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Abstract. In [20], we analytically identified natural superconvergent points of

function values and gradients for several popular three-dimensional polynomial

finite elements via an orthogonal decomposition. This paper focuses on the

detailed process for determining the superconvergent points of pentahedral and

tetrahedral elements.
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1. Introduction

Superconvergence of the finite element (FE) method is a phenomenon that, at
special a priori points, the convergent rate of FE approximations exceeds what
is globally possible. By natural superconvergence, we mean that a higher order
accuracy is achieved without applying any recovering or averaging techniques in
the FE solution.

There have been many studies concerning with superconvergence of FE meth-
ods since the 1970s [8]. Books and survey papers have been published. For the
literature, we refer to [1, 6, 7, 11, 12, 13, 17, 21] and references therein.

In [3], Babuška et al. predicted derivative superconvergent points for the Laplace
equation, the Poisson equation, and linear elasticity equations. They reduced the
problem of finding natural superconvergent points to the problem of finding inter-
sections of certain polynomial contours. The actual superconvergent points were
determined by computer programs without explicitly constructing those polynomi-
als. Therefore, this approach is called “computer-based” proof.

Later, Zhang proposed an analytic approach. By an orthogonal decomposition
under local rectangular and brick (hexahedral) meshes [18, 19], he constructed ex-
plicitly the polynomials for determining the superconvergent points in the “computer-
based” proof and obtained analytically, superconvergence results in FE solutions
for the tensor product, serendipity, and intermediate families. In [14], the au-
thors studied natural superconvergence of derivatives and function values under
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four mesh patterns of triangular elements via the same approach. Our results con-
firmed those provided in [3] by the “computer-based” proof. Moreover, many new
superconvergence results were obtained.

Recently, the authors have reported some natural superconvergence results for
several 3D FE, which are used to approximate sufficiently smooth solutions of the
Poisson and the Laplace equations [20]. The main theorems in the “computer-
based” proof are generated to the 3D problems. Several FE meshes and spaces
are studied in details. In particular, Lagrangian and serendipity elements of both
hexahedron and pentahedron (triangular prism) are considered. Two patterns of
tetrahedral elements are also discussed.

We notice that there are many cases involved in the investigation [20], and the
process in 3D problems is rather complicated. Therefore, detailed explanation is
necessary for retrieval and a better recognition of the method. Since the situation
for the hexahedral elements has been thoroughly studied in [18, 20], the present
paper shall focus on the approach of locating superconvergent points of pentahedral
and tetrahedral elements.

In Section 2, some notations are introduced. The FE meshes and spaces are
also described. The procedure of how to determine superconvergent points are
illustrated through detailed examples. In particular, an example for tetrahedral
element is provided in Section 3. Several points of comparison between two tetra-
hedral partitions are also addressed. Examples for the Lagrangian and serendipity
pentahedral elements are given in Section 4 and 5, respectively. A summary for
superconvergence results of the discussed elements of order 2 and 3 is given in the
last section.

2. Preliminaries

2.1. Notations. Assume that a 3D FE mesh is locally translation invariant. Then,
as shown in [3, 20], the task of finding superconvergent points can be narrowed down
in the master cell, or equivalently in the reference cell K = [−1, 1]3. In the context,
(ξ, η, ζ) is used for the standard Euclidean coordinates in K.

Let Vn(K) and V π
n (K) be the FE local space and the periodic FE local space of

order n defined on K, respectively. Let Πn be the space defined by

Πn = Span
{

ξiηjζk | 0 ≤ i, j, k ≤ n, 0 ≤ i + j + k ≤ n
}
.

Write Πn(K) the restriction of Πn on K. Associated with a particular partition
of K, we denote Πw

n (K) (resp. Ππ
n(K)) the set of piecewisely continuous (resp.

periodic piecewise continuous) polynomials of degree not greater than n.
We need to point out that, for pentahedral elements, Πw

n (K) is a proper subset
of Vn(K), and Ππ

n(K) ( V π
n (K); For tetrahedral elements, Πw

n (K) = Vn(K), and
Ππ

n(K) = V π
n (K).

Denote the set of (n + 1)th degree homogeneous harmonic polynomials in three
variables by Hn+1. Then it is shown that dimHn+1 = 2n + 3 [2]. Furthermore, by
the Kelvin transform, we can obtain an explicit basis of Hn+1.
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(a) Pentahedral Elements (b) Tetrahedral Elements

Figure 1. Partition of K for Pentahedral and Tetrahedral Elements

Now, for n ≥ 1, we define Φn+1(K) the subset of Ππ
n+1(K), which consists of

functions ψ decomposable into Πn+1(K) and Πw
n (K), so that the following condi-

tions hold:

(2.1)
∫

K

ψ = 0;
∫

K

∇ψ · ∇v = 0, ∀v ∈ Ππ
n(K).

It is straightforward to show that dimΦn+1(K) = dimΠn+1(K)−dim Πn(K). This
proposition implies that, for each monomial of degree (n + 1), there is a unique
function in Φn+1(K) corresponding to it. Similar statement holds for polynomials
in Hn+1(K). We define the following set.

(2.2) ΦHn+1(K) = {ψ ∈ Φn+1(K) | ψ = χ + r, χ ∈ Hn+1(K), r ∈ Πw
n (K) } .

Moreover, dim ΦHn+1(K) = dimHn+1(K).

Two sets of auxiliary functions will also be used. Let Pk be the Legendre poly-
nomial of degree k on [−1, 1]. Define

(2.3)
φ0(x) = 1, φ1(x) = x,

φk(x) =
∫ x

−1

Pk−1(t) dt, k = 2, 3, . . .

When k ≥ 2, φk(x) are polynomials vanishing at x = ±1. Therefore, we may define
polynomials ϕk(x) so that

(2.4) φk(x) =
1
4
(1− x2)ϕk−2(x), k = 2, 3, . . .

We note that both φk and ϕk are defined for k = 0, 1, . . . ; In addition, the subscripts
indicate the degrees of the polynomials.

2.2. Finite Element Meshes and Spaces. As described in [20], hierarchic bases
are used for the local FE spaces Vn(K). Four types of modal functions are involved:
nodal shape functions, edge modes, face modes, and internal modes (see also [16]).

In pentahedral mesh, we assume that each cell (cube) is divided into two prisms.
The master cell is mapped to K as in Figure 1 (a). We will refer the element
{ξ ≥ η} as e1 and the other element as e2.
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Lagrangian and serendipity pentahedral elements are used, whose explicit basis
functions are defined in [20]. Then the bases of V π

n (K) can be constructed.

For tetrahedral meshes, we consider the partition scheme shown in Figure 1 (b)
in this paper. It is also called Kuhn partition of the unit cube [4]. One way to
visualize the partition is cutting K by 3 planes: ξ = η, η = ζ, and ζ = ξ. We
shall note that the superconvergence results in [4, 5, 9, 10] are all for tetrahedral
elements partitioned in this scheme. For convenience, we denote e1 = {ξ ≥ η ≥ ζ},
e2 = {ξ ≥ ζ ≥ η}, e3 = {ζ ≥ ξ ≥ η}, e4 = {ζ ≥ η ≥ ξ}, e5 = {η ≥ ζ ≥ ξ}, and
e6 = {η ≥ ξ ≥ ζ}. These six tetrahedra are isomorphic and symmetric.

Bases of the FE local spaces are defined in [16, 20]. Then, the periodic bases of
V π

n (K) can be obtained from Vn(K) [20].

3. Tetrahedral element

For tetrahedral element, we have Πn(K) ⊂ Πw
n (K) = Vn(K). Since Vn(K) does

not contain any polynomial of degree greater than n, it follows that

Πn+1(K) \Vn(K) = Πn+1(K) \Πn(K),

whose dimension is (n + 2)(n + 3)/2. Moreover,

Φn+1(K)\Vn(K) = Φn+1(K)

with the same dimension. According to the main theorems in [20], to study the
superconvergence, we shall first determine Φn+1(K)\Vn(K), which is Φn+1(K) in
this case.

3.1. Determining Φn+1(K). Suppose K is partitioned into tetrahedra as in Fig-
ure 1 (b). Let u be a monomial of degree (n + 1) in three variables. We define an
interpolation operator In such that:

(i) Inu ∈ Vn(K), and

(3.5) Inu(np) = u(np), p = 1, . . . , 8;

(ii) Along each edge l,

(3.6)
∫

l

(u− Inu)rj dr = 0, j = 0, 1, · · · , n− 2;

(iii) On each face S,

(3.7)
∫

S

(u− Inu)rjsk dr ds = 0, j, k ≥ 0, j + k = 0, 1, · · · , n− 3;

(iv) In each tetrahedron T ,

(3.8)
∫

T

(u− Inu)ξjηkζl dξ dη dζ = 0, j, k, l ≥ 0, j + k + l = 0, 1, · · · , n− 4,

where np stands for the pth node of K. We shall note that u − Inu is a periodic
function in K [17]. Thus, a periodic FE approximation zπ of u − Inu is obtained
by solving

(3.9)

∫

K

∇(u− Inu− zπ) · ∇v = 0, ∀v ∈ V π
n (K);

∫

K

(u− Inu− zπ) = 0.
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Then u − Inu − zπ is the unique correspondence of u in Φn+1(K). Letting u run
through all monomials of degree (n + 1), we get a basis of Φn+1(K).

As an example, we show the detailed process for the case of n = 2. We need to
find a basis of Φ3(K). For instance, for monomial ξηζ, the interpolation is

(3.10) In(ξηζ) =





−ξη + ηζ + η in e1

−ξζ + ηζ + ζ in e2

ξη − ξζ + ξ in e3

ξη − ηζ + η in e4

ξζ − ηζ + ζ in e5

−ξη + ξζ + ξ in e6

.

Solve the FE problem (3.9). We get the associated correction term zπ|ξηζ = 0.
Finally, ξηζ−In(ξηζ)−zπ|ξηζ is the function in Φ3(K) associated to ξηζ. Similarly,
we can obtain the functions in Φ3(K) associated to all monomials of degree 3, which
form a basis of Φ3(K).

Recall that the six tetrahedra obtained from Kuhn partition are isomorphic
and symmetric. Therefore, it is sufficient to determine the expressions for the
piecewisely defined basis functions in only one tetrahedron, say e1. The expressions
in the other tetrahedra are obtained by symmetry. A basis of Φ3(K) for tetrahedral
finite element are (in e1):

(3.11)

ψ1
3 = ξ3 − ξ, ψ6

3 = η2ζ + η2 − ηζ − η,

ψ2
3 = η3 − η, ψ7

3 = η2ξ − η2 + ξη − η,

ψ3
3 = ζ3 − ζ, ψ8

3 = ζ2ξ − ζ2 + ζξ − ζ,

ψ4
3 = ξ2η + ξ2 − ξη − ξ, ψ9

3 = ζ2η − ζ2 + ηζ − ζ,

ψ5
3 = ξ2ζ + ξ2 − ζξ − ξ, ψ10

3 = ξηζ + ξη − ηζ − η.

3.2. Superconvergence for the Poisson Equation. The main theorems in
[20] indicate that, when n > 1, the nth order function value superconvergent
points for the Poisson equation are the intersections of the basis functions of
Φn+1(K)\Vn(K); When n ≥ 1, the derivative superconvergent points for the Pois-
son equation are the common zeros of the corresponding derivatives of the basis
functions of Φn+1(K)\Vn(K).

For the tetrahedral elements, Φn+1(K)\Vn(K) = Φn+1(K). We continue on the
example in §3.1. For function value superconvergence in e1, we need to find the
intersections of all the polynomials in (3.11). It is straightforward to verify that, in
this particular case, the vertices and the midpoint of edges of e1 are the function
value superconvergent points. In addition, by symmetry, one concludes that the
symmetry points (namely, the vertices, the midpoint of edges, the centroid of faces,
and the centroid) of K are the function value superconvergent points in K.

On the other hand, the derivative superconvergent points are the common zeros
of the according derivatives of these functions. For instance, the ξ-derivative super-
convergent points in e1 are common zeros of the ξ-derivatives of the 10 functions
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Figure 2. Tetrahedral Partition Scheme 2

in (3.11); i.e. we need to solve the equation system consists of

(3.12)

∂ψ1
3

∂ξ = 3ξ2 − 1 = 0,
∂ψ7

3
∂ξ = η2 + η = 0,

∂ψ4
3

∂ξ = 2ξη + 2ξ − η − 1 = 0,
∂ψ8

3
∂ξ = ζ2 + ζ = 0,

∂ψ5
3

∂ξ = 2ξζ + 2ξ − ζ − 1 = 0,
∂ψ10

3
∂ξ = ηζ + η = 0,

since the ξ-derivatives of the other polynomials are 0. It turns out that the two
second order Gaussian points (±√3/3, −1, −1) of the edge l12 are the ξ-derivative
superconvergent points in e1. By symmetry, it follows that the second order Gauss-
ian points of the edges parallel to the ξ axis are the ξ-derivative superconvergent
points in K.

3.3. Superconvergence for the Laplace Equation. We have analogous the-
orems for the Laplace equation [20]; namely, the nth order function value (resp.
derivative) superconvergent points for the Laplace equation are the common zeros
(resp. of the corresponding derivative) of the basis functions of ΦHn+1(K)\Vn(K).

For the tetrahedral elements, ΦHn+1(K)\Vn(K) = ΦHn+1(K). Continue the exam-
ple of quadratic element. We need a basis of ΦH3 (K). From §2.1, we know that the
dimension of ΦH3 (K) is the same as that of H3, which is 7. A basis of ΦH3 (K) is

(3.13)
ψ1

3 − 3ψ7
3 , ψ2

3 − 3ψ4
3 , ψ3

3 − 3ψ5
3 ,

ψ1
3 − 3ψ8

3 , ψ2
3 − 3ψ9

3 , ψ3
3 − 3ψ6

3 ,

ψ10
3 .

In general, the degree (n + 1) terms of a function in ΦHn+1(K) must be harmonic.
Now, the superconvergent points can be obtained by solving the proper equation

systems. For this particular case, the superconvergence results for the Laplace
equation are the same as those for the Poisson equation.

3.4. Remarks.

Remark 3.1. Another partition scheme yielding 5 tetrahedra is also studied in
[20]. See Figure 2 (a). Noting that one cube partitioned in this scheme is not
translation invariant. Thus, we need 8 cubes in a patch (master cell). See Figure 2
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(b). To determine superconvergence, we use the same approach as described for
the Kuhn partition. However, at this time, there are 40 elements involved and the
process is much more complicated.

Remark 3.2. We compare the superconvergence results for tetrahedral elements in
the two partition schemes. In the Kuhn partition, superconvergence always occurs
at the symmetry points, which can be predicted by the symmetry theory [15]. In
addition, the results for the Poisson and the Laplace equations are the same. The
example of quadratic element is provided above.

In the second scheme, for the Poisson equation, superconvergent points are all
symmetry points. However, for the Laplace equation, some non-symmetry points
are also superconvergent points. For instance, when n = 2, the function value
superconvergent points for the Poisson equation are the vertices and the midpoints
of diagonal edges; for the Laplace equation, the midpoints of horizontal and vertical
edges are superconvergent points as well. Note that the midpoints of edges parallel
to the axes are not symmetry points. Similarly, for derivatives, superconvergence
only happens at the second order Gaussian points of the diagonal edges for the
Poisson equations, while it occurs also at the Gaussian points of the edges parallel
to the axes for the Laplace equation.

4. Lagrange Pentahedral element

4.1. Determining Φn+1(K)\Vn(K) and ΦHn+1(K)\Vn(K). Consider Lagrangian
pentahedral elements. We shall note that, in this case, the nth order FE space
Vn(K) consists of basis functions of degree greater than n. In particular,

Πn+1(K) \Vn(K) = Span
{
ζn+1, ξn+1−iηi, i = 0, . . . , n + 1

}
,

whose dimension is (n + 3). Then Φn+1(K)\Vn(K) can be determined by the way
described in Section 3.

We take the case of n = 3 as an example. To simplify notations, we write
piecewisely defined function

(4.14) f(x) =

{
f1(x) in e1

f2(x) in e2

as

(4.15) f(x) =

{
f1(x)
f2(x)

.

For monomial ζ4, we have In(ζ4) = 6
5ζ2− 1

5 , where In is similar as the interpola-
tion operator described in §3.1. Solving the FE problem (3.9), we get the correction
term zπ|ζ4 = 0. Thus, the basis function in Φ4(K) associated to ζ4 is

(4.16) ζ4 − In(ζ4)− zπ|ζ4 = ζ4 − 6
5
ζ2 +

1
5

=
8
5

φ4(ζ).

As another example, consider monomial ξ3η. The interpolation is obtained as

(4.17) In(ξ3η) =

{
−ξ3 + ξ2η + ξ2 + 1

5ξη + 1
5ξ − 1

5η − 1
5

ξ3 − ξ2η + ξ2 + 1
5ξη − 1

5ξ + 1
5η − 1

5

.
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From (3.9), we get the correction term

(4.18) zπ|ξ3η =

{
5
14ξ2η − 5

14ξη2 + 3
14ξ2 − 4

7ξη + 3
14η2 − 3

14ξ + 3
14η + 1

21

− 5
14ξ2η + 5

14ξη2 + 3
14ξ2 − 4

7ξη + 3
14η2 + 3

14ξ − 3
14η + 1

21

.

Thus, the basis function in Φ4(K) associated to ξ3η is ξ3η−In(ξ3η)−zπ|ξ3η, which
is independent to ζ. Moreover, we shall note that it is a basis function for the
triangular elements in regular pattern studied in [14].

Apply the process to all monomials in Πn+1(K) \Vn(K), we get a basis of
Φ4(K)\V3(K).

ψ1
4 = φ4(ζ),

ψ2
4 =

{
ξ4 − 3

7ξ2η + 3
7ξη2 − 51

35ξ2 + 24
35ξη − 9

35η2 + 9
35ξ − 9

35η + 1
7

ξ4 + 3
7ξ2η − 3

7ξη2 − 51
35ξ2 + 24

35ξη − 9
35η2 − 9

35ξ + 9
35η + 1

7

,

ψ3
4 =

{
ξ3η + ξ3 − 19

14ξ2η + 5
14ξη2 − 17

14ξ2 + 13
35ξη − 3

14η2 + 1
70ξ − 1

70η + 16
105

ξ3η − ξ3 + 19
14ξ2η − 5

14ξη2 − 17
14ξ2 + 13

35ξη − 3
14η2 − 1

70ξ + 1
70η + 16

105

,

ψ4
4 =

{
ξ2η2 + 6

7ξ2η − 6
7ξη2 + 1

21ξ2 − 116
105ξη + 1

21η2 − 26
105ξ + 26

105η + 43
315

ξ2η2 − 6
7ξ2η + 6

7ξη2 + 1
21ξ2 − 116

105ξη + 1
21η2 + 26

105ξ − 26
105η + 43

315

,

ψ5
4 =

{
ξη3 − 5

14ξ2η + 19
14ξη2 − η3 − 3

14ξ2 + 13
35ξη − 17

14η2 + 1
70ξ − 1

70η + 16
105

ξη3 + 5
14ξ2η − 19

14ξη2 + η3 − 3
14ξ2 + 13

35ξη − 17
14η2 − 1

70ξ + 1
70η + 16

105

,

ψ6
4 =

{
η4 − 3

7ξ2η + 3
7ξη2 − 9

35ξ2 + 24
35ξη − 51

35η2 + 9
35ξ − 9

35η + 1
7

η4 + 3
7ξ2η − 3

7ξη2 − 9
35ξ2 + 24

35ξη − 51
35η2 − 9

35ξ + 9
35η + 1

7

.

We note that, any polynomial in H4(K) \V3(K) is a combination of ζ4, ξ4 −
6ξ2η2 + η4, and ξ3η − ξη3. Accordingly, ΦH4 (K)\V3(K) has a basis of ψ1

4 , ψ2
4 −

6ψ4
4 + ψ6

4 , and ψ3
4 − ψ5

4 .

4.2. Superconvergence Results. As mentioned in Section 3, we can study su-
perconvergence of the Poisson and the Laplace equations.

It is an important fact that ψ2
4 , ψ3

4 , ψ4
4 , ψ5

4 , and ψ6
4 form exactly a basis of

the polynomial space Φ4(K) for the regular triangular element specified in [14],
which is independent of ζ. Consequently, the superconvergent points for Lagrangian
pentahedral elements are obtained from the tensor-product of the one-dimensional
superconvergent points in ζ-direction and the superconvergent points for regular
triangular elements in ξη-plane. See Section 6. We shall also declare that this is a
general fact for the Lagrangian pentahedral elements.

5. Serendipity pentahedral element

5.1. Superconvergence for the Poisson Equation. For serendipity pentahe-
dral elements, we have

Πn+1(K) \Vn(K) = Span
{
ξn+1−i−jηiζj | i, j, i + j = 0, . . . , n + 1, j 6= 1, n

}
,

which has dimension 4 for n = 1 and dimension n(n + 3)/2 for n > 1. Using
the process introduced in Section 3 to all monomials in Πn+1(K) \Vn(K), we can
determine Φn+1(K)\Vn(K) accordingly. We shall note that, when n = 1 and 2,
the spaces for serendipity elements are the same as those for Lagrangian elements.
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When n ≥ 3, the spaces are different. For instance, Φ4(K)\V3(K) has 9 basis
functions, where the first 6 are the same as those for Lagrangian elements specified
in §4.1. The others are

ψ7
4 = φ̃2(ξ)φ̃2(ζ),

ψ8
4 = φ̃2(η)φ̃2(ζ),

ψ9
4 =

{
ξηζ2 + ξζ2 − ηζ2 − 1

3ξη − 2
3ζ2 − 1

3ξ + 1
3η + 2

9

ξηζ2 − ξζ2 + ηζ2 − 1
3ξη − 2

3ζ2 + 1
3ξ − 1

3η + 2
9

.

where φ̃2 = φ2 + 1
3 .

Hence, for 3rd order serendipity pentahedral elements, the function value super-
convergent points of the Poisson equation are common zeros of ψi

4, i = 1, . . . , 9. It
is straightforward to check that there is not any common zero. Therefore there is
no function value superconvergent point in this case.

On the other hand, the derivative superconvergent points are common zeros
of the corresponding derivative of the basis functions. When n = 3, the ξ- and
η-derivative superconvergence results for the serendipity element are the same as
those for the Lagrangian element. But the ζ-derivative superconvergent points are
only on the plane {ζ = 0}, rather than on all the Gaussian planes {P3(ζ) = 0} for
the Lagrangian element.

5.2. Superconvergence for the Laplace Equation. We next consider super-
convergence of the Laplace equation. Note that ξζ3, ηζ3, and ξiη3−iζ, i = 0, . . . , 3,
are all in the local FE space V3(K). Thus, a harmonic polynomial in H4(K)\V3(K)
is a combination of the following 5 functions, instead of the 9 basis functions in
H4(K).

(5.19)
ξ4 − 6ξ2η2 + η4, η4 − 6η2ζ2 + ζ4, ζ4 − 6ζ2ξ2 + ξ4,

ξ3η − ξη3, ξ3η − 3ξηζ2.

Therefore, ΦH4 (K)\V3(K) has a basis of

(5.20)
ψ1

4 − 6ψ7
4 + ψ2

4 , ψ1
4 − 6ψ8

4 + ψ6
4 , ψ2

4 − 6ψ4
4 + ψ6

4 ,

ψ3
4 − ψ5

4 , ψ3
4 − 3ψ9

4 .

Thus, the 3rd order function value superconvergent points are common zeros of the 5
functions in (5.20). Similar as for the Poisson equation, there is no superconvergent
point for the Laplace equation in this case.

The derivative superconvergent points are common zeros of the corresponding
derivative of the basis functions. For cubic element, the ξ- and η-derivative super-
convergence results for the Laplace equation are the same as those for the Poisson
equation. However, it is straightforward to verify that, the ζ-derivative supercon-
vergent points for the Laplace equation are on the plane {ζ = 0} and the points
±(1−√3/3,−1 +

√
3/3,±

√
90− 50

√
3/5), which are different from the results for

the Poisson equation.

6. Summary

In this section, we gather the superconvergence results for the tetrahedral, La-
grangian pentahedral, and serendipity pentahedral elements of both the Poisson
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and the Laplace equations. Function value and derivative superconvergence for
elements of order 2 and 3 are involved in the following tables.

Table 1. Function Value Superconvergence Results

Tetra. Lagrangian Penta. Serendipity Penta.

n PE, LE PE LE PE LE

2 SPK SPK SPK ∪ Set1 SPK SPK ∪ Set1

3 None None Set2 None None

Here, PE and LE stand for the “Poisson equation” and the “Laplace equation”,
respectively. SPK is the set of the 27 “symmetry points of K”

{(ξ, η, ζ) | ξ, η, ζ = −1, 0, or 1}.
Set1 is the set of 12 points in the tensor product{

± ( 1
4 ,− 1

4 )±
√

7
4 (1, 1)

}
⊗ {±1, 0},

and Set2 is the set of 48 points in{
±(±

√
225−30

√
30

15 , 1), ±(1,±
√

225−30
√

30
15 ), ±(1, 1) ·

√
450±30

√
105

30

}
⊗

{
±1,± 1√

5

}
.

Recall that the ξ- and η-derivative superconvergent points for the pentahedral
elements are symmetric. Therefore, we collect only the ξ- and ζ-derivative super-
convergence results for the pentahedral elements in Table 2.

Table 2. Derivative Superconvergence Results

Tetra. Lagrangian Penta. Serendipity Penta.

n PE,LE PE LE PE LE

2 GPt
ξ- : Set3

ζ- : PL2

ξ- : Set3 ∪ Set4

ζ- : PL2

ξ- : Set3

ζ- : PL2

ξ- : Set3 ∪ Set4

ζ- : PL2

3 MPt
ξ- : Set5

ζ- : PL3

ξ- : Set6

ζ- : PL3

ξ- : Set5

ζ- : {ζ = 0}
ξ- : Set6

ζ- : Set7

Here, GPt (resp. MPt) stands for the set of “second order Gaussian points (resp.
midpoints) of the edges parallel to the corresponding derivative direction”; PLn is
the set of Gaussian planes {Pn(ζ) = 0}. Moreover, we have

Set3: lines
{

ξ = ± 1√
3
, η = ±1

}
;

Set4: lines
{

ξ = 1
2 , η = − 1

2 ±
√

6
6

}
and

{
ξ = − 1

2 , η = 1
2 ±

√
6

6

}
;

Set5: lines {ξ = 0, η = ±1} ;

Set7: plane {ζ = 0} and points
{
±(1−

√
3

3 , −1 +
√

3
3 , ±

√
90−50

√
3

5 )
}

,

and Set6 is the union of the lines
{ξ = 0, η = ±1} ∪ {ξ = ±1, η = ±1}

∪
{

256ξ5 − 416ξ4 + 173ξ3 + 21ξ2 − 17ξ − 1 = 0, η = ±
√

3ξ2 − 2ξ, ξ ≥ η
}

∪
{

256ξ5 + 416ξ4 + 173ξ3 − 21ξ2 − 17ξ + 1 = 0, η = ±
√

3ξ2 + 2ξ, ξ ≤ η
}

.
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The reader is referred to [20] for the superconvergence results of tetrahedral
and pentahedral elements of order up to 4 and 5, respectively. We stop pursuing
superconvergent points of higher order elements after the first internal mode is
involved. However, one may apply this method to obtain superconvergence results
for a desired element without essential difficulty.
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