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Abstract

When parametric functions are used to blend 3D surfaces, geometric continuity
of displacements and derivatives until to the surface boundary must be satisfied. By
the traditional blending techniques, however, arbitrariness of the solutions arises
to cause a difficulty in choosing a suitable blending surface. Hence to explore new
blending techniques is necessary to construct good surfaces so as to satisfy engi-
neering requirements. In this paper, a blending surface is described as a flexibly
elastic plate both in partial differential equations and in their variational equations,
thus to lead to a unique solution in a sense of the minimal global surface curvature.
Boundary penalty finite element methods (BP-FEMs) with and without approx-
imate integration are proposed to handle the complicated constraints along the
blending boundary. Not only have the optimal convergence rate O(h2) of second
order generalized derivatives of the solutions in the solution domain been obtained,
but also the high convergence rate O(h4) of the tangent boundary condition of the
solutions can be achieved, where h is the maximal boundary length of rectangular
elements used. Moreover, useful guidance in computation is discovered to deal with
interpolation and approximation in the boundary penalty integrals. A numerical
example is also provided to verify perfectly the main theoretical analysis made.
This paper yields a framework of mathematical modelling, numerical techniques
and error analysis to the general and complicated blending problems.

Key words: Blending surfaces, parametric surfaces, plate, mathematical modelling,
variational equations, finite element methods, boundary penalty method, computer
geometric aided design

1. Introduction

Blending surfaces is said if when two frame surfaces (or bodies) are located already, a
smoothly transferring surface is sought to connect the two frame surfaces along certain
boundary. Usually, the terminology “smoothness” means that the blending surface
belongs to geometric continuity C1 (Foley et al. (90) [14), i.e., the blending surface and
its tangent plane are continuous until the joint boundary. Many literatures are reported
on this subject. We merely mention a few of them relevant to this paper. Uniform
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algebraic polynomials of low order have been discussed in Hoffmann and Hopcroft(92),
and Ohkura and Kakazu(92), to blend simple frames, such as those with quadratic and
cubic surfaces. Piecewise spline functions can also be used to obtain rather complicated
blending surfaces (see Kosters(89), Bajaj and Ihn(92)). This paper is, however, devoted
to find efficient approaches to construct good surfaces to blend general, complicated
frame-surfaces (or frame-bodies), which may be used in airplane, ships, grand buildings,
and astronautic shuttle-station. The existing blending techniques become awkward in
handling arbitrary joining locations and boundary conditions. To manages complicated
blending, we solicit partial differential equations (PDEs) of order four describing elastic
plates, and seek additional conditions of unique solutions. Note that techniques using
PDEs are given in Bloor and Wilson(90,91) but still to deal with simple cases.

A plate in algebraic functions, e.g., z = f(x, y) may serve well as a blending sur-
face, applicable to simple surface modelling. However, parametric functions are more
advantageous to represent general and complicated 3D surfaces. When the blending
surfaces are connected to the frame boundary satisfying the displacement and tangent
conditions, there occur multiple parametric surfaces, unfortunately. A simple case in
2D blending curves is illustrated in Foly et. al (90, p.486) [14]. There arises a question
how to choose a suitable, unique blending surface. This is important to computer aided
design. As far as our current knowledge (referring to Choi(91), Farin(90), Fisher(94),
Koenderink(90), Nutbourne and Martin(89), Su and Liu(89), Warren(89), as well as the
recent fourth SIAM Conference on Geometric Design, Nashville, Tennessee, Nov., 6-9,
1995, it seems to exist no literatures to address this problem. This paper is, therefore,
intended to study such a challenging topic.

The organism of this paper is as follows. In the next section, mathematical mod-
elling of blending surfaces is given with PDEs and their variational forms, thus to yield
unique solutions. In Section 3, three kinds of boundary penalty finite element methods
(BP-FEMs) are presented, to simplify the algorithms involving the complicated bound-
ary conditions. Error analysis is then made in Section 4, accompanied with comparison;
a simple numerical example is given in Section 5 to verify the optimal convergence rates.

2. Mathematical Modelling of Blending Surfaces

Consider that a surface is sought to join two given frame bodies V1 and V2 at the left
boundary ∂V1 and the right boundary ∂V2. Suppose that ∂V1 and ∂V2 are disjointed to
each other (see Fig.1). Since the algebraic function y = f(x, y) is difficult to represent
the closed surface shown in Fig.1, we solicit parametric functions instead. Choose two
parameters r and t in a unit solution area Ω{(r, t), 0 < r < 1, 0 < t < 1}, and use
three parametric functions

x = x(r, t), y = y(r, t), z = z(r, t), (r, t) ∈ Ω (2.1)

to represent the blending surface in Fig.1. Naturally, we denote the left boundary
∂Ω|r=0, and the right boundary ∂Ω|r=1, to represent ∂V1 and ∂V2, respectively. Denote
the boundary of Ω as (see Fig.2) by ∂Ω = Γ1∪Γ2, where Γ1 = AB∪CD, Γ2 = AC∪BD,
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and the vector of three parametric functions

U = U(r, t) = (x, y, z)T = (x(r, t), y(r, t), z(r, t))T (2.2)

Therefore, the displacement and tangent conditions of blending surfaces along the joint
boundaries ∂V1 and ∂V2 can be written as

U |AC = U |r=0 = U0, U |BD = U |r=1 = U1 (2.3)

(Un)AC = (Un)r=0 = α0U
′
0, (Un)BD = (Un)r=1 = α1U

′
1 (2.4)

where Un =
∂

∂n
U , and n is the outside normal to the boundary ∂Ω. The vectors U0,

U1, U ′
0 (6= 0) and U ′

1(6= 0) are known, but the functions α0(r)(6= 0) and α1(r)(6= 0) are
arbitrary real functions. We may express (2.4) as

yn = b10xn, zn = b20xn on AC; yn = b11xn, zn = b21xn on BD (2.5)

or simply
yn = b1xn, zn = b2xn on Γ2 (2.6)

where b01, b02, b11, and b12 (or b1 and b2) are obtained from the ratios of derivatives
in (2.4). For the closed surface along direction t, the following periodical conditions on
Γ1 will be satisfied.

U(r, 0) = U(r, 1), Un(r, 0) = Un(r, 1), 0 ≤ r ≤ 1 (2.7)

Fig.1 A blending surface connecting V1 and V2 Fig.2 A division of Ω by rectangles

along ∂V1 and ∂V2

The functions of blending surfaces of geometry C1 satisfy

x(r, t), y(r, t), z(r, t) ∈ C1(Ω), (2.8)

where Ck(Ω) denotes a space of functions having continuous derivatives of order k. By
considering the continuity of U and Un on ∂Ω described in (2.3), (2.6) and (2.7) we
may assume that the solutions x, y, z(∈ C4(Ω)) satisfy the following partial differential
equations with the fourth order, describing placements in elastic plates.

∆2U = F, where F = (fx, fy, fz)T (2.9)
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where the Laplace operator ∆ =
∂2

∂x2
+

∂2

∂y2
, and the biharmonic operator ∆2 =

( ∂2

∂x2
+

∂2

∂y2

)2
. The functions fx, fy and fz play a role of the loading forces on the

thin plate; they can be chosen suitably based on practical requirements in engineering.
It is noted that the equations (2.9), accompanied with the boundary conditions

(2.3)–(2.6) (or (2.4)) and (2.7) will lead to many solutions[14]. Below let us first derive
the additional boundary conditions in order to yield a unique solution.

Denote two spaces H and H0 of U such that

H = {(x, y, z)|x, y, x ∈ H2(Ω), satisfying (2.3), (2.6) and (2.7)} (2.10)

H0 = {(x, y, z)|x, y, z ∈ H2(Ω), satisfying U |Γ2 = 0, (2.6) and (2.7)} (2.11)

where H2(Ω) is the Sobolev space (see Marti(86)). By referring the variational equa-
tions of biharmonic functions in Courant and Hilbert (53) and Fong and Shi(91), a
solutions U ∈ H can be expressed in a weak form

A(U,W ) = F (W ), ∀W ∈ H0 (2.12)

where

A(U,W ) =
∫∫

Ω
{∆U ·∆W + (1− µ)(2Urt ·Wrt − Urr ·Wtt − Utt ·Wrr)}dΩ(2.13)

F (U) =
∫∫

Ω
F ·WdΩ (2.14)

and Urr =
∂2U

∂r2
, Urt =

∂2U

∂r∂t
, W = (ξ, η, ζ)T , and µ is the Poisson ratio satisfying

0 < µ <
1
2
. Also the notation U ·W means the scalar product of vectors. Denote

M(U) = −∆U + (1− µ)(Urrr
2
s + 2Urtrsts + Uttt

2
s) (2.15)

P (U) =
∂

∂n
∆U + (1− µ)

∂

∂n
{Urrrnrs + Urt(rnts + rstn) + Utttnts} (2.16)

where rn, tn and rs, ts are the direction cosines of the outnormal and tangent vectors,
respectively. By the Green theory, we have

∫∫

Ω
(∆2U − F ) ·WdΩ +

∫

∂Ω
P (U) ·WdΓ +

∫

∂Ω
M(U) ·WndΓ = 0 (2.17)

Hence equation (2.9) is obtained due to arbitrary W in Ω, from the first term of the
right side of (2.17).

Next on Γ2, by applying the boundary conditions (2.3), then W |Γ2 = 0, ∀W ∈ H0,
to get ∫

Γ2

P (U) ·W |Γ2dΓ = 0, ∀W ∈ H0 (2.18)

From the boundary condition (2.6), the third term in (2.17) leads to
∫

Γ2

M(U) ·WndΓ =
∫

Γ2

(M(U) ·B)xndΓ = 0 (2.19)
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where the vector
B = (1, b1, b2)T on Γ2 (2.20)

Since the derivatives xn are arbitrary on the boundary Γ2, we obtain an additional
boundary condition.

M(U) ·B = 0 (2.21)

Third, on the boundary Γ1, by applying the periodical boundary conditions (2.7)
we write the second and third terms in (2.17) as

∫ 1

0
(P (U(r, 0)) + P (U(r, 1))) ·W (r, 0)dr +

∫ 1

0
(M(U(r, 0))

+ M(U(r, 1))) ·Wn(r, 0)dr = 0 (2.22)

Since the function W (r, 0) and Wn(r, 0) are also arbitrary, other additional boundary
conditions on Γ1 are found as

P (U(r, 0)) + P (U(r, 1)) = 0, M(U(r, 0)) + M(U(r, 1)) = 0, 0 ≤ r ≤ 1 (2.23)

In fact, the boundary conditions (2.21) and (2.23) are called the natural conditions;
and Eqs. (2.3), (2.6) and (2.7) the essential conditions. Both the essential and the
natural boundary conditions should be implemented to the differential equation (2.9) to
yield a unique solution. Note that the variational equation (2.12) requires the essential
boundary conditions only, where x, y, z ∈ H2(Ω), less smooth than x, y, z ∈ C4(Ω)
required in (2.9). The true solution U can also be restated as follows.

I(U) = min
W∈H

I(W ), I(U) =
1
2
A(U,U)− F (U), (2.24)

which also indicates the minimal, global curvature of blending surfaces (also see Carmo(76)).

3. Boundary Penalty Finite Element Methods

Since true solutions can not be obtained for general functions F , numerical solutions
should be sought. Finite element methods are efficient methods to yield approximate
solutions, based on the variational equations (2.12) or (2.24).

We choose piecewise bi-cubic Hermite interpolatory functions due to (2.8), although
other conforming finite elements ∈ C1 can also be used in Ciarlet(90). To deal with
conditions (2.6) and (2.7), a direct treatment is introduced in Li(91) by eliminating
some unknowns. This technique may, however, cause complexity in programming. We
will here follow the penalty techniques described in Li(92, 98), to simplify algorithms;
other kinds of penalty techniques for essential boundary conditions can also be found
in Babuska(73), Utku and Carey(82), Barrett and Elliott(86), Shi(84), etc.

The basic Hermite functions on [0,1] are given in Carey and Oden(83).

φ0(θ) = 2θ3 − 3θ2 + 1, φ1(θ) = −2θ3 + 3θ2

ψ0(θ) = θ3 − 2θ2 + θ, ψ1(θ) = θ3 − θ2 (3.1)
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Then a cubic polynomial on [0,1] is defined by

f(θ) = x0φ0(θ) + x1φ1(θ) + x′0φ0(θ) + x′1φ1(θ) (3.2)

satisfying the boundary functions and derivatives:

f(θ)|θ=0 = x0, f(θ)|θ=1 = x1, f ′(θ)|θ=0 = x′0, f ′(θ)|θ=1 = x′1 (3.3)

Let the square solution area Ω be divided into small rectangular elements by the
coordinate lines r = ri and t = tj , where

0 = r0 < r1 < ... < ri < ri+1 < ... < rn = 1, n ≥ 1

0 = t0 < t1 < ... < ti < ti+1 < ... < tm = 1, m ≥ 2 (3.4)

Denote the stepsize δri = ri+1 − ri, δtj = tj+1 − tj and the small rectangular element
2ij by

2ij = {(r, t), ri < r < ri+1, tj < t < tj+1} (3.5)

We assume that the small rectangles 2ij are quasiuniform, i.e., there exists a bounded

constant C independent of δri and δtj such that
(δri, δtj)
(δri, δtj)

≤ C.

For each element node (i, j) = (ri, tj), we assign four unknowns, e.g., xij , (xr)ij ,
(xt)ij , (xrt)ij of function x(r, t). Also denote the basis functions with the nonzero
support

φi,l(r) = φl

(r − ri

δri

)
, ψi,l(r) = ψl(

r − ri

δri

)
, in [r0, r1] as i = 0, in (ri, ri+1] as i > 0,

(3.6)
and

φj,l(t) = φl

( t− tj
δtj

)
, ψj,l(t) = ψl

( t− tj
δtj

)
, in [t0, t1] as j = 0, in (tj , tj+1] as j > 0, (3.7)

where l = 0, 1. By the tensor product, the following piecewise bi-cubic Hermite poly-
nomials can be formulated for xh(r, t) in two dimensions.

xh(r, t) =
n−1∑

i=0

m−1∑

j=0

{ 1∑

k,l=0

xi+k,j+lφi,k(r)φj,l(t) + δri

1∑

k,l=0

(xr)i+k,j+lψi,k(r)φj,l(t)
(3.8)

+ δtj

1∑

k,l=0

(xt)i+k,j+lφi,k(r)ψj,l(t) + δri δtj

+ δri δtj

1∑

k,l=0

(xrt)i+k,j+lψi,k(r)ψj,l(t)
}

(3.9)

Such functions in (3.8) are the same as those in the Bogner-Fox-Schmit rectangle in
Ciarlet(90) and Fong and Shi(81) due to unisolvence. The admissible functions are
then written as

Uh = Uh(r, t) = (xh(r, t), yh(r, t), zh(r, t))T (3.10)
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where yh(x, t) and zh(r, t) are also defined in (3.8). Obviously, xh, yh, zh ∈ H2(Ω) ∩
C1(Ω). Define a finite-dimensional collation of the functions as

V = {U as (3.10), satisfying (2.3)} (3.11)

V0 = {U as (3.10), satisfying U |Γ2 = 0} (3.12)

The conditions (2.3) still remain in space V , but neither (2.6) nor (2.7) in V and V0.
Hence if compared with the functional spaces H and H0 in (2.10) and (2.11), we can
see

V0 6∈ H0, V 6∈ H (3.13)

For this reason, we introduce boundary penalty techniques to handle these constraints.
The solution U∗

h ∈ V is obtained from the boundary penalty finite element method,
called Method I of BP-FEMs,

AP (U∗
h ,Wh) = Fh(Wh), ∀Wh ∈ V0 (3.14)

where
Fh(U) =

∫∫

Ω
F̄ ·WdΩ (3.15)

F̄ is the piecewise linear (or bilinear) interpolatory functions of F , and

AP (Uh,Wh) = A(Uh,Wh) + D̄(Uh,Wh) (3.16)

A(U,W ) is given in (2.13) already, and h is the maximal length of rectangular elements
defined by h = max

ij
(δri, δtj). The boundary penalty integrals D̄(U,W ) are given by

(also see Li(92) and Li and Bui(92))

D̄(U,W ) =
Pc

h2σ

{ ∫

Γ2

(yn − b̄1xn)(ηn − b̄1ξn)dΓ +
∫

Γ2

(zn − b̄2xn)(ζn − b̄2ξn)dΓ

+
∫ 1

0
(U(r, 0)− U(r, 1))(W (r, 0)−W (r, 1))dr

+
∫ 1

0
(Un(r, 0)− Un(r, 1))(Wn(r, 0)−Wn(r, 1))dr

}
(3.17)

where Pc is a bounded positive constant independent of h, Uh and Wh, and σ >

0 is a penalty power. Note that b̄1 and b̄2 used in (3.17) are the piecewise q-order
interpolatory polynomials of functions b1 and b2 respectively, where 1 ≤ q ≤ 3. It is
worthy pointing out that the same penalty factor Pc

h2σ are used for all the boundary
conditions of displacement and derivatives because they are all the essential boundary
conditions.

The exact integrals in D̄(U,W ) may also be evaluated directly due to polynomial
integrands, or from integration rules with accuracy of order up to 6 + 2q. Gaussian
rules are suggested with integration nodes up to 4+q. Furthermore, integration rules of
order four and six can evaluate exactly integrals Ah(Uh,Wh) and Fh(Uh), respectively
(see Davis and Rabinowitz(84)).
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Next, we also provide another algorithm of the BP-FEMs involving integration
approximation called Method II of BD-FEMs, to seek the solution Û∗

h ∈ V such that

ÂP (Û∗
h ,Wh) = F̂ (Wh), ∀Wh ∈ V0 (3.18)

where
ÂP (Uh,Wh) = Â(Uh,Wh) + D̂(Uh,Wh) (3.19)

and

D̂(U,W ) =
Pc

h2σ

{∫̂

Γ2

(yn − b1xn)(ηn − b1ξn)dΓ +
∫̂

Γ2

(zn − b2xn)(ζn − b2ξn)dΓ

+
∫̂ 1

0
(U(r, 0)− U(r, 1)) · (Wh(r, 0)−W (r, 1))dr

+
∫̂ 1

0
(Un(r, 0)− Uhn(r, 1)) · (Wn(r, 0)−Wn(r, 1))dr

}
(3.20)

Also Â(Uh,Wh), F̂ (Uh),
∫̂

Γ2
and

∫̂ 1

0 are the integration approximation to A(Uh,Wh),
F (Uh),

∫
Γ2

and
∫ 1

0, respectively. Note that functions b1 and b2 in D̂(U,W ) and F in
F (Uh) are chosen as the true functions without interpolatory approximation, contrasted
to those in (3.14).

An analysis in Section 4.1 is derived to prove that the solutions U∗
h obtained from

(3.14) have the optimal convergence rates O(h2) of second order generalized derivatives
when q ≥ 1. A further analysis in Section 4.2 shows that integration rules of order
two should be chosen for A(UH ,Wh) and F (Wh), but integration rules of order six for
D(U,W ), in order to maintain the optimal convergence rates O(h2).

We may combine Methods I and II, Equations (3.14) and (3.18), to obtain Method
III of BP-FEMs. The solution ˆ̄U∗

h ∈ V is obtained by Method III of BP-FEMs defined
as

ÂP ( ˆ̄U∗
h,Wh) = F̂h(Wh), Wh ∈ V0 (3.21)

where

F̂h(U) =
ˆ∫ ∫

Ω
F̄ ·WdΩ (3.22)

and
ÂP (Uh,Wh) = Â(Uh,Wh) + ˆ̄D(Uh,Wh) (3.23)

where F̂h, Â and ˆ̄D are the approximation of Fh, A and D̄ defined in Method I by using
integration rules as in Method II.

4. Error Analysis

In this section, we derive error bounds of numerical solutions obtained from (3.14)
and (3.18), Methods I and II of BP-FEMs. Analysis of Method III can be easily
obtained. We will focus on error bounds of the solutions in Ω, and in particular on
error bounds of the tangent boundary conditions (2.6). Moreover, we also derive useful
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guidance in choosing suitable interpolation of b1 and b2, and suitable integration rules
for the boundary penalty integrals.

4.1. Errors Bounds of Solutions from Method I of BP-FEMs

First denote a norm

‖|U‖| = {‖U‖2
(H2(Ω))3 + D̄(U,U)}1

2 (4.1)

where D̄(U,U) is given in (3.17), using q (1 ≤ q ≤ 3) order interpolatory polynomials
of b1 and b2, the norm notations are defined by

‖U‖(Hk(Ω))3 = {‖x‖2
Hk(Ω) + ‖y‖2

Hk(Ω) + ‖z‖2
Hk(Ω)}

1
2 (4.2)

|U |(Hk(Ω))3 = {|x|2Hk(Ω) + |y|2Hk(Ω) + |z|2Hk(Ω)}
1
2 (4.3)

and ‖x‖2
Hk(Ω)

and |x|2
Hk(Ω)

are the Sobolev norms (see Marti(86)). We have the following
lemma.

Lemma 4.1. There exist two bounded positive constants C0 and C1 independent of
h, U and W such that

|AP (U,W )| ≤ C0‖|U‖| × ‖|W‖|, U ∈ H0 and W ∈ V0 (4.4)

and the uniformly V0− elliptic inequality exists

C1‖|U‖|2 ≤ AP (U,U), U ∈ V0 (4.5)

Proof. By noting µ ∈
(
0,

1
2

)
, it is easy to show (4.4) and

C1|U |2(H2(Ω))3 + D̄(U,U) ≤ AP (U,U), U ∈ V0 (4.6)

Based on the generalized Friedrichs’ inequality (see Marti(86, p.82)) and noting U |Γ2 =
0 due to U ∈ V0, we obtain

‖U‖2
(H2(Ω))3 ≤ C2{|U |2(H2(Ω))3 +

∫

Γ2

U2dΓ} = C2|U |2(H2(Ω))3 (4.7)

where C2 is also a positive bounded constant. Combining (4.6) and (4.7) yields the
desired inequality (4.5), thus to complete the proof of Lemma 4.1. 2

Lemma 4.2. Let M(U) ∈ (H0(Γ))3, P (U) ∈ (H0(Γ1))3, F ∈ (H2(Ω))3, and B ∈
(Hq+1(Γ2))2 with 1 ≤ q ≤ 3 be given. There exists a bounded constant C independent
of h, U and W such that

‖|U − U∗
h‖| ≤C{ inf

W∈V
‖|U −W‖|+ hσ(|M(U)|(H0(Γ))3 + |P (U)|(H0(Γ1))3)

+ hq+1|B|(Hq+1(Γ2))2 × |M(U)|(H0(Γ2))3 + h2|F |(H2(Ω))3} (4.8)

where U(∈ H) are the true solutions, U∗
h(∈ V ) are the solutions from Method I of

BP-FEMs, and the notations are

|B|(Hk(Γ2))2 = {|b1|2Hk(Γ2) + |b2|2Hk(Γ2)}
1
2 ,
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‖B‖(Hk(Γ2))2 = {‖b1‖2
Hk(Γ2) + ‖b2‖2

Hk(Γ2)}
1
2 (4.9)

Proof. Since the true solutions U satisfy natural boundary conditions (2.21) and
(2.23) we can obtain the following equations by applying the Green theorem (also see
(2.17)),

AP (U,W ) =
∫∫

Ω
F ·WdΩ +

∫

Γ2

{m(y)(ηn − b1ξn) + m(z)(ζn − b2ξn)}dΓ

+
∫ 1

0
P (U(r, 0)) · (W (r, 0)−W (r, 0))dr (4.10)

+
∫ 1

0
M(U(r, 0)) · (Wn(r, 0)−Wn(r, 1))dr = 0,W ∈ V0

where m(x) and m(y) are the components of the vector M(U) defined in (2.15). Since
solutions U∗

h satisfy (3.14), we obtain

|AP (U − U∗
h ,W ) ≤

∣∣∣
∫

Γ2

{m(y)(ηn − b̄1ξn) + m(z)(ζn − b̄2ξn)}dΓ
∣∣∣

+
∣∣∣
∫

Γ2

{m(y)(b̄1 − b1)ξn + m(z)(b̄2 − b1)ξn}dΓ
∣∣∣

+
∣∣∣
∫ 1

0
P (U(r, 0)) · (W (r, 0)−W (r, 1))dr

∣∣∣

+
∣∣∣
∫ 1

0
M(U(r, 0) · (Wn(r, 0)−Wn(r, 1))dr

∣∣∣ +
∣∣∣
∫∫

Ω
(F − F̄ ) ·WdΩ

∣∣∣
=I + II + III + IV + V (4.11)

For the first term in the right side of the above equation, we have from the Schwarz
inequality and definition (4.1) of ‖|W‖|.

I =
∣∣∣
∫

Γ2

{m(y)(ηn − b̄1ξn) + m(z)(ζn − b̄2ξn)}dΓ
∣∣∣

≤C|M(U)|(H0(Γ2))3 ×
{ ∫

Γ2

(|ηn − b̄1ξn|2 + |ζn − b̄2ξn|2)dΓ
}1

2

≤Chσ|M(U)|(H0(Γ2))3 × D̄(W,W )
1
2 ≤ Chσ|M(U)|(H0(Γ2))3 × ‖|W‖| (4.12)

By applying the embedding theorem (see Marti(86))

||ξn||H0(Γ2) ≤ C||ξ||H2(Ω) ≤ C‖|W‖| (4.13)

and by noting that functions b̄1 and b̄2 are the q order interpolatory polynomials of b1

and b2, the second term in (4.11) leads to from the Schwarz inequality

II =
∣∣∣
∫

Γ2

{m(y)(b̄1 − b1)ξn + m(z)(b̄2 − b1)ξn}dΓ
∣∣∣

≤Chq+1{|m(y)|H0(Γ2) × |b1|Hq+1(Γ2)

+ |m(z)|H0(Γ2) × |b2|Hq+1(Γ2)} × ||ξn||H0(Γ2)
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≤Chq+1|M(U)|(H0(Γ2))3 × |B|(Hq+1(Γ2))2 × ‖|W‖| (4.14)

Below we estimate rest of the terms in (4.11), we have again from (4.1)

III =
∣∣∣
∫ 1

0
P (U(r, 0)) · (W (r, 0)−W (r, 1))dΓ

∣∣∣

≤|P (U)|(H0(ĀB))3 ×
( ∫ 1

0
||W (r, 0)−W (r, 1)||2dΓ

)1
2

≤Chσ|P (U)|(H0(Γ1))3 × D̄(W,W )
1
2 ≤ Chσ|P (U)|(H0(Γ1))3 × ‖|W‖| (4.15)

and

IV =
∣∣∣
∫ 1

0
M(U(r, 0)) · (Wn(r, 0)−Wn(r, 1))dr

∣∣∣ ≤ Chσ|M(U)|(H0(Γ1))3 ×‖|W‖| (4.16)

Since F̄ is piecewise linear (or bilinear) functions of F ,

V =
∣∣∣
∫∫

Ω
(F − F̄ ) ·WdΩ| ≤ Ch2|F |(H2(Ω))3 × C‖W‖(H0(Ω))3

≤Ch2|F |(H2(Ω))3 × ‖|W‖| (4.17)

Therefore, combining (4.11)–(4.17) leads to

|AP (U − U∗
h ,W )| ≤ I + II + III + IV + V ≤ CQ‖|W‖| (4.18)

where

Q =hσ(|M(U)|(H0(Γ))3 + |P (U)|(H0(Γ1))3)

+ hq+1|B|(Hq+1(Γ2))2 × |M(U)|(H0(Γ2))3 + h2|F |(H2(Ω))3 (4.19)

Moreover, letting E = W − U∗
h and E ∈ V0, we obtain from Lemma 4.1 and (4.18)

C0‖|E‖|2 ≤AP (E, E) ≤ 2(|AP (U −W,E)|+ |AP (U − U∗
h , E)|)

≤C1(‖|U −W‖|+ Q)× ‖|E‖| (4.20)

The desired results (4.8) are obtained by dividing two sides of (4.11) by ‖|E‖| and
applying the triangular inequality

‖|U − U∗
h‖| ≤ ‖|U −W‖|+ ‖|U∗

h −W‖| (4.21)

Thus the proof of Lemma 4.2 is completed. 2

Now let us prove a main theorem.
Theorem 4.1. Let U ∈ (H4(Ω))3, F ∈ (H2(Ω))3, U ∈ (H4(Γ))3, Un ∈ (H4(Γ))3,

M(U) ∈ (H0(Γ))3, P (U) ∈ (H0(Γ1))3 and B ∈ (Hq+1(Γ2))2 be given. Then there
exists a bounded constant C independent of h, U and W such that

‖|U − U∗
h‖| ≤C{h2(|U |(H4(Ω))3 + |F |(H2(Ω))3) + hσ(|M(U)|(H0(Γ))3 + |P (U)|(H0(Γ1))3)
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+ h4−σ(‖B‖(Hq+1(Γ2))2 × |Un|(H4(Γ2))3 + |U |(H4(Γ1))3 + |Un|(H4(Γ1))3)

+ hq+1|B|(Hq+1(Γ2))2 × |M(U)|(H0(Γ2))3} (4.22)

Proof. Let Ūh be the piecewise bi-cubic Hermite interpolatory functions of U , them
Ūh ∈ V . If letting W = Ūh we have from Lemma 4.2,

‖|U − U∗
h‖| ≤ C{‖|U − Ūh‖|+ Q} (4.23)

where Q is given in (4.19). Moreover,

‖|U − Ūh‖| = ‖U − Ūh‖(H2(Ω))3 + D̄(U − Ūh, U − Ūh)
1
2 (4.24)

and
‖U − Ūh‖(H2(Ω))2 ≤ Ch2|U |(H4(Ω))3 (4.25)

Also

D̄(U − Ūh, U − Ūh) =
Pc

h2σ

{ ∫

Γ2

(yn − ¯(yn)h − b̄1(xn − ¯(xn)h))2dΓ

+
∫

Γ3

(zn − ¯(zn)h − b̄2(xn − ¯(xn)h))2dΓ + ‖δ(U − Ūh)‖2
[0,1]

+ ‖δ(Un − ¯(Un)h)‖2
[0,1]} =

Pc

h2σ
{I∗ + II∗ + III∗ + IV ∗}

(4.26)

where the notation

‖δU‖2
[0,1] =

∫ 1

0
‖U(r, 0)− U(r, 1)‖2dr (4.27)

Since Γ is parallel to axis r or t, derivatives (Ūn)h on Γ are also the piecewise cubic
Hermite interpolatory polynomials of Un, to yield interpolation errors of O(h4). Hence
we obtain

I∗ =
∫

Γ2

(yn − ( ¯yn)h − b̄1(xn − ¯(xn)h))2dΓ ≤ C

∫

Γ2

(|yn − ¯(yn)h|2 + b̄2
1|xn − (̄xn)h|2)dΓ

≤Ch8(|yn|2H4(Γ2) + ‖b̄1‖H0(Γ2)|xn|2H4(Γ2))

≤Ch8(|Un|2(H4(Γ2))3 + |B̄|2(H0(Γ2))2 × |Un|2(H4(Γ2))3)

≤Ch8‖B‖2
(Hq+1(Γ2))2 × |Un|2(H4(Γ2))3 (4.28)

where we have used the following inequality

|B̄|(H0(Γ2))2 ≤|B|(H0(Γ2))2 + |B − B̄|(H0(Γ2))2

≤|B|(H0(Γ2))2 + Chq+1|B|(Hq+1(Γ2))2 ≤ C‖B‖(Hq+1(Γ2))2 (4.29)

Similarly

II∗ ≤
∫

Γ3

(zn− ¯(zn)h− b̄2(xn− ¯(xn)h))2dΓ ≤ Ch8‖B‖2
(Hq+1(Γ2))2 × |Un|2(H4(Γ2))3 (4.30)
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Also we have

III∗ = ‖δ(Ū − Uh)‖2
[0,1] ≤ 2

∫ 1

0
(‖U(r, 0)− Ūh(r, 0)‖2 + ‖U(r, 1)− Ūh(r, 1)‖2)dr

≤ Ch8(|U |2(H4(ĀB)3 + |U |2(H4(C̄D))3) ≤ Ch8|U |2(H4(Γ1))3 (4.31)

By noting that ¯(Un)h on Γ1 is also piecewise cubic Hermite interpolatory polynomials
of Un, we have similarly

IV ∗ = ‖δ(Un − ¯(Un)h)‖2
[0,1] ≤ Ch8|Un|2(H4(Γ1))3 (4.32)

Therefore, combining (4.26)–(4.32) leads to

{D̄(U − Ūh, U − Ūh)}1
2 = Ch−σ{(I∗)1

2 + (II∗)
1
2 + (III∗)

1
2 + (IV ∗)

1
2 }

≤Ch4−σ(||B||(Hq+1(Γ2))2 × |Un|(H4(Γ2))3 + |U |(H4(Γ1))3 + |Un|(H4(Γ1))3)
(4.33)

Finally the desired bounds (4.22) are obtained from (4.23)–(4.25) and (4.33). This
completes the proof of Theorem 4.1. 2

Corollary 4.1. Let all the conditions in Theorem 4.1 and q ≥ 1 hold. Then σ = 2
is the best choice, leading to the following bounds as h → 0,

‖|U − U∗
h‖| ≤Ch2{|U |(H4(Ω))3 + |F |(H2(Ω))3 + |M(U)|(H0(Γ))3 + |P (U)|(H0(Γ1))3

+ ‖B‖(Hq+1(Γ2))2 × |Un|(H4(Γ2))3 + |U |(H4(Γ1))3 + |Un|(H4(Γ1))3}
+ Chq+1|B|(Hq+1(Γ2))2 × |M(U)|(H0(Γ2))3 (4.34)

Proof. Based on Theorem 4.1, when q ≥ 1 and h → 0, the best choice of σ is given
by σ = 4 − σ, leading to σ = 2, then to obtain (4.34). This completes the proof of
Corollary 4.1. 2

It is worthy noting that O(h2) of second derivatives implies a high accuracy of the
solutions from Method I of BP-FEMs. The optimal convergence rate O(h2) is also
given for plate problems by other finite element methods (see Ciarlet (90)). Now we
have the following corollary.

Corollary 4.2. Let all the conditions in Theorem 4.1 and σ = 2 and q ≥ 1 hold,
When h → 0 the solutions from Method I of BP-FEMs have the following asymptotes.

‖|U − U∗
h‖| = O(h2), ||U − U∗

h ||(H2(Ω))3 = O(h2) (4.35)

‖δU∗
h‖[0,1] = O(h4), ‖δ(U∗

n)h‖[0,1] = O(h4)

||(y∗n)h − b̄1(x∗n)h||H0(Γ2) = O(h4), ||(z∗n)h − b̄2(x∗n)h||H0(Γ2) = O(h4) (4.36)

||(y∗n)h − b1(x∗n)h||H0(Γ2) = O(hq+1), ||(z∗n)h − b2(x∗n)h||H0(Γ2) = O(hq+1) (4.37)

In addition, when q = 3, i.e., when using cubic Lagrange (or Hermite) interpolation,
b̄l and b̄2, then the solutions from Method I of BP-FEMs satisfy the tangent boundary
conditions (2.6) with the following high convergence rate

||(y∗n)h − b1(x∗n)h||H0(Γ2) = O(h4), ||(z∗n)h − b2(x∗n)h||H0(Γ2) = O(h4) (4.38)
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Proof. Based on Corollary 4.1 we can see

‖δU∗
h‖[0,1] = ‖δ(U − U∗

h)‖[0,1]

≤ Ch2D̄(U − U∗
h , U − U∗

h)1/2 ≤ Ch2‖|U − U∗
h ||| ≤ Ch4 (4.39)

Similarly
||(y∗n)h − b̄1(x∗n)h||H0(Γ2) = Ch4 (4.40)

Also we have

||(y∗n)h − b1(x∗n)h||H0(Γ2) ≤ ||(y∗n)h − b̄1(x∗n)h||H0(Γ2) + ||b1 − b̄1||H0(Γ2) × ||(x∗n)h||H0(Γ2)

≤ C{h4 + hq+1||b1||Hq+1(Γ2) × ||(x∗n)h||H0(Γ2)}
≤ C{h4 + hq+1||B||(Hq+1(Γ2))2} (4.41)

In the above inequality, we have used the boundedness of ||(x∗n)h||H0(Γ2),

||(x∗n)h||H0(Γ2) ≤ C||(x∗n)h||H2(Ω) ≤ C||U∗
h ||(H2(Ω))3

≤ C{||U ||(H2(Ω))3 + ||U − U∗
h ||(H2(Ω))3} ≤ C{||U ||(H2(Ω))3 + ‖|U − U∗

h‖|}
≤ C{||U ||(H2(Ω))3 + h2} ≤ C (4.42)

The first inequality in (4.37) is obtained, then leading to the left inequality in (4.38)
when q = 3. The proof of other bounds in Corollary 4.3 are similar, thus to complete
the proof. 2

4.2. Error Bounds of Solutions from Method II of BP-FEMs Involving
Approximate Integration

In this subsection, we also derive error bounds of the solutions from Method II,
(3.18). Our concern is which order of accuracy of integration rules should be used to
maintain O(h2) of errors in Ω, as in Corollary 4.1, and O(h4) in Corollary 4.2 for the
tangent boundary conditions. Denote another norm

‖|U‖|H = {||U ||2(H2(Ω))3 + D(U,U)}1/2 (4.43)

where the true functions b1 and b1 are chosen in D(U,U) of (3.20), instead of b̄1 and b̄2

in (3.17). Then we have the following lemma (See Ciarlet(91)).
Lemma 4.3. Let M(U) ∈ (H0(Γ))3 and P (U) ∈ (H0(Γ1))3 and the following

inequalities be given

|ÂP (U,W )| ≤ C0‖|U‖|H × ‖|W‖|H , U ∈ H0 and W ∈ V0 (4.44)

and
C1‖|U‖|H2 ≤ ÂP (U,U), U ∈ V0 (4.45)

There exists a bounded constant C independent of h, U , W and E such that

‖|U − Û∗
h‖|H ≤C

{
inf

W∈V
‖|U −W‖|H + hσ(|M(U)|(H0(Γ))3 + |P (U)|(H0(Γ1))3)
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+ sup
E∈V0

|A(W,E)− Â(U,E)|
‖|E‖|H + sup

E∈V0

|F (E)− F̂ (E)|
‖|E‖|H

+ sup
E∈V0

|D(W,E)− D̂(W,E)|
‖|E‖|H

}
(4.46)

where Û∗
h(∈ V ) are the solution from Method II of BP-FEMs involving integration

approximation.
Comparing Lemma 4.3 with Lemma 4.2, there disappear the terms

hq+1|B|(Hq+1(Γ2))2 × |M(U)|(H0(Γ))3 + h2|F |(H2(Ω))3

because of the true functions b1 and b2 and F are chosen; but there appear more terms
resulting from integration approximation. Below let us prove a useful lemma.

Lemma 4.4. Let U ∈ (H4(Γ2))3, Un ∈ (H4(Γ2))3 and B ∈ (Hp(Γ2))2 be given.
Assume that the integral rule of

∫̄
Γ2

has 2p − 2 order of accuracy with p ≥ σ. Then
there exist the following bounds

|D(Ūh, E)− D̂(Ūh, E)| ≤Chp−σ(||B||(Hp(Γ2))2 × ||Un||(H4(Γ2))3

+ ||Un||(H4(Γ1))3 + ||U ||(H4(Γ1))3)× ‖|E‖|H , E ∈ V0 (4.47)

where Ūh are the piecewise Hermite bi-cubic interpolatory polynomials of the true solu-
tion U .

Proof. We have

|D(Ūh, E)− D̂(Ūh, E)| ≤ Pc

h2σ

{∣∣∣
( ∫

Γ2

−
∫̂

Γ2

)
(ȳn − b1x̄n)(ηn − b1ξn)dΓ

∣∣∣

+
∣∣∣
( ∫

Γ2

−
∫̂

Γ2

)
(z̄n − b2x̄n)(ζn − b2ξn)dΓ

∣∣∣

+
∣∣∣
( ∫ 1

0
−

∫̂ 1

0

)
(Ūh(r, 0)− Ūh(r, 1)) · (Wh(r, 0)−Wh(r, 1))dr

∣∣∣

+
∣∣∣
( ∫ 1

0
−

∫̂ 1

0

)
( ¯(Un)h(r, 0)− ¯(Un)h(r, 1))

· ((Wn)h(r, 0)− (Wn)h(r, 1))dr
}

≤C h−2σ{I + II + III + IV } (4.48)

The bounds of all the four terms in (4.48) will be provided below. First let us show

I =
∣∣∣
( ∫

Γ2

−
∫̂

Γ2

)
(ȳn − b1x̄n)(ηn − b1ξn)dΓ

∣∣∣

≤Chp+σ||B||Hp(Γ2)2 × ||Ūn||Hp(Γ2)3 × ||E‖|H (4.49)

where x̄n and ȳn are the piecewise Hermite interpolatory polynomials of the true solu-
tion xn and yn. Denote

f = (ȳn − b1x̄n), g = (ηn − b1ξn). (4.50)
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Since the integration rule has 2p− 2 order of accuracy, we have from Ciarlet (90)

I =
∣∣∣
( ∫

Γ2

−
∫̂

Γ2

)
fgdΓ| ≤ Chp||f ||Hp(Γ2) × ||g||H0(Γ2) (4.51)

By applying the binomial formula

(bx)(p) =
p∑

k=0

Ck
p b(k)x(p−k) (4.52)

we obtain

||f ||Hp(Γ2) ≤||ȳn||Hp(Γ2) + C||b1||Hp(Γ2) × ||x̄n||Hp(Γ2)

≤||Ūn||(Hp(Γ2))3 + C||B||(Hp(Γ2))2 × ||Ūn||(Hp(Γ2))3

≤C(||Un||(H4(Γ2))3 + ||B||(Hp(Γ2))2 × ||Un||(H4(Γ2))3)

≤C||B||(Hp(Γ2))2 × ||Un||(H4(Γ2))3 (4.53)

In (4.53) we have used the following bounds

||Ūn||(Hp(Γ2))3 ≤ ||Un||(Hp(Γ2))3 + ||Un − Ūn||(Hp(Γ2))3

≤ ||Un||(Hp(Γ2))3 + Ch(4−p)|Un|(H4(Γ2))3 ≤ C||Un||(H4(Γ2))3 , as p ≤ 3
(4.54)

and by noting that Ūn are only piecewise cubic Hermite polynomials on Γ2,

||Ūn||(Hp(Γ2))3 = ||Ūn||(H3(Γ2))3 ≤ C||Un||(H4(Γ2))3 , as p ≥ 4 (4.55)

Also since
||g||H0(Γ2) ≤ C hσD(E, E)1/2 ≤ C hσ‖|E‖|H (4.56)

we have from (4.51), (4.53) and (4.56)

I ≤ Chp+σ||B||(Hp(Γ2))2 × ||Un||(H4(Γ2))3 × ‖|E‖|H (4.57)

Similarly,

II =
∣∣∣
( ∫

Γ2

−
∫̂

Γ2

)
(z̄n − b2x̄n)(ζn − b2ξn)dΓ

∣∣∣

≤Chp+σ||B||(Hp(Γ2))2 × ||Un||(H4(Γ2))3 × ‖|E‖|H (4.58)

By further manipulation, we can see from (4.51)

III =
∣∣∣
( ∫ 1

0
−

∫̂ 1

0

)
(Ūh(r, 0)− Ūh(r, 1)) · (Wh(r, 0)−Wh(r, 1))dr

∣∣∣

≤Chp||Ūh||(Hp(Γ1))3 ×
{ ∫ 1

0
||Wh(r, 0)−Wh(r, 1)||2dr

}1
2

≤Chp+σ||U ||(H4(Γ1))3 × ‖|E‖|H (4.59)
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Similarly,

IV =
∣∣∣
( ∫ 1

0
−

∫̂ 1

0

)
( ¯(Un)h(r, 0)− ¯(Un)h(r, 1)) · ((Wn)h(r, 0)− (Wn)h(r, 1))dr

∣∣∣

≤Chp+σ||Un||(H4(Γ1))3 × ‖|E‖|H (4.60)

By applying (4.48), the desired results (4.47) are obtained from (4.57)–(4.60). This
completes the proof of Lemmas 4.4. 2

We also have the following lemma.
Lemma 4.5. Let U ∈ (H4(Ω))3 and F ∈ (H2(Ω))3 be given. Assume that Simp-

son’s rule is used for the 2D integrals in Ah(Uh,Wh) and F (Wh). There exist the
following bounds

sup
E∈V0

|A(Uh, E)− Â(Uh, E)| ≤ Ch2||U ||(H4(Ω))3 × ‖|E‖|H , (4.61)

and
sup
E∈V0

|F (E)− F̂ (E)| ≤ Ch2||F ||(H2(Ω))3 × ‖|E‖|H (4.62)

Proof. We have from (4.51)

|A(Ūh, E)− Â(Ūh, E)| ≤ Ch2‖D2(Ūh)‖(H2(Ω))3 × ‖|E‖|H (4.63)

where

‖D2(Ūh)‖(H2(Ω))3 ≤ C‖Ūh‖(H4(Ω))3 ≤ C{‖U‖(H4(Ω))3 + ‖U − Ūh‖(H4(Ω))3}
C{‖U‖(H4(Ω))3 + hε‖U‖(H4+ε(Ω))3} ≤ C‖U‖(H4+ε(Ω))3 (4.64)

where 0 < ε < 1 and ‖U‖(H4+ε(Ω))3 are the Sobolev norms with nonintegrals. The
bounds (4.61) are obtained from (4.64) and (4.63) as ε → 0; the other bounds (4.62)
can be proved similarly. This completes the proof of Lemma 4.5. 2

Finally, by following the proof of Theorem 4.1, we obtain the following theorem
from Lemmas 4.3 – 4.5.

Theorem 4.2. Let U ∈ (H4(Ω))3, F ∈ (H2(Ω))3, U ∈ (H4(Γ))3, Un ∈ (H4(Γ))3,
M(U) ∈ (H0(Γ))3, P (U) ∈ (H0(Γ1))3 and B ∈ (Hp(Γ2))2 be given. Then by using
Simpson’s rules for A(U,W ) and F (U), and the integration rules with order 2p− 2 for
the penalty integrals in D(U,W ), there exist the following bounds of the solutions from
Method II of BP-FEMs

‖|U − Û∗
h‖|H ≤C{h2(‖U‖(H4(Ω))3 + ||F ||(H2(Ω))3) + hσ(|M(U)|(H0(Γ))3 + |P (U)|(H0(Γ1))3)

+ h4−σ(‖B‖(H0(Γ2))2 × |Un|(H4(Γ2))3 + |Un|(H4(Γ1))2 + |U |(H4(Γ1))3)

+ Chp−σ(||B||(Hp(Γ2))2 × ||Un||(H4(Γ2))3 + ||Un||(H4(Γ1))2 + ||U ||(H4(Γ1))3)}
(4.65)

We have the following corollary.
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Corollary 4.3. Let all the conditions in Theorem 4.2 be given. Choose σ = 2 and
p = 4, i.e., the integration rules of order six are used for the penalty integrals. The
solutions from Method II of BP-FEMs have with the asymptotes.

‖|U − Û∗
h‖|H = O(h2), ||U − Û∗

h ||(H2(Ω))3 = O(h2)

‖δÛ∗
h‖[0,1] = O(h4), ‖δ(Û∗

n)h‖[0,1] = O(h4)

||(ŷ∗n)h − b1(x̂∗n)h||H0(Γ2) = O(h4), ||(ẑ∗n)h − b2(x̂∗n)h||H0(Γ2) = O(h4)
(4.66)

Proof. When σ = 2, the value of p should be chosen such that

p− σ = 2, then p = 2 + σ = 4, and 2p− 2 = 6

in order to achieve the optimal convergence rates O(h2). This indicates order six of
accuracy of integration rules. The proof of Corollary 4.3 is completed. 2

It is also noted that the inequalities (4.44) and (4.45) hold, since the following
bounds can be proven by the norm equivalence of finite dimensions.

C0D(E, E) ≤ D̂(E, E) ≤ C1D(E, E), ∀E ∈ V0 (4.67)

where C0 and C1 are two bounded constants independent of h and E.

4.3. Comparisons

Now let us compare different requirements of data of functions b1 and b2 and F in
Method I and II of BP-FEMs.

(1). Based on Corollaries 4.2 and 4.3, if for both

||U − Uh||(H2(Ω))3 = O(h2) (4.68)

and

||(yn)h − b1(xn)h||H0(Γ2) = O(h4), ||(zn)h − b2(xn)h||H0(Γ2) = O(h4) (4.69)

where Uh = U∗
h or Uh = Û∗

h , the same requirements of B ∈ (H4(Γ2))2 are needed by
methods I as q = 3 and Method II as p = 4. Hence, we may employ the values of
B1(0, tj + kδtj/3), k = 0, 1, 2, 3 in Method I to the Lagrange interpolation nodes, but
the values b1(0, 1+θk

2 ), k = 1, 2, 3, 4 to Gaussian integration nodes. As to F , although
the assumption F ∈ (H2(Ω))3 is the same, only the values of F (ri, tj) are used in
Method I; but both F (ri, tj) and F (ri + δrj/2, tj + δtj/2)) in Method II to Simpson’s
rule. This shows an advantage of Method I using fewer and simpler data of b1 and b1

and F .
(2) Let us consider the case of less smoothness as B ∈ (Hm(Γ2))2, m = 1, 2, 3,

which may occur in different applications. For instance, when functions b1 and b2 are
supplied by discrete, experimental data. Hence Un ∈ (Hm(Γ2))3 and U ∈ (Hα(Ω))3

with α = min(4,m + 3
2) should be also assumed by the solution regularity. We only

give corollaries involving choices of σ, p and q, and convergence rates; detailed proofs
may follow those in Theorems 4.1 and 4.2.
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First consider Method I, different bounds of the terms in Theorem 4.1 may be
provided below by some manipulation

C{hα−2|U |(Hα(Ω))3 + hm−σ(‖B‖(Hq+1(Γ2))2 × |Un|(Hm(Γ2))3)

+ hq+1|B|(Hq+1(Γ2))2 × |M(U)|(H0(Γ2))3} (4.70)

where q = m− 1. the best σ should be chosen such that

m− σ = σ, then σ =
m

2

We then give the following corollary.
Corollary 4.4. Let B ∈ (Hm(Γ2))2, Un ∈ (Hm(Γ2))3, U ∈ (Hα(Ω))3 with α =

min(4,m + 3
2), and other conditions in Theorem 4.1 be given. Suppose m = 1, 2, 3 and

choose q = m − 1 and σ = m
2 . The solutions from Method I of BP-FEMs lead to the

reduced convergence rates

‖|U − U∗
h‖|H = O(h

m
2 ), ||U − U∗

h ||(H2(Ω))3 = O(h
m
2 ) (4.71)

‖δU∗
h‖[0,1] = O(hm), ‖δ(U∗

n)h‖[0,1] = O(hm)

||(y∗n)h − b1(x∗n)h||H0(Γ2) = O(hm), ||(z∗n)h − b2(x̂∗n)h||H0(Γ2) = O(hm)
(4.72)

Similarly, we obtain the following corollary for Method II.
Corollary 4.5. Let B ∈ (Hm(Γ2))2, Un ∈ (Hm(Γ2))3, U ∈ (Hα(Ω))3 with

α = min(4,m + 3
2) and other conditions in Theorem 4.2 be given. Suppose m = 1, 2, 3

and choose σ = m
2 and p = m, i.e., the integration rules of order 2m − 2 are used for

the penalty integrals. The solutions from Method II of BP-FEMs satisfy the reduced
convergence rates

‖|U − Û∗
h‖|H = O(h

m
2 ), ||U − Û∗

h ||(H2(Ω))3 = O(h
m
2 ) (4.73)

‖δÛ∗
h‖[0,1] = O(hm), ‖δ(Û∗

n)h‖[0,1] = O(hm)

||(ŷ∗n)h − b1(x̂∗n)h||H0(Γ2) = O(hm), ||(ẑ∗n)h − b2(x̂∗n)h||H0(Γ2) = O(hm)
(4.74)

It is interesting to note that the best choice of σ and the reduced convergence rates
are the same in Corollaries 4.4 and 4.5. Table 1 provides a clear view on the important
theoretical results of Corollaries 4.2–4.5.

Table 1 The best parameters and convergence rates of solutions from Methods I and II by the

assumptions of B ∈ (Hm(Γ2))
2, Un ∈ (Hm(Γ2))

3, and U ∈ (Hα(Ω))3, where

α = min(4, m + 3
2
), 1 ≤ m ≤ 4

m σ Convergence Rates Method I Method II

‖U − Uh‖(H2(Ω))3 ‖(yn)h − b1(xn)h‖(H2(Γ2))3 q = m− 1 order 6 + 2q p order 2p− 2

4 2 O(h2) O(h4) 3 12 4 6

3 3
2

O(h
3
2 ) O(h3) 2 10 3 4

2 1 O(h) O(h2) 1 8 2 4

1 1
2

O(h
1
2 ) O(h) 0 6 1 2
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(3) However, Method II seems to be simpler since integration rules with lower order
are employed. To combining both advantages we may adopt integral rules in Method
II to approximate all the integrals in Method I, thus leading to Method III, (3.21), of
BP-FEMs. Error analysis related can be carried out similarly.

(4). For the purpose of blending surfaces, small division numbers m and n may
be chosen. For example, let n = m = 10 with uniform rectangles, then h = 0.1 and
h4 = 0.0001. Based on Corollaries 4.2 and 4.3, the boundary conditions of solutions
have the optimal convergence rate O(h4) = O(10−4). Suppose that such an accuracy
is even lower than that required by engineering designs, we may suitably modify the
numerical solutions. For example, since the property GC1 is our main concern, we may
use the average values as the final solutions on Γ1

U=
h (r, 0) = U=

h (r, 1) = (Uh(r, 0) + Uh(r, 1))/2, 0 < r < 1 (4.75)

(U=
n )h(r, 0) = (U=

n )h(r, 1) = ((Un)h(r, 0) + (Un)h(r, 1))/2, 0 < r < 1
(4.76)

where Uh = U∗
h , Û∗

h or ˆ̄U∗
h . Similarly, a suitable modification can also be made on the

derivatives on the boundary Γ2.

5. Numerical Experiments

In this section, the numerical experiments are designed to verify the basic optimal
convergence rates (4.68) and (4.69). A simple model of u(r, t) is chosen; the real
blending examples with three solutions, x(r, t), y(r, t) and z(r, t), will appear elsewhere.
Consider

∆2u(r, t) = 0,(r, t) in Ω, (5.1)

u = gon Γ2,
∂u

∂n
= g1 on Γ2, (5.2)

u(r, 0) = u(r, 1),ut(r, 0) = ut(r, 1) on Γ1, (5.3)

where Ω, Γ1 and Γ2 are given in Fig.2. Choose the particular solution

u(r, t) = sinh 2πr cos 2πt (5.4)

satisfying (5.1) and (5.3). So the functions g and g1 in (5.2) are found from (5.4).
We employ the following boundary penalty method

I(uh) = min
v∈V 0

h

I(v) (5.5)

where the energy

I(v) =
∫∫

Ω
(∆v)2dΩ +

Pc

h2σ

∫

Γ2

(∂v

∂n
− ḡ1

)2
dΓ

+
Pc

h2σ

[ ∫

Γ1

(v(r, 1)− v(r, 0))2dΓ +
∫

Γ1

(vt(r, 1)− vt(r, 0))2dΓ
]
.

(5.6)
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Here the optimal parameter σ = 2, based on Corollaries 4.2 and 4.3. V 0
h denotes the

space of the piecewise cubic Hermite functions satisfying the boundary condition

u = ḡ on Γ1. (5.7)

The functions ḡ and ḡ1 in (5.6) and (5.7) are the piecewise cubic Hermite interpolants
of g and g1 respectively.

The boundary penalty method (5.5) is, indeed, analogous to Method I of BP-FEMs
in (3.14)–(3.17). Since the integrands in (5.6) are piecewise polynomials of order up to
12, we may adopt the composite Gaussian rule of order six, to evaluate all the integrals
in (5.6) exactly. The Gaussian rule of sixth order is given in Davis and Rabinowitz(84)
as ∫ 1

−1
f(θ)dθ ≈

∫̂ 1

−1
f(x)dx =

4∑

k=1

wkf(θk),

with the following four nodes and weights

θk = ±0.8611363116, wk = 0.3478546451, k = 1, 2

θk = ±0.3399810436, wk = 0.6521451549, k = 3, 4.

Eq. (5.5) leads to a linear system of algebraic equations

AW = b (5.8)

where A is positive definite and symmetric, and W is a unknown vector. We use the
Gaussian elimination method to obtain W , i.e., uh in (5.5). For simplicity, the uniform
square elements, 2ij , are chosen with the boundary length h = 1/N , where N is the
division number along AB in Fig.2.

After trial computation, it is found that Pc = 1 ∼ 10 is a good choice due to rather
smaller errors of uh and condition number of matrix A. So we choose Pc = 5 in our
computation. The calculated results are provided in Table 2, where ε = uh − u, u is
the true solution (5.4). In Table 2, ‖ε‖k,Ω are the Sobolev norm over Hk(Ω), and other
notations are

|ε|0,∞ =max
Ω
|ε|, |ε|1,∞ = max{|εr|, |εt|}

|ε|2,∞ =max
Ω
{|εrr|, |εrt|, |εtt|},

‖(uh)n − g1‖Γ2 =‖(uh)n − g1‖H0(Γ2) =
( ∫

Γ1

((uh)n − g1)2dΓ
)1

2

‖ε‖Γ1 =
{ ∫ 1

0
[(uh(r, 1)− u(r, 1))2 + ((uh)t(r, 1)− ut(r, 1))2]

}1
2

‖δuh‖Γ1 =
(
‖δuh‖2

[0,1] + ‖δ(uh)t‖2
[0,1]

)1
2

=
{ ∫ 1

0
[(uh(r, 1)− uh(r, 0))2 + ((uh)t(r, 1)− (uh)t(r, 0))2]d`

}1
2



478 Z.C. LI

Table 2 The error norms for different N as σ = 2 and Pc = 5.

N 2 4 6 8 12 16

|ε|0,∞ 12.9 2.95 0.0855 0.0318 0.727× 10−2 0.246× 10−2

|ε|1,∞ 95.4 34.7 12.6 5.70 1.78 0.765

|ε|2,∞ 0.214× 104 0.125× 104 664 398 185 106

‖ε‖0,Ω 4.45 0.878 0.191 0.0626 0.0127 0.406× 10−2

‖ε‖1,Ω 44.1 10.6 3.14 1.33 0.392 0.165

‖ε‖2,Ω 624 260 119 67.5 30.3 17.1

‖(uh)n − g1‖Γ2 30.2 11.6 2.34 0.745 0.148 0.0468

‖ε‖Γ1 6.50 0.650 0.148 0.0495 0.0101 0.0325

‖δuh‖Γ1 5.96 0.146 0.0141 0.253× 10−2 0.211× 10−3 0.350× 10−4

Note that the values of errors in Table 2 are in an absolute sense. Since the true solution
of (5.4) are large, with the norms, max

Ω
|u| = 264 and ‖u‖0,Ω = 53.4, the relative errors

from Table 2 are small. The error curved are depicted in Figs 3 and 4, based on the
data in Table 2. It can be discovered that the following asymptotic relations hold.

‖ε‖k,Ω = O(h4−k), k = 0, 1, 2, (5.9)

‖(uh)n − g1‖Γ2 = O(h4), (5.10)

‖ε‖Γ1 = O(h4), (5.11)

‖δuh‖Γ1 = O(h6). (5.12)

The computed results ‖ε‖2,Ω = O(h2) and (5.10) have verified perfectly the important
optimal convergence rates, (4.68) and (4.69).

Fig.3 The error curves of ‖ε‖k,Ω versus Fig.4 The error curves of ‖(uh)n − g‖Γ2

N with σ = 2 and Pc = 5 versus N with σ = 2 and Pc = 5 and ‖δ(uh)t‖γ1

To our surprise, O(h6) in Eqs. (5.12) is superconvergence, compared to O(h4) given
in Corollaries 4.2 and 4.3. Some numerical solutions at the boundary nodes are listed in
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Table 3. The numerical solutions uh(r, 0) (or (uh)r(r, 0)) are almost identical to uh(r, 1)
(or (uh)r(r, 1)). Interestingly, the numerical digits of (uh)t(r, 0) (or (uh)rt(r, 0)) are also
almost identical to (uh)t(r, 1) (or (uh)rt(r, 1)), but with opposite signs; these solutions
are just the errors due to the null true solutions. Other numerical experiments display
that by using the boundary penalty techniques in this paper, the periodical conditions
(5.3) of numerical solutions are satisfied with an extreme accuracy if the true solutions
such as (5.4) also satisfy the conditions, ∂

∂n∆u|Γ1 = ∆u|Γ1 = 0. The better performance
of the penalty techniques on the periodical boundary conditions can be explained by
the following arguments. The penalty techniques in (5.6) play a role of enforcing
the constraints (5.3); the error estimates in (4.31) by means of the norm triangular
inequality and the true solution interpolant Ūh may be overestimated. In fact, the true
errors ‖ε‖Γ1 on Γ1 can have the optimal convergence rates O(h4), see (5.11).

Table 3 The approximate and true solutions at the periodical boundary on t = 0, 1

and r = 1
4
, 1

2
, 3

4
as N = 16, σ = 2 and Pc = 5.

Solutions u(r, t) ur(r, t) ut(r, t) urt(r, t)

t = 0 2.300990 15.763687 0.700862× 10−7 0.442241× 10−4

r = 1
4

t = 1 2.300990 15.763687 −0.700874× 10−7 −0.442241× 10−4

True 2.301299 15.765633 0 0

t = 0 11.547870 72.832207 0.337905× 10−6 0.202781× 10−3

r = 1
2

t = 1 11.547870 72.832207 −0.337911× 10−6 −0.202781× 10−3

True 11.548379 72.834391 0 0

t = 0 55.653345 349.745630 0.490877× 10−6 0.782088× 10−3

r = 3
4

t = 1 55.653345 349.745630 −0.490902× 10−6 −0.782088× 10−3

True 55.654398 349.743337 0 0

Concluding Remarks. In summary, the new approaches using PDEs in this paper
are proposed to construct general and complicated blending surfaces. The solutions of
blending surfaces are sought to minimize the global curvature of the entire surface, and
the additional boundary conditions are then found to lead to unique PDE solutions.
The boundary penalty FEMs are significant to treat complicated boundary conditions
since the algorithms can be carried out simply and easily, and since theoretical analysis
is also provided. New analysis is devoted to error bounds of the boundary constraints
so that useful guidance in approximation of functions b1 and b2 are discovered. Not
only may the optimal convergence rate O(h2) of second order generalized derivatives
be maintained, but also the high convergence rate O(h4) of the tangent boundary
conditions of solutions can be achieved. High accuracy of solutions implies that small
division numbers m and n can be chosen in computation, thus to save CPU time
significantly. A numerical example is given to support the basic error analysis made.
On the whole, the merits of the algorithms in this paper lie in flexibility and generality
to produce the blending surfaces subjected to the complicated boundary conditions,
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