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Abstract

In this paper, first, we present the comparison theorem and the (general-
ized) Stein-Rosenberg theorem for the GMPOR method, which improves some
recent results[9,11,13]. Second, we also give the convergent theorem of the GMPOR
method, which generalizes the corresponding result of [9]. Finally, we provide the
real interval such that the generalized extrapolated Jacobi iterative method and
the generalized SOR methods simultaneously converge, one of the main results in
[1] is extended.
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1. Introduction

Recently, many mathematical literatures have provided some new iterative meth-
ods for solving the linear system. Kuang[2] presented a two-parameter iterative method
called TOR method, which is effective to give the numerical solution of partial dif-
ferential equations. Wang[10] extended the TOR method to the GTOR methed and
improves some results of [3, 11, 12]. In [5], Li also discussed the GTOR method, and
extended the corresponding results of [10, 11]. Recently, Song and Dai[9] presented
the multi-parameters overrelaxation (MPOR) method, whose specific cases involve the
iterative methods mentioned as above. Now, let us make a generalization of the MPOR
method.

Let Ax = u, (1.1)

where A = D −
k∑

i=1

Ei − F , and D is a nonsingular matrix. Then the generalized

multi-parameters overrelaxation (GMPOR) method can be defined by

xm+1 = L(a1, · · · , ak; b)xm + v, m = 0, 1, · · · , (1.2)

where x0 is an initial approximation,

v =
(
D −

k∑

i=1

aiEi

)−1
bu

∗ Received July 10, 1995.
1)Project supported by NNSF of China and NSF of Guangdong Province.



368 W. LI AND Z.Y. YOU

and

L(a1, · · · , ak; b) =
(
D −

k∑

i=1

aiEi

)−1[
(1− b)D +

k∑

i=1

(b− ai)Ei + bF
]
, (1.3)

which is called the GMPOR iteration matrix, where ai i = 1, · · · , k and b are inde-
pendent parameters, D is nonsingular matrix, Ei, i = 1, · · · , k and F are any matrix
(In [9] D, E and F respectively nonsingular block diagonal, strictly lower and upper
triangular matrices).

Notice that for specific value of the parameters ai and b, the GMPOR method
reduces to the following well-known methods:

L(0; 1) = LGJ , the iteration matrix of the GJ method (generalized Jacobi method);
L(1; 1) = LGGS , the iteration matrix of the GGS method (generalized Gauss-Seidel

method);
L(0; b) = LGJOR, the iteration matrix of the GJOR method (generalized extrapo-

lated Jacobi method);
L(b; b) = LGSOR, the iteration matrix of the GSOR method (generalized SOR

method);
L(a; b) = LGAOR, the iteration matrix of the GAOR method (generalized AOR

method).
L(a1, a2; b) = LGTOR, the iteration matrix of the GTOR method (generalized TOR

method).
From the above statement, one can easily understand that the GMPOR method in-

cludes the GJ method, GGS method, GJOR method, GSOR method, GAOR method,
GTOR method and MPOR method as its specific cases. This paper is organized as
follows. In Section 2, we present a comparison theorem and the (generalized) Stein-
Rosenberg theorem for the GMPOR method, which improves some recent results[9,11].
Section 3 contains the convergence theorem of the GMPOR method for solving the
nonsingular linear system, which extends the corresponding result of [9]. In the final
Section, two theorems are given. The first theorem provides a necessary and sufficient
condition such that the GMPOR method for solving the singular linear system is con-
vergent. The second theorem reveals the real interval for which the GJOR method
and the GSOR method are simultaneously convergent, one of the main results in [1] is
generalized. All definitions and notations here are standard and can be found in [8] or
[13].

2. Comparison Theorem and Stein-Rosenberg Theorem

Let n be a natural number. By < n > we denote the set {1, · · · , n}
Throughout this section we always assume that the following conditions hold:

Li = D−1Ei ≥ 0, i = 1, · · · , k, U = D−1F ≥ 0, and B =
k∑

i=1

Li + U = LGJ (2.1)

ρ
( k∑

i=1

Li

)
< 1 (2.2)
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Lemma 2.1. L(a1, · · · , ak; b) = (1− b)I + b
(
I −

k∑

i=1

aiLi

)−1[ k∑

i=1

(1− ai)Li + U
]
.

Proof. The result follows from the direct computation.
Lemma 2.2.
(1) if b1 ≥ b2 > 0 and 1 ≥ λ2 ≥ λ1 ≥ 0, then (1− b1) + b1λ1 ≤ (1− b2) + b2λ2;
(2) if b1 ≥ b2 > 0 and λ1 ≥ λ2 > 1, then (1− b2) + b2λ2 ≤ (1− b1) + b1λ1.
Proof. Easy.
Lemma 2.3.[4] Let A ∈ Rnn, and let A = M1−N1 = M2−N2 be both M-splittings

of A. If N1 ≥ N2, then one and only of the following statements holds:
(1) 0 ≤ ρ(M−1

2 N2) ≤ ρ(M−1
1 N1) < 1.

(2) ρ(M−1
2 N2) = ρ(M−1

1 N1) = 1.
(3) ρ(M−1

2 N2) ≥ ρ(M−1
1 N1) > 1.

The following is a comparison theorem about two different GMPOR iterative meth-
ods and it will be showed by the similar proof with [5].

Theorem 2.1. Let A = D −
k∑

i=1

Ei − F be a splitting of A satisfied the condi-

tions (2.1) and (2.2). If the parameters satisfy (1, · · · , 1; 1) ≥ (a(1)
1 , · · · , a(1)

k ; b1) ≥
(a(2)

1 , · · · , a(2)
k ; b2) ≥ (0, · · · , 0; 0) and bi 6= 0, i = 1, 2, then

(1) 1− b1 ≤ ρ(L(a(1)
1 , · · · , a(1)

k , b1)) ≤ ρ(L(a(2)
1 , · · · , a(2)

k ; b2)) ≤ 1− b2 + b2ρ(B) < 1
if and only if D−1A is a nonsingular M-matrix.

(2) ρ(L(a(1)
1 , · · · , a(1)

k ; b1)) = ρ(L(a(2)
1 , · · · , a(2)

k ; b2)) = 1 if and only if D−1A is a
singular M-matrix;

(3) ρ(L(a(1)
1 , · · · , a(1)

k ; b1)) ≥ ρ(L(a(2)
1 , · · · , a(2)

k ; b1)) ≥ 1−b2 +b2ρ(B) > 1 if and only
if D−1A is not an M-matrix.

Proof. We always assume that Mj = I −
k∑

i=1

a
(j)
i Li and Nj =

k∑

i=1

(1− a
(j)
i )Li + U in

the proof of this theorem.
From the hypothesis of this theorem and (2.2) it follows that D−1A = M1 −N1 =

M2 −N2 = I −B are all M -splittings of D−1A and satisfy the following condition:

0 ≤ N1 ≤ N2 ≤ B. (2.3)

It follows from Lemma 2.3 that one and only one of the following results holds:

0 ≤ ρ(M−1
1 N1) ≤ ρ(M−1

2 N2) ≤ ρ(B) < 1 (2.4)

ρ(M−1
1 N1) = ρ(M−1

2 N2) = ρ(B) = 1 (2.5)

ρ(M−1
1 N1) ≥ ρ(M−1

2 N2) ≥ ρ(B) > 1 (2.6)

(1): By Lemma 2.1 it is readily to see ρ(L(a(1)
1 , · · ·, a

(1)
k ; b1)) ≥ 1 − b1. Let D−1A

be a nonsingular M -matrix. Then ρ(B) < 1, and thus (2.4) occurs. It follows from
Lemma 2.2 that (1−b1)+b1ρ(M−1

1 N1) ≤ (1−b2)+b2ρ(M−1
2 N2) ≤ 1−b2+b2ρ(B). This

implies 0 ≤ ρ(L(a(1)
1 , · · · , a(1)

k ; b1)) ≤ ρ(L(a(2)
1 , · · · , a(2)

k ; b2)) ≤ 1− b2 + b2ρ(B) < 1 from
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Lemma 2.1. Conversely, let 1− b2 + b2ρ(B) < 1. Then ρ(B) < 1. Since D−1A = I −B

with B ≥ 0, D−1A is a nonsingular M -matrix, which establishes (1).
(2): Follows immediately from (2.5).
(3): Let D−1A be not an M -matrix. Since D−1A = I −B. we have ρ(B) > 1, and

thus (2.6) occurs. Hence inequality (3) follows from Lemmas 2.1 and 2.2. Conversely,
let inequality (3) hold. By the last inequality that (1 − b2) + b2ρ(B) > 1, we obtain
ρ(B) > 1. This implies that D−1A is not an M -matrix.

Applying Theorem 2.1, the following generalized Stein-Rosenberg theorem is de-
rived.

Theorem 2.2. Let (0, · · · , 0; 0) ≤ (a1, · · · , ak; b) ≤ (1, · · · , 1; 1) and b 6= 0. Then
(1) 1 − b ≤ ρ(L(a1, · · · , ak; b)) < 1 if and only if ρ(B) < 1, in this case, we have

ρ(L(a1, · · · , ak; b)) ≤ 1−b+bρ(B). Forthermore, if ρ(B) = 0, then ρ(L(a1, · · · , ak; b)) =
1− b.

(2) ρ(L(a1, · · · , ak; b)) = 1 if and only if ρ(B) = 1;
(3) ρ(L(a1, · · · , ak; b)) > 1 if and only if ρ(B) > 1, in this case, we have ρ(L(a1, · · ·,

ak; b)) ≥ 1− b + bρ(B).
Proof. Let (a(1)

1 , · · · , a(1)
k ; b1) = (a(2)

1 , · · · , a(2)
k ; b2) = (a1, · · · , ak; b). The results

follow immediately from Theorem 2.1 and Lemma 2.1.
Remark: From ρ(L(a1, · · · , ak; b)) = 1− b one can not deduce that ρ(B) = 0. For

example, let

A =
(

1 −1
−1 1

)
=

(
1 0
0 1

)
−

(
0 1
1 0

)
−

(
0 0
0 0

)
= I − L− U.

Then ρ(L(1, 1)) = ρ((I − L)−1U) = 0, but ρ(B) = ρ(L + U) = 1. It is easy to see that
Theorem 2.2 improves Theorem 2.6[13] and Theorem 3.4[9].

Corollary 2.1.[11,Theorem 3.1’] Suppose that matrices L and U satisfy U ≥ 0 and
L ≥ 0 with ρ(L) < 1. Then one and only one of the following mutually exclusive
relations is valid:

(1) 0 ≤ ρ((I − L)−1U) ≤ ρ(B) < 1.

(2) ρ((I − L)−1U) = ρ(B) = 1.

(3) ρ((I − L)−1U) ≥ ρ(B) > 1.

Proof. We set that A
.= I − L − U(= I − B), this is a splitting of A and satisfies

the conditions (2.1) and (2.2). Applying Theorem 2.2 to L(1; 1) we know that this
corollary holds.

3. Convergence of the GMPOR Method: the Nonsingular Case

In this section we consider the nonsingular linear system and give a sufficent con-
dition such that the generalized multi-parameters overrelaxation (GMPOR) method is
convergent, which extends theorem 3.5[9].

Lemma 3.1.[6] Let A ∈ Rnn be a nonsingular matrix, and A = M − N be an
M -splitting of A. Then ρ(M−1N) < 1 if and only if A is a nonsingular M-matrix.

Theorem 3.1 Let A = D−
k∑

i=1

Ei−F , D be nonsingular and Li = D−1Ei ≥ 0 and
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U = D−1F ≥ 0, i ∈< k >, and let D−1A be a nonsingular M -matrix. If

0 ≤ ai, b <
2

1 + ρ(B)
, b 6= 0, i ∈< k > (3.1)

where B =
k∑

i=1

D−1Ei + D−1F =
k∑

i=1

Li + U , then the GMPOR method converges.

Proof. Let D−1A be a nonsingular M -matrix. Since D−1A = I−
k∑

i=1

Li−U = I−B

is a nonsingular M -matrix and B ≥ 0, we have ρ(B) < 1. Without loss of generality we
may assume that a1 ≥ a2 ≥ · · · ≥ ak. If a1 ≤ b, then the result follows from Theorem
2.1 and the same proof as Theorem 3.5[9]. Hence it need only show that the result

holds in the case where 1 < b <
2

1 + ρ(B)
and there is an integer t ∈< k > such that

a1 ≥ · · · ≥ at > b ≥ at+1 ≥ · · · ≥ ak or ak > b. The proof of the last case is similar to
the first case. Hence it need only show that the result holds in the first case.

Now let M = I −
k∑

i=1

aiLi and N = (b− 1)I +
t∑

i=1

(ai − b)Li +
k∑

i=t+1

(b− ai)Li + bU ,

then N ≥ 0 and
|L(a1, · · · , ak; b)| ≤ M−1N (3.2)

Since ρ
( k∑

i=1

aiLi

)
≤ ρ

(
a1

k∑

i=1

Li

)
≤ a1ρ

( k∑

i=1

Li

)
≤ a1ρ(B) <

2
1 + ρ(B)

ρ(B) < 1, M is

a nonsingular M -matrix. Hence M−N = (2−b)I−
t∑

i=1

(2ai−b)Li−
k∑

i=t+1

bLi−bU
.= A′

is an M -splitting of A′. Let B′ =
t∑

i=1

(2ai − b)Li +
k∑

i=t+1

bLi + bU . Then B′ ≥ 0 and

A′ = (2− b)I − B′. Notice that b ≤ 2a1 − b and 2ai − b ≤ 2a1 − b, i ∈< k >, then we
obtain B′ ≤ (2a1 − b)B. Therefore,

ρ(B′) ≤ ρ((2a1 − b)B) ≤ (2a1 − b)ρ(B) (3.3)

Since a1, b ∈
(
1,

2
1 + ρ(B)

)
and a1 > b, 2a1ρ(B) + b(1 − ρ(B)) ≤ 2a1ρ(B) + a1(1 −

ρ(B)) ≤ a1(1+ρ(B)) < 2. Hence (2a1−b)ρ(B) < 2−b, which together with (3.3) gives
ρ(B′) < 2−b. This proves that A′ is a nonsingular M -matrix. Hence A′ = M−N is an
M -splitting of a nonsingular M -matrix. It follows from Lemma 3.1 that ρ(M−1N) < 1.
From (3.2) one can deduce ρ(L(a1, · · · , ak; b)) < 1, which proves that the GMPOR
method converges.

Remark: Let A = D−
( k∑

i=1

Ei+F
)

be an M -splitting. Then A is a nonsingular M -

matrix if and only if D−1A is also a nonsingular M -matrix from Lemma 3.1. Therefore,
it is easy to see that the Theorem 3.1 is a generalization of Theorem 3.5[9].
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4. Convergence of the GMPOR Method: the Singular Case

In this section we always assume that the linear system (1.1) is singular, i.e., A is a
singular matrix. Now we discuss convergence of the GMPOR method and the common
convergence inteval of the GJOR method and the GSOR iterative method.

Recall that an M-matrix with property c[13] is the M- matrix with ind0(A) ≤ 1, by
indλ(A) we mean the size of the largest Jordan block corresponding to the eigenvalue
λ of A[8]. Now we give two lemmas.

Lemma 4.1.[7] Let H be a nonnegative matrix with ρ(H) = 1, and let T = I −H

and Hb = (1− b)I + bH. Then the following statments are equivalent:
(1) T is an M-matrix with property c.
(2) For some b ∈ (0, 1), Hb is a convergent matrix.
(3) For each b ∈ (0, 1), Hb is a convergent matrix.
Lemma 4.2. Let A ∈ Rnn, and A = M −N be an M -splitting. Then M−1A is an

M-matrix if and only if A is an M-matrix.
Proof. “⇐”: From Theorem 4.5[8] it follows that ρ(M−1N) = 1, and thus M−1A is

an M -matrix..
“⇒”: Let M−1A be an M -matrix. Since M−1A = I−M−1N , we obtain ρ(M−1N) ≤

1. In order to show the assertion, we consider two cases as follows:
Case 1. If A is irreducible, then A = M − N is an M -splitting of an irreducible

matrix A. By Lemma 2.4[8] A is a Z-matrix. Let A = sI − B, s > 0 and B ≥ 0 be
irreducible. If A is not an M -matrix, then ρ(B) > s. By Perron-Frobenius theorem of
nonnegative matrix there is a positive vector x such that Ax = (s− ρ(B))x ¿ 0. Since
M−1 > 0, M−1Ax ¿ 0. This implies that M−1Nx À x. Applying Perron-Frobenius
theorem to the nonnegative matrix (M−1N)T , it is readily to show that ρ(M−1N) > 1,
which contradicts the hypothesis of the lemma. Thus A is an M-matrix.

Case 2. If A is reducible, then there exists a permutation matrix P such that

PAP T = (Aij), (4.1)

where Aii is irreducible, i ∈< s > and Aij = 0 (i > j). Since an M-splitting is graph
compatible (see [8, Lemma 2.4]), PMP T = (Mij) and PNP T = (Nij) are both block
upper triangular matrices partitioned in the same way as (4.1). Hence Aii = Mii −Nii

is an M-splitting of an irreducible matrix with ρ(M −1
ii Nii) ≤ ρ(M−1N) ≤ 1. By Case

1 and Lemma 3.1, Aii is an M-matrix, i ∈< s >. Since PAP T = (Aij) is a block upper
triangular Z-matrix whose all diagonal blocks are M-matrices, PAP T (and hence A) is
an M -matrix.

Theorem 4.1. Let A = D −
k∑

i=1

Ei − F be a splitting satisfied the conditions (2.1)

and (2.2). If ai and b satisfy (3.1), i ∈< k >, then the GMPOR iterative method (1.2)
converges for any initial approximation vector x0 if and only if D−1A is an M-matrix
with property c.

Proof. Let D−1A be a singular M -matrix with property c, i.e., ind0(D−1A) = 1.
Hence ρ(B) = 1. From (3.1) it follows that 0 ≤ ai, b < 1 and b 6= 0, i ∈< k >. This
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implies that D−1A =
(
I−

k∑

i=1

aiLi

)
−

( k∑

i=1

(1−ai)Li+U
)

is an M -splitting of a singular

M -matrix. It follows from Theorem 4.5[8] that ρ
((

I −
k∑

i=1

aiLi

)−1( k∑

i=1

(1 − ai)Li +

U
))

= 1 and ind1

((
I −

k∑

i=1

aiLi

)−1( k∑

i=1

(1 − ai)Li + U
))

= ind0(D−1A) = 1. Hence

I−
(
I−

k∑

i=1

aiLi

)−1( k∑

i=1

(1−ai)Li +U
)

is an M -matrix with property c. From Lemma

2.1 and Lemma 4.1 we conclude that the GMPOR iteration matrix L(a1, · · · , ak; b) is
convergent.

Conversely, assume that the GMPOR iteration matrix L(a1, · · · , ak; b) is convergent.
Since D−1A = I−B is a singular Z-matrix, we obtain ρ(B) ≥ 1. Hence ai, b ∈ [0, 1) and

b 6= 0 from (3.1). It is easy to show that ρ
((

I−
k∑

i=1

aiLi

)−1( k∑

i=1

(1−ai)Li+U
))

= 1 from

Lemma 2.1. It follows from Lemma 4.1 that Ã
.= I−

(
I−

k∑

i=1

aiLi

)−1( k∑

i=1

(1−ai)Li+U
)

is an M -matrix with property c. Since
(
I −

k∑

i=1

aiLi

)
Ã =

(
I −

k∑

i=1

aiLi

)
−

( k∑

i=1

(1 −

ai)Li + U
)

is an M -splitting and Ã is an M -matrix with property c, from Lemma

4.2 we conclude that
(
I −

k∑

i=1

aiLi

)
Ã is also an M-matrix. This means that D−1A

is an M-matrix since D−1A =
(
I −

k∑

i=1

aiLi

)
Ã. It follows from Theorem 4.5[8] that

ind0(D−1A) = ind0(Ã) = 1. Hence D−1A is an M -matrix with property c, which
completes the proof of the theorem.

Let A = D−E − F be a splitting of A. For simplicity, by Jb and Sb we denote the
(generalized) extrapolated Jocobi (JOR) iteration matrix LGJOR and the (generalized)
successive overrelaxation (SOR) iteration matrix LGSOR, respectively. Now, we deal
with the common convergence inteval of the GJOR method and the GSOR method.

Theorem 4.2. Let A be a Z-matrix and A = D − (E + F ) be a regular splitting
with E ≥ 0 and F ≥ 0. If A is an M-matrix with property c, then for all b in the real
inteval [0, 1),

(1) ρ(bD−1E) < 1 and
(2) Sb and Jb simultaneously converge.
Proof. If b = 0, then Sb = Jb = I. The proof of the theorem is trivial. Now assume

that b 6= 0.Let A be an M-matrix with property c. If A is nonsingular, then Theorem
2.2.3[13] guarantees ρ(D−1(E + F )) < 1, hence D−1A is a nonsingular M-matrix. Since

Jb = (1− b)I + bJ1 (4.2)

for any b ∈ (0, 1) we have ρ(Jb) < 1. Because of D−1E ≤ D−1(E + F ), we obtain
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ρ(D−1E) ≤ ρ(D−1(E + F )) < 1, and hence ρ(bD−1E) < 1. From Sb = L(b, b) and
Theorem 3.1 it follows that Sb converges for b ∈ (0, 1). If A is singular, then from
Lemma 2[7] one can deduce that D−1A is a singular M -matrix (and hence ρ(D−1(E +
F )) = 1) and ind0(D−1A) = 1. It follows from Lemma 4.1 and (4.2) that Jb is
convergent. Since bD−1E ≤ bD−1(E + F ), ρ(bD−1E) ≤ bρ(D−1(E + F )) ≤ b < 1 for
all b ∈ (0, 1), this proves that (1) holds. It is readily to obtain Sb = (1−b)I +bH, where
H = (I−bL)−1((1−b)L+U), L = D−1E and U = D−1F . From (1) and the hypothesis
it follows that D−1A = (I − bL)− ((1− b)L+U) is an M-splitting of an M-matrix with
property c, and hence ρ(H) = 1 and ind0(I − H) = ind0(D−1A) = 1 from Theorem
4.5[8]. This implies that I −H is an M-matrix with property c. It follows from Lemma
4.1 that Sb converges. Therefore, for any b ∈ [0, 1) Sb and Jb simultaneously converge,
which proves (2).

Remark: Theorem 4.2 is a generalization of Theorem 3.4[1], in which it only con-
sider the specific cases that D, E and F in the splitting of A are respectively the
diagonal, the strictly lower triangular and the strictly upper triangular parts of A. We
also remark that the real inteval [0, 1) such that Sb and Jb simultaneously converge is
sharp (see [1, p.194]).
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