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Abstract

In this paper, we consider some multigrid algorithms for the biharmonic prob-
lem discretized by Morley element on nonnested meshes. Through taking the aver-
ages of the nodal variables we construct an intergrid transfer operator that satisfies
a certain stable approximation property. The so-called regularity-approximation
assumption is then established. Optimal convergence properties of the W -cycle
and a uniform condition number estimate for the variable V -cycle preconditioner
are presented. This technique is applicable to other nonconforming plate elements.
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1. Introduction

We consider some multigrid algorithms for the biharmonic equation discretized by
Morley element on nonnested meshes. To define a multigrid algorithm, certain in-
tergrid transfer operator has to be constructed. Through taking the averages of the
nodal variables, we construct an intergrid transfer operator for Morley element on
nonnested meshes that satisfies a certain stable approximation property which plays a
key role in multigrid methods for nonconforming plate elements on nonnested meshes.
The so-called regularity-approximation assumption is established by using the stable
approximation property of the intergrid transfer operator. Optimal convergence prop-
erties of the W -cycle and a uniform condition number estimate for the variable V -cycle
preconditioner are obtained by applying the abstract theory of Bramble, Pasciak and
Xu [2]. This technique is applicable to other nonconforming plate elements.

There are some earlier papers on multigrid methods for nonconforming plate ele-
ments. Peisker and Braess [6] considered the W−cycle for the Morley element. Brenner
[3] studied the W -cycle for Morley element through defining the intergrid transfer op-
erator by taking the averages of the nodal variables and simplified the algorithms and
analysis. Shi, Yu and Xie [8] studied the W -cycle for Bergan’s energy-orthogonal plate
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element through defining the intergrid transfer operator by taking a linear combination
of the nodal parameters of the same coarse grid element. Recently, Bramble [1] dis-
cussed variable V -cycle preconditioner for Morley element. All these papers consider
the case when the triangulations are nested.

The paper is organized as follows. In section 2, we briefly describe the Morley
approximation of the biharmonic Dirichlet problem. In section 3, we define an intergrid
transfer operator and establish a certain stable approximation property of the intergrid
transfer operator using a direct technique [9]. In section 4, we describe the multigrid
methods, and establish the optimal convergence properties of the W -cycle and a uniform
condition number estimate for the variable V -cycle preconditioner for Morley element
on nonnested meshes.

2. Morley Element Approximation

We consider the biharmonic problem in Ω with Dirichlet boundary conditions ∆2u =

f , in Ω and u =
∂u

∂n
= 0, on ∂Ω, where Ω is a convex polygon in R2, f ∈ H−l(l = 0, 1).

The variational form of the problem is: Find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω), (2.1)

where
a(u, v) =

∑

|α|=2

∫

Ω
DαuDαvdx, (f, v) =

∫

Ω
fvdx.

Let {Γk}, k ≥ 1, be a family of quasi-uniform triangulations of Ω. Let hk =
max {diamτ ; τ ∈ Γk}. We allow nonnested triangulations; however, we assume that
the mesh parameters hk satisfy 0 < γ1 ≤ hk+1/hk ≤ γ2 < 1, where γi(i = 1, 2) are
constants independent of k. From this assumption we see that for τ ∈ Γk, the number
of elements {τ ′ ∈ Γk−1 or τ ′ ∈ Γk+1; τ̄ ′ ∩ τ 6= φ} is finite and is independent of k. Let
Vk be Morley element space with respect to Γk [4,7] such that

a) for each triangle τ ∈ Γk, u|τ is a quadratic polynomial,
b) u is continuous at vertices and vanishes at vertices along ∂Ω,

c) the normal derivative
∂u

∂n
is continuous at the midpoints of each τ ∈ Γk and

vanishes at midpoints along ∂Ω.
The finite element method of the problem (2.1) is: Find uk ∈ Vk such that

ak(uk, vk) = (f, v), ∀v ∈ Vk, (2.2)

where
ak(u, v) =

∑

τ∈Γk

∑

|α|=2

∫

τ
DαuDαvdx.

Denote the induced norm ‖u‖2,hk
= (ak(u, u))1/2. Let Πk be the nodal interpolation

operator of Morley element from H3(Ω) ∩H2
0 (Ω) onto Vk. The following estimate for

the interpolation error is known (cf.[4, 7]):

‖w −Πkw‖2,hk
≤ Chk|w|H3(Ω) (2.3)

for all w ∈ H3(Ω) ∩H2
0 (Ω). Through this paper we let C (with or without subscripts)
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be a generic positive constant independent of the mesh parameter k. The following
error estimate of Morley element is known [7]

‖u− uk‖2,hk
≤ Chk(‖u‖3,Ω + hk‖f‖0,Ω), (2.4)

where and from now on ‖u‖i,Ω = ‖u‖Hi(Ω).

3. Intergrid Transfer Operator

The intergrid transfer operator from a coarse grid to fine grid plays an important
role in the analysis of multigrid methods.

For Morley element on nested meshes, Brenner [3] has defined an intergrid transfer
operator by taking averages of the nodal parameters between two adjacent elements.
For Bergan’s energy-orthogonal plate element, Shi, Yu and Xie [8] defined an intergrid
transfer operator by taking a linear combination of the nodal parameters of the same
coarse grid element. For Morley element on nonnested meshes, we now define an
intergrid transfer operator Ik : Vk−1 −→ Vk as follows.

For v ∈ Vk−1, Ikv ∈ Vk is defined so that
a) if p is a vertex of Γk which is also a vertex of Γk−1 or in the interior of τ ∈ Γk−1,

then (Ikv)(p) = v(p);
b) for other vertices p of Γk, v may have jumps at p and Ikv takes the average of

all values of v at p;
c) if m is a midpoint of an edge of Γk which is in the interior of τ ∈ Γk−1, then

∂(Ikv)
∂n

(m) =
∂v

∂n
(m);

d) for other midpoints m associated with Γk,
∂v

∂n
may have jumps and

∂(Ikv)
∂n

(m)

takes the average value of
∂(v)
∂n

at m.
Our analysis is based on the three properties of the intergrid transfer operator Ik

as follows

‖Ikv‖2,hk
≤ C‖v‖2,hk−1

, ∀v ∈ Vk−1, (3.1)

‖uk − Ikuk−1‖2,hk
≤ Chk(‖u‖3,Ω + hk‖f‖0), (3.2)

and
‖Ik−1v − IkIkv‖1,Ω ≤ Chk‖v‖2,hk−1

, ∀v ∈ Vk−1, (3.3)

where uk and uk−1 are Morley approximations to the solution u of (2.1) on Γk and
Γk−1, respectively. Ik−1v refers to the Γk−1-linear interpolation of v and IkIkv is the
Γk-linear interpolation of Ikv.

Brenner [3] proved (3.1)–(3.3) for Morley element on nested meshes. We will use a
direct technique (cf.[9]) to prove that (3.1)–(3.3) are still valid on nonnested meshes.

Lemma 1. Let G be the interior of the union of two adjacent triangles τ1 and τ2

in ∈ Γk−1. Let p be an arbitrary point on the common edge p1p2 (cf. Figure 1). For
v ∈ Vk−1, let vi = v|τi. Then for ∀v ∈ Vk−1,

{ |v1(p)− v2(p)| ≤ Chk−1(|v|H2(τ1) + |v|H2(τ2)),

|∇v1(p)−∇v2(p)| ≤ C(|v|H2(τ1) + |v|H2(τ2)).
(3.4)
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Proof. Using inverse estimates and the theory of discontinuous finite element in
Feng [5] yields (3.4).

Lemma 2. Given w ∈ H3(G), let w1 (respectively w2) be the Γk−1-Morley
interpolation of w on τ1 (respectively τ2), i.e. wi = (Πk−1w)|τi (i = 1, 2). There exists
a positive constant C such that for all w ∈ H3(Ω)

{ |w1(p)− w2(p)| ≤ Ch2
k−1|w|H3(G),

|∇w1(p)−∇w2(p)| ≤ Chk−1|w|H3(G).
(3.5)

Proof. Since w ∈ H3(G) v C1(Ḡ), (3.5) follows from standard interpolation error
estimates(cf.[4]).

Lemma 3. (3.1) holds.
Proof. Let τ = 4p1p2p3 ∈ Γk. The essential step is to establish the estimate

|Ikv|2H2(τ) ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|22,τ ′ , ∀v ∈ Vk−1. (3.6)

It is easy to see that

|Ikv|2H2(τ) ≤ C
3∑

i=1

[∂n(Ikv)(mi)− ∂n(IkIkv)(mi)]2, (3.7)

where mi, i = 1, 2, 3, are the midpoints of the edges of the element τ .

p1 p2

τ1

τ2

pq qq

Figure 1

τ ′

τ

Figure 2

τ ′

m
q

τ

p1 p2

p3

q

q

q

Figure 3

First we consider the case when τ belongs completely to a single τ ′ ∈ Γk−1. In this
case, if ∂τ ∩ ∂τ ′ = φ (cf. Figure 2), then Ikv = v and (3.6) holds. If ∂τ ∩ ∂τ ′ 6= φ, then
there exists at least an edge of τ ⊂ ∂τ ∩∂τ ′, say p1p2 (cf. Figure 3), or ∂τ ∩∂τ ′ = {p1}
or ∂τ ∩ ∂τ ′ = {p1, p2} or ∂τ ∩ ∂τ ′ = {p1, p2, p3} (cf. Figure 4).
Set w = v|τ . We first assume that there exists at least an edge of τ ⊂ ∂τ ∩ ∂τ ′. Let
m be the midpoint of an edge p1p2 of τ (cf. Figure 3), where p1p2 is an arbitrary
common edge of two triangles τ and τ ′ belonging to Γk−1. Then from the definition of
the operator Ikv, (3.4) in Lemma 1, the mean value theorem, quasi-uniform property
of the triangulations, and an inverse estimate we have

|∂n(Ikv)(m)− ∂n(IkIkv)(m)| = |∂n(v)(m)− ∂n(IkIkv)(m)|
≤ C

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ + |∂nw(p1)− ∂n(IkIkv)(p1)|,
(3.8)
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where and from now on

∂n(v)(m) =
1

nm

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

∂nv|τ ′(m), nm is the number of {τ ′ ∈ Γk−1, τ̄
′ ∩ τ̄ 6= φ}.

Now we consider the second term on the right-hand side of (3.8). Using the mean
value theorem and (3.4) in Lemma 1 yields

|∂p1p2w(p1)− ∂p1p2(I
kIkv)(p1)| =

∣∣∣∂p1p2w(p1)− Ikv(p2)− Ikv(p1)
|p1p2|

∣∣∣

≤
∣∣∣∂p1p2w(p1)− w(p2)− w(p1)

|p1p2|
∣∣∣ +

|(Ikv(p2)− w(p2))− (Ikv(p1)− w(p1)|
|p1p2|

≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ .

Similarly,
|∂p1p3w(p1)− ∂p1p3(I

kIkv)(p1)| ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ .

Therefore,
|∂nw(p1)− ∂n(IkIkv)(p1)| ≤ C

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ . (3.9)

and hence

|∂n(Ikv)(m)− ∂n(IkIkv)(m)| ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ + |∂nw(p1)− ∂n(IkIkv)(p1)|

≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ . (3.10)

Similarly, (3.10) holds for arbitrary edge midpoint m of τ belong to τ ′. For the cases
∂τ∩∂τ ′ = {p1} or ∂τ∩∂τ ′ = {p1, p2} or ∂τ∩∂τ ′ = {p1, p2, p3}, we can discuss similarly.
Therefore, (3.6) follows from (3.7), (3.8) and (3.10) in the first case.

Next we consider the case when τ does not belong completely to a single τ ′ ∈ Γk−1.
Let p1p2 be cut into l piecewises p1q0, · · · , q1q2, · · · q3p2 (cf. Figure 5x), by the coarse

triangles τ1, · · · , τl respectively, and v(·) is a polynomial on each piece, where m ∈ q1q2,
m ∈ τ̄l0 . Set vi = v|τi , i = 1, · · · , l. Let {τ ′ ∈ Γk−1; p1 ∈ τ̄ ′} = {τp1

1 , · · · , τp1

lp1
},

{τ ′ ∈ Γk−1; p2 ∈ τ̄ ′} = {τp2
1 , · · · , τp2

lp2
}, and {τ ′ ∈ Γk−1; m ∈ τ̄ ′} = {τm

1 , · · · , τm
lm
}.

By the assumption on {Γk}, l, lp1 , lp2 , lm ≤ C. Therefore, using the definition of the
operator Ik, the triangle inequality and (3.4) in Lemma 1 yields

|∂nIkv(m)− ∂nIkIkv(m)| =
∣∣∣∂nv(m)− ∂n(IkIkv)(m)

∣∣∣

≤
∣∣∣∂nv(m)− ∂nv|τl0

(m)
∣∣∣ +

∣∣∣∂nv|τl0
(m)− ∂n(IkIkv)(m)

∣∣∣
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≤
∣∣∣∂nv|τ1(p1)− ∂nv|τl0

(m)
∣∣∣ +

∣∣∣∂nv|τ1(p1)− ∂n(IkIkv)(p1)
∣∣∣

+ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ ≡ I1 + I2 + C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ ,

(3.11)

where m ∈ τl0 .

τ ′

τ

p3

p2 q
q
qq

p1

m

Figure 4

p1 q0 q1
q2

q3
p2

m
q

τ

τl0

Figure 5

We now estimate I1. Using the triangle inequality, (3.4) in Lemma 1, the mean
value theorem, and inverse estimates yields

I1 ≤|∂nv1(p1)− ∂nv1(q0)|+ |∂nv1(q0)− ∂nv2(q0)|
+ · · ·+ |∂nvl0(q1)− ∂nvl0(m)| ≤ C

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ . (3.12)

For I2, similarly we have
∣∣∣∂p1p2v1(p1)− ∂p1p2(I

kIkv(p1)
∣∣∣

≤
∣∣∣∣∣∂p1p2v1(p1)− 1

|p1p2|
(

1
lp2

lp2∑

j=1

v|τp2
j

(p2)− 1
lp1

lp1∑

j=1

v|τp1
j

(p1)
)∣∣∣∣∣

≤
∣∣∣∣∂p1p2v1(p1)− (vl(p2)− v1(p1))

|p1p2|
∣∣∣∣ + C

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′

≤
∣∣∣∂p1p2v1(p1)− (vl(p2)− vl(q3)) + (vl(q3)− vl−1(q3)) + · · ·+ (v1(q0)− v1(p1))

|p1p2|
∣∣∣

+ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ = |∂p1p2v1(p1)− (t1∂p1p2v1(ξ1) + · · ·+ tl∂p1p2vl(ξl)|

+ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ , (3.13)

where ξ1 ∈ p1q0, · · · , ξl ∈ q3p2, · · ·, and 0 ≤ ti ≤ 1,
∑

ti = 1. Similarly,

|∂p1p3v|1(p1)− ∂p1p3(I
kIkv(p1)| ≤ C

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ . (3.14)
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Combining (3.13) with (3.14) yields

I2 ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|22,τ ′ . (3.15)

(3.6) follows from (3.7), (3.11), (3.12) and (3.15) for the second case.
Summing (3.6) over τ in Γk and noting that the number of repetitions, for each τ ,

in the summation is finite, yield (3.1).
Lemma 4. (3.2) holds.
Proof. By (2.3), (2.4), Lemma 1 and the method similar to Theorem 2 in [3], we

can prove the Lemma.
Lemma 5. (3.3) holds.
Proof. For v ∈ Vk−1, we have

‖Ik−1v − Ik(Ikv)‖1,Ω ≤ ‖Ik−1v − Ik(Ik−1v)‖1,Ω + ‖Ik(Ik−1v)− Ik(Ikv)‖1,Ω. (3.16)

Now we estimate the first term on the right-hand side of (3.16). Set g = Ik−1v −
Ik(Ik−1v). For τ = 4p1p2p3 ∈ Γk, we have

|g|2H1(τ) ≤ Ch2
k

∑
τ̄∩τ̄ 6=φ

τ∈Γk−1

|g|21,∞,τ ′∩τ . (3.17)

For arbitrary τ1, τ2 ∈ Γk−1, ∂τ1 ∩ ∂τ2 6= φ, τ̄1 ∩ τ̄ 6= φ and τ̄2 ∩ τ̄ 6= φ, by using mean
theorem and inverse estimates we can prove that

|∇g|τ1∩τ −∇g|τ2∩τ | = |∇(Ik−1v)|τ1∩τ −∇(Ik−1v)|τ2∩τ |
≤ C(|v|2,τ1 + |v|2,τ2) ≤ C

∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ . (3.18)

For τ ∈ Γk, set {τ1, · · · , τj , · · · , τlτ } = {τ ′ ∈ Γk−1; τ̄ ′ ∩ τ̄ 6= φ}. It follows from (3.18)
that

|∇g|τi∩τ −∇g|τj∩τ | ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ ′∈Γk−1

|v|2,τ ′ (i, j ≤ lτ ). (3.19)

Since g(p1) = g(p2) = 0, using mean value theorem yields (cf. Figure 5)




g(q1)− g(p1) = ∂p1p2g(ξ1)(q1 − p1)

g(q2)− g(q1) = ∂p1p2g(ξ2)(q2 − q1)

· · ·
g(p2)− g(q3) = ∂p1p2g(ξl)(p2 − q3)

where ξ1, · · · , ξl ∈ p1q0, · · · , q3p2 respectively. Therefore,

0 = ∂p1p2g(ξ1)t′1 + ∂p1p2g(ξ2)t′2 + · · ·+ ∂p1p2g(ξl)t′l, (3.20)

where
∑

t′i = 1, t′i ≥ 0.
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It follows from (3.19)–(3.20) that

|∂p1p2g|τ1∩τ (p1)| ≤ C
∑

τ̄ ′∩τ̄ 6=φ
τ∈Γk−1

|v|2,τ , (3.21)

and similarly,
|∂p1p3g|τ1

p1
∩τ (p1)| ≤ C

∑

τ̄ ′∩τ̄ 6=φ
τ∈Γk−1

|v|2,τ , (3.22)

here the sense of τ1 and τ ′ for p1 are the same as the proof of Lemma 2.
It follows from (3.21)–(3.22) and Lemma 1 that

|∇g|τ1(p1)| ≤
∑

τ̄∩τ̄ 6=φ
τ∈Γk−1

|v|2,τ .

Similarly,
|∇g|0,∞,τ ≤ C

∑
τ̄∩τ̄ 6=φ

τ∈Γk−1

|v|2,τ . (3.23)

Combining (3.23) with (3.17) yields

|g|2H1(τ) ≤ C
∑

τ̄∩τ̄ 6=φ
τ∈Γk−1

|v|22,τ . (3.24)

Summing (3.24) over all τ in Γk and noting that number of repetitions, for each τ , in
the summation is finite, yields

‖Ik−1v − IkIk−1v‖1 ≤ Chk‖v‖2,hk−1
. (3.25)

It remains to estimate the second term on the right-hand side of (3.16).
Set h = Ik(Ik−1v)− Ik(Ikv), then we have

|h|21,τ ≤ C(h(p1)− h(p2))2 + (h(p2)− h(p3))2) ≤ C(h(p1)2 + h(p2)2 + h(p3)2), (3.26)

where h(pi) = Ik−1v(pi) − Ikv(pi). If pi is a vertex of Γk−1, then h(pi) = 0. If pi is
a point of the common edge of τ1 and τ2 which belong to Γk−1, then by Lemma 1 we
have

|h(pi)| =
∣∣∣1
2
(v1 + v2)(pi)− Ik−1v1(pi)

∣∣∣ ≤ |v1(pi)− Ik−1v1(pi)|+
∣∣∣1
2
(v1 − v2)(pi)

∣∣∣

≤ Chk(|v|2,τ1 + |v|2,τ2) ≤ Chk

∑
τ̄∩τ̄ 6=φ

τ∈Γk−1

|v|2,τ . (3.27)

If pi is an internal points of τ ′ ∈ Γk−1, then

|h(pi)| = |Ik−1v(pi)− v(pi)| ≤ Chk

∑
τ̄∩τ̄ 6=φ

τ∈Γk−1

|v|2,∞,τ . (3.28)
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It follows from (3.26)-(3.28) that

|h|21,τ ≤ Ch2
k

∑
τ̄∩τ̄ 6=φ

τ∈Γk−1

|v|22,τ . (3.29)

Summing (3.29) over all τ in Γk yields

‖IkIk−1v − IkIkv‖1 ≤ Chk‖v‖2,hk−1
, (3.30)

and hence (3.3) follows from (3.16), (3.25) and (3.30).

4. Multigrid Methods for Morley Element

Consider the discrete problem (2.2). Define Ak : Vk −→ Vk by

(Akuk, vk) = ak(uk, vk), ∀uk, vk ∈ Vk. (4.1)

Let Rk : Vk −→ Vk be a linear smoother and Rs
k = Rk if s is odd and R

(s)
k = Rt

k if s

is even. Here Rt
k is the (·, ·) adjoint of Rk. The spaces Vk−1 and Vk are related by the

intergrid transfer operator Ik : Vk−1 −→ Vk. Define projection operators Pk−1 : Vk −→
Vk−1 and Qk−1 : Vk −→ Vk−1 by

ak−1(Pk−1w, v) = ak(w, Ik−1v) (4.2)
and

(Qk−1w, v) = (w, Ikv), (4.3)
for all v ∈ Vk−1.

The multigrid operator Bk : Vk −→ Vk is defined by induction as follows.
Algorithm Set B0 = A−1

0 . Define Bkg = y2mk in terms of Bk−1 as follows:
(1) Set x0 = 0, q0 = 0 and define xs = xs−1 + R

(s+mk)
k (g −Akx

s−1), s = 1, · · · ,mk.
(2) Define ymk = xmk + Ikq

p, where qi for i = 1, · · · , p is qi = qi−1 +Bk−1[Qk−1(g−
Akx

mk)−Ak−1q
i−1].

(3) Define ys for s = mk + 1, · · · , 2mk by ys = ys−1 + R
(s+mk)
k (g − Aky

s−1). Here
mk is the number of smoothing steps on level k. The case p = 1 and p = 2 corresponds
to the V -cycle and the W -cycle, respectively.

Let Λk be the maximum eigenvalue of Ak. Using the estimates (3.1)–(3.3) we can
prove (cf.[1]) that the regularity-approximation property [2] holds

(A.1) |ak((I − IkPk−1)u, u)| ≤ C
(‖Aku‖2

0

Λk

)1/4
(ak(u, u))3/4

for the Morley element on a convex polygonal domain Ω.
Let Kk = I − RkAk and K∗

k = I − Rt
kAk be the adjoint of Kk with respect to

ak(·, ·). Let R̄k = (I −K∗
kKk)A−!

k . We need the following two assumptions concerning
the smoother and the number of smoothing steps.

(A.2) CΛ−1
k (u, u) ≤ (R̄ku, u), ∀u ∈ Vk.
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There exist β0 and β1, 1 < β0 ≤ β1 such that the smoothing steps for variable
V−cycle satisfy

(A.3) β0mk ≤ mk−1 ≤ β1mk.

Let δk or δ be the contraction number of the multigrid algorithm, that is |ak((I −
BkAk)u, u)| ≤ δkak(u, u). A standard argument now yields the following two theorems.

Theorem 1. If the smoother Rk satisfies (A.2), and the number of smoothing steps
mk ≡ m is sufficient large, but independent of k, then there exists a constant M > 0

such that the contraction number for W−cycle multigrid satisfies δ ≤ M

M + m1/4
.

Theorem 2. If the smoother Rk satisfies (A.2) and the number of smoothing mk

satisfies (A.3), then there exists a constant M > 0 such that the variable V−cycle
preconditioner satisfies

m
1/4
k

M + m
1/4
k

ak(u, u) ≤ ak(BkAku, u) ≤ M + m
1/4
k

m
1/4
k

ak(u, u).

Thus, the condition number of the matrix BkAk is unifoormly bounded, that is

Cond(BkAk) ≤
[M + m

1/4
k

m
1/4
k

]2
.
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