ≤ cN r−s||v||s, 0 ≤ r ≤ 1. (6.8)

By such technique, we can weaken the conditions in Theorem 3 - Theorem 6 and then

the optimal error estimations follow.
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