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Abstract

We consider the linearized incompressible Navier-Stokes (Oseen) equations in
a flat channel. A sequence of approximations to the exact boundary condition
at an artificial boundary is derived. Then the original problem is reduced to a
boundary value problem in a bounded domain, which is well-posed. A finite element
approximation on the bounded domain is given, furthermore the error estimate of
the finite element approximation is obtained. Numerical example shows that our
artificial boundary conditions are very effective.
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1. Introduction

Many problems arising in fluid mechanics are given in an unbounded domain, such as
fluid flow around obstacles. When computing the numerical solutions of these problems,
one often introduces artificial boundaries and sets up artificial boundary conditions on
them. Then the original problem is reduced to a problem in a bounded computational
domain. In order to limit the computational cost these boundaries must be not too
far from the domain of interest. Therefore, the artificial boundary conditions must be
good approximate to the “exact” boundary conditions (i.e. such that the solution of
the problem in the bounded domain is equal to the solution of the original problem).
Thus the accuracy of the artificial boundary conditions and the computational cost are
closely related. It has often been studied during the last ten years to design artificial
boundary conditions with high accuracy on a given artificial boundary for solving partial
differential equations on an unbounded domain. For example, Goldstein®, Fengl,
Han and Wul'%1% Hagstrom and Keller©", Halpernl®, Halpern and Schatzman!®,
Nataf!”l, Han, Lu and Bao'3, Han and Baol'''2, Baol! and others have studied how
to design the artificial boundary conditions for solving partial differential equations in
an unbounded domain.
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In this paper we consider the linearized incompressible Navier-Stokes equations in a
slip flat channel. It is an approximate problem of two-dimensional steady incompressible
viscous folw around obstacles. We derived a solution which can be written in the form
of Fourier series in the unbounded domain by the method of separation of variables.
Then the exact and a series of approximate artificial boundary conditions are derived by
the continuity of velocity and the normal stress at the artificial boundary. Therefore
the original problem is reduced to a series of problems in a bounded computational
domain. Particularly, a finite element approximation on the bounded domain is given,
and the error estimate of the finite element approximation is obtained. Numerical
example shows the effectiveness of the artificial boundary condition.

2. Oseen Equations and their Solution

Let €2; be an obstruction in a channel defined by R x (0, L) and Q =R x (0, L) \ §2;.
Consider the following Oseen equations:

ou
Q—
8:751
V.ou=0, inQ, (2.2)

+Vp=vAu, inQ, (2.1)

with boundary conditions

8U1 8UQ
U2|zy=0,L, =0, 012|zy=01 = V(8732 + 8731> 0L 0, —o0 <z < +00, (2.3)
ulpg, =0, (2.4)
u(z) — Uoo = (a,0)T, when z; — Foo;

where u = (u1,u2)” is the velocity, p is the pressure, v > 0 is the kinematic viscosity,
x = (x1, a:Q)T is coordinate, a > 0 is a constant and o9 is the tangential stress on the
wall. Obviously condition (2.3) is equivalent to the following condition:

ou
81’2

Taking two constants b < d, such that €; C (b,d) x (0, L), then € is divided into
three parts €, Q7 and €4 by the artificial boundaries I', and I'y with

UQ|1,2:07L =0. (2.6)

29=0,1

Iy={zeR}zy=0b 0<az9 <L},
Iy={zcR? zy=d, 0<zy <L},
Y ={rcR?} —c0o<a1<b 0<z2 <L},
Qr={zeR}b<z<d, 0<zy<L}\Q,
Qu={reR? d<z <+oo, 0<z9 <L}

We now consider the Oseen equations on the unbounded domain 24:

ou

aa—%1 + Vp=vAu, in Qy, (2.7)
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V-u=0, in Qg (2.8)
8u1
87_@2|$2=07L = U2‘12:07L =0, d<x <—+oo, (2.9)
u(x) = Uso, when x; — 400, (2.10)
ulp, = u(d,z2), 0<x9 <L. (2.11)
From (2.7)—-(2.8), we have
d
AvA - aa—m)uQ = 0. (2.12)

Equation (2.12) with boundary condition (2.9) can be solved by the method of separa-
tion of variables. We obtain

ug(w) = {amemf(éﬁd) + bme/\_(m)(zld)} sin mzm, (2.13)

m=1

where

a—+/a®+4v2m?n? /L2
2v ’
Substituting (2.13) into (2.8) and (2.7) respectively, we obtain

A" (m) = m=1,2,3,---

= 3 B (a—d) T AT (m)(21—d) mna

ui(z) =a+ mzz:l [ame L A= (m) me cos 7 (2.14)
I — I (@1-d) g T2 2.1

p(z) amg;l ame” L cos ——, (2.15)

where we assume
lim p(z) =pe =0.

Tr1—-+00

Then (2.13)—(2.15) satisfy (2.7)—(2.10) for any constants a1, b1, az, ba, - - - Therefore
we derived a general solution of Oseen equations in the unbounded domain 2.

3. The Exact Boundary Condition and its Approximations at the
Artificial Boundary Iy

We now consider the following problem:

aﬁ +Vp=vAu, in Q\Qy,

o (3.1)
V-ou=0, inQ\Q, (3.2)
gz; 0L u2|x2:0’L =0, b<x <+oo, (3.3)
ulyn, =0, (3.4)
ulp, = tso, (3.5)
u(z) — Us, when x; — +o00. (3.6)
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Let e(u) = (€45(u))2x2 and o(u,p) = (0i;(u, p))2x2 denote the rate of strain and stress
tensors respectively. We have that

gij(u) = 5(8% + axj)’ i, =12 (3.7)
and

where 6;; is the Kronecker Delta whose properties are

1, i=7
oij = { i
0, ©#3j.
Furthermore let o, = (0p,,0n,)" denote the normal stress on the artificial boundary
I';, then

ou
Op, = 011M1 + 0122 = 011 = —p + 21/87;‘116!7 (39)
ou ou
Ony = 021N + 022N = 021 = V(aix; + 87.73?) ‘Fd, (310)

where n = (n1,nm2)7 = (1,0)7 is the outward normal vector on I'y.
we now use the transmission conditions
u(d™, o) = u(d, z2), (3.11)
on(d™,m2) = on(dT, 22) (3.12)

to obtain the exact boundary condition and its approximations at the artificial bound-
ary I'g. Substituting (2.13)—(2.15) into (3.9)—(3.10), we get

oo = 3 [(o 22 am 2 s 7, 313)
Ony = me:l [ - 22” am + ()x_(m) + I%)bm} sin m7£$2. (3.14)

From (2.13)—(2.14) and (3.13)—(3.14), a computation shows:

X 2v(—mm + LA~ (m L mne
Ony :Z{ ( 73 ( ))/0 uy(d, o) cos 7 2 das

m=1
MmmTTo MmmTTo

2umm(mm + LA™ (m
- ( (m) dxs| cos 7= Ty (u),

L
/ ug(d, z2) sin
0

LAA=(m) (3.15)
— [—2 + LA™ L
Ony = Z { v(mr 72 (m) /0 uy(d, z9) cos mz@ dxa
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mmwxs mmxs

N 2v(—mm + LA™ (m)) de] sin I - T (u)

L
L2 /0 u9 (d, xg) sin

and

> a (L MTIo mm 2mm
U1|Fd :a—i-TnZ:lCm{V/o Unl(d,l'Q)COS 7 d$2+7(2+m

mmxo mmxo

d:cg] Cos i = Si(on),

a L i
o) fy o .17
m27r2

ad 2mar _ L
U2|Fd :7712::1 CmKL + A7 (m) + m) /o on, (d, z2) cos

mmxg

de’Q

MmTTo mmnzx

dxg] sin 7 2 = Sy(ay), (3.18)

a (L
+ 7/ Onsy (d, x2) sin
vJo

where 5
14
Cn = , m=1,2,-
(aL — 2vmm)(a + Zpmors) — winie

_ (Ta(w) _ Sl(Un)>
70 = (g0 ) 50 = (530m)
Therefore we obtain the exact boundary condition (3.15)—(3.16) or (3.17)—(3.18) at the

artificial boundary I'y. Then the problem (3.1)—(3.6) can be reduced to the following
two problems in a bounded domain Q7:

Let

Problem (1)

aﬁ +Vp=vAu, in Qrp,

3.19
81'1 ( )
V.-u=0, in QT, (320)
aul
o = = < < _
Oxo l22=0,L u2’12=0,L 0, b<uz <d, (3 21)
ulgg, =0, (3.22)
ulp, = too, (3.23)
on = T(u). (3.24)
Problem (I7)
ou )
a=——+Vp=vAu, in Qrp, (3.25)
83:1
V.ou=0, inQy, (3.26)
8u1
37:E2|x2:07L =u2l,,—0r =0, b=z <d, (3.27)
ulag, =0, (3.28)
ulp, = Uoo, (3.29)
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ulp, = S(on), (3.30)

/F p(d, x2)dzs = 0. (3.31)

Fortunately we can prove the following theorem.

Theorem 1. Problem (I) is equivalent to Problem (II).

Proof. Let (u,p) be a solution of problem (I), then (u,p) satisfy (3.25)—(3.29).
Multiplying (3.15) and (3.16) by cos ™72, sin ™52 (m = 1,2,---) respectively and
integrating on I'y, we obtain

ul‘Fd =Cot Sl<0n)> UQ‘Fd = S2(Un)7

where ¢ is a constant.

0= V-ud:c:/ U'ndSZ—/ adxg—i—/ ui(d, x2)dxs
QT 8QT Fb Fd

= —CL|Fb‘ +/F [Co + Sl(Un)]d.%'g = ‘Fb‘(C() - a),
d
where |I'y| is the length of the segment I'y. Then ¢y = a and

. 8U2
/Fd p(d, zo)dzy = — /Fd [—p(d, x9) — 2V8—@(d, .rg)}dxg

:—/ [ r(d, 952)+2V8 (d, 962)}01%2:—/ Oy dx2
Fd 6 1 Fd

= — T1 (u)dl‘g =0
Ty

Thus (u,p) is a solution of problem (/).

On the other hand, let (u,p) be a solution of problem (II). Then (u,p) satisfy
(3.19)-(3.23). Multiplying (3.17) and (3.18) by cos ™72 and sin ™72 (m = 1,2,---)
respectively and integrating on I'y, we obtain

Onq :CO+TI(U)7 Ongo :T2(u)7

where ¢g is a constant.
Ous ouq
5 { p(d, x2) V—am( .Tg)} o Fd[ p(d, z9) + Ve o

= n1 = = = .
a. dl‘z = / [C() + Tl(u)]dxg = / Codxg = CO‘Fd‘
Ty Ty

Ly

(d T2 ) dLL’Q

Thus ¢y = 0. Hence (u,p) is a solution of problem (7). The proof is completed.
Let

N
2u(—mm + LA\~ L mmx
N( Z [ 72 (m) /0 u1(d, z2) cos 2

dzo

m=1
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2vmm(mm + LA~ (m)) (L . MmmTxy mmay
_ 3= (m) /0 ua(d, ) sin d$2:| cos I (3.32)
N
2 L\~ L
Z [ v mwz (m) / ui(d, z2) cos mTr:CdeQ
m=1 0
2u(—mm + LA\~ (m)) [F . MTT2 . MTT
+ 72 /0 ua(d, x2) sin dl‘g} sin T (3.33)
T (u)
TN (u) = ( ! )
W=\

Then we get a sequence of approximate boundary conditions at the artificial boundary
Ty

on=TN(), N=0,1,2--- (3.34)
Hence the original problem (3.1)—(3.6) is reduced to the following problem on the
bounded domain 27 approximately for N =0,1,2,---

ou

v +Vp=vAu, in Qr, (3.35)
1
V-u=0, inQp, (3.36)
8u1
- = 0 = < < .
8952 22=0. UQLQ,QL O, b ST S d, (3 37)
ulp, = Uoo, (3.39)
on =TV (u). (3.40)
In the following section we shall show that the boundary value problems (3.19)—(3.24)

and (3.35)—(3.40) are well-posed.

4. The solutions of the problems (3.19)—(3.24) and (3.35)—(3.40)

Let H™(Qr) and H*(T'y) denote the usual Sobolev spaces on the domain Q7 and
the boundary I'y, with integer m and real number s. Furthermore let

—{zeRY 20=0, b<z <d}U{zeR? =L, b<uz <d}
Iy =08,
Vv :{u c Hl(QT) X Hl(QT)‘ u‘rburi = 0, UQ‘Fl = 0}
with norm [Jul|$ = [[u1l} 5., + vz} 2.0,
W =L*(Qr)  with norm |lglw = [lgllr200)
M ={u € Hl(QT) X Hl(QT)| ulp, =0, ulp, = Uoo, u2lp, =0},

Then the boundary value problem (3.19)—(3.24) is equivalent to the following variational
problem:

Find (u,p) € M x W, such that
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A(u,v) + Ao(u,v) + A1 (u,v) + B(v,p) =0, Yv eV, (4.1)
B(u,q) =0, VYqeW; (4.2)

where

A(u,v) =2v Z gij(u) - g5(v)de = 21// e(u) : e(v)de,
Qr

QT@] 1
ou
Ap(u,v —a/ v—-dx,
o(u,v) o, "9
A (u,v) = — / On-vdry = — [ T(u)-vdxy
Iy Iy
2 —L)\ L L
— Z[ v(ma (m ))/ u1(d, x2) cos mﬂmdxg/ v1(d, z2) cos mﬂxzdarg
0 L 0 L
2umm(mnm + LA~ (m)) (L . MLy L My
= (m) /0 uz(d, x2) sin 7 dwg/o v1(d, x2) cos 7 dxo
2 L\~ L L
+ v(mm + (m))/ ui(d, z2) cos mﬂmdxg/ va(d, x2) sin mTerde
L? 0 L 0
2 — L\~ L L
+ v(mm 72 (m))/ ua(d, z2) sin mﬂxzdmg/ va(d, z2) sin mmczd@ ,
0 0

B(u,q) = —/ qV - udzx.
Qr
Furthermore let

AN (u,v) = — /r TV (u) - vdxs
d

_2[21/ m7r—L)\ (m ))/OLul(d,.’L'Q)COSmﬂ-x

Qumm(mm + LA (m L . mmx
(L3/\‘(m) T [
L\~ L L
+ 2v (mm 22 (m)) / u1(d, z2) cos mra dxo / va(d, z2) sin mre
0 0

2 — LA\~ L
+ V(mW L2 <m)) / u9 (d, .1‘2) sin mra
0

2
dl’Q

L
9 mnx
dxo / v1(d, z2) cos
0

L
mmxo
d.fL'Q/ v1(d, z2) cos dxo
0

2
dxg

dl‘g .

L
. MTmI9
de/ va(d, z2) sin
0

Then the problem (3.35)—(3.40) is equivalent to the following variational problem:

Find (un,pn) € M x W, such that
A(UN’U) + AO(“‘]\H”) + A{V(U‘Nav) + B(vaN) = 07 Vv € ‘/7 (43)
B(un,q) =0, YqeW. (4.4)

From Korn’s inequality[16], we know
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Lemma 1. The bilinear form A(u,v) is symmetric, bounded and coercive on V XV,
namely there are two positive constants oy and By such that

A(w,0)] < aollully - Jollv, Va0 €V,
Alu,u) > Bollull?, YueV.
Lemma 2. The bilinear form B(u,q) is bounded on V x W and satisfies the

Babuska-Brezzi (B — B) condition?!, namely there are positive constants oy and (1,
such that

[B(u,q)| < arllullv - llgllw, YueV, geW,

B(u
) 5 b lglw. Vg e w.
wev\{oy lullv

Lemma 3. The bilinear forms Ag(u,v) + Ai(u,v) and Ag(u,v) + AN (u,v) are
bounded on 'V x V, i. e. there is a constant cg > 0, such that

[Ag(u,v) + A1 (u,v)| < asllullv - lv]lv,  Vu,v €V, (4.5)

| Ao(u,v) + A7 (u,v)| < aslully - [v]lv, Vu,v €V, (4.6)
Furthermore

Ao(u,u) + Ar(u,u) >0, YueV,

Ao(u,u) + AN (u,u) >0, YueV, N=0,1,2,---.

Proof. For any u,v € V, we know that u;|r, and v |r, belong to H%(Fd), ug|r, and

1
va|r, belong to Hy (I'y), Suppose

ui(d, zq) = % + mzzjl Ay, COS m7£3327 Ay, = Z/o u1(d, x2) cos mre dzs,
> My 2 (L My
ug(d, z9) = by, sin ) by = —/ ug(d, x2) sin dxa,
m=1 L L Jo
(d, z2) a _'_i mnxs - Z/L (d, ) mmzy

v1(d, z3) = Gy, COS m = — v1(d, x2) cos T

1\&,y L2 2 L m L ’ m L 0 1\&y L2 2
v(dm)—ii) sin 02 b —2/Lv(daz)sinmmj2dx

2\, L2) — — m L 3 m — L 0 20, L2 L 2-

Then by the trace theorem, there is a constant ag > 0, such that

J Z m(a2, + b2,) < asllullv, \l Z (@2, + 62 < as|v||v.

m=1

A computation shows that

Aj(u,v) =

= [v(mm — LA™ (m))amam — vma(mr + LA™ (m))bpam
2 [ 2 + 2L (m)

m=1
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v(imm 4+ LA~ (m))amby — v(mm — LA~ (m))bpbm
+ .
2 2
mm

Since 0 < —LA™(m) < mm, Vm € N, and hm T() =1, we know that there is

a constant ¢; > 0, such that

|A1(’LL, U)| <c Z m(|am&m| + |bmam| + |aml~7m| + |bml~7m‘)
m=1

(o)
§01$ Z (a2, + b2)) J Z (a2, + b2,) < eallullv - ||v]|v,

m=1

where cg = ¢1 - @4. Thus the inequality (4.5) holds. Furthermore

mm + LA™ (m))?
LA=(m)

Aq(u,u) :g > [(mﬂ — LA~ (m))(a2, + %) + ( ambm}

v X B (mm + LA™ (m))?
> 3 [Qmﬂ —2LA"(m) + T (m) ] (ap, + b))

L
(a2, +b2,) > —g/ u(d, z2) - u(d, xo)dxs.

Ao(u,u)+A1(u,u)2a/ u-audxa/ u-udry =0, YueV.
Lq

Similarly for Ag(u,v) + AY (u,v), we obtain

|A0(u’ U) + A{V(UJJ)‘ < OQHUHV ) ||U||V7 Vu,v €V,
Ao(u,u) + A (u,u) 20, VueV.
Furthermore if u is a solution of the problem (4.1)—(4.2) and u|r, € H?(T'y) x H?(Ty).

Then uilr, € {w € H?(0,L), %|.—0,r, = 0} and uo|r, € {w € H*(0,L), w|.—o,, = 0}.
Thus we have that

o
> mA(a, +b%,) < aullullzr,,

m=1

where o4 is a constant. Hence

| A1 (u,v) — A (u,0)] =

= [v(mm — LA~ (m))amam ~ vma(ma + LA™ (m))bmam

mZN_H { 2 2LA~(m)

v(mm + LA~ (m))amby  v(ma — LA™ (m))bybm
2 * 2 ]




The Approximations of the Exact Boundary Condition at an Artificial Boundary for... 249

§01J i m(a2, + b2,) - $ i m(a2, + Bgn)

S(N—Eﬁ Z m(aZ, +02,) - \l Z m(a2, + B%z)

2 EOO: 4,2 2
S(N+1)3/2 m (am+bm)' ||v||%,1"da
m=N-+1

where ¢ is a constant. Let

dp = max{r },
JJGQi

Fdoz{l‘ERz‘l‘l:do, OS.%QSL}.

Assume that

_ 00 2 L
ui(do, x2) = ?0 + mZZI Gy, COS m7£$2’ Ay, = Z/o u1(dp, 2) cos m2x2 dxa,
.- mmry - 2 L . mmx
ug(do, xe) = mz::l by, sin 7 2, by = L/o uz(do, x2) sin 2d:172.
By the equalities (2.13)—(2.14), we obtain
1 - mr
m LA (m) + mﬂ{[mﬂe)\ (m@=do) 1 LA™ (m)e™ T = )]a,
+ e B (d=do) _ eA(m)(d—do)]gm}’
1 mT —
by =— LA™ —fp(d=do) _ AT (m)(d—do))g
L\=(m) + mw{ (m)le™" ¢ la

+ [mme™ T (d=do) 4 L)\(m)e)‘_(m)(ddo)]bm},
Thus there exist constants cg > 0 and A\y = O(N) as N — +o0, such that
aZ, + b2, < cze ™ n(d=do)? (@, +b2), ¥Ym>N-+1

Therefore

Ai(u,0) — AN (u,0)| < ° Y(ag, +b2,) -
| A1 (u,v) 1 (u,v)] (N + 1)3/26>\N(d—d0)\szJ\;+lm (a ) HU”%Td

C
SN+ 1) 2o ell2.rag - l1llg

Vd > d07

where c¢ is a constant. Hence we obtain the following estimate:
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Lemma 4. If u is a solution of the problem (4.1)-(4.2) and ulr, € H?(Ty,) x
H?(Ty,), then the following estimate holds:
c
(N + 1)3/2€>\N(d—do)|

where ¢ is a constant independent of N, u, v, p.

Theorem 2. The variational problem (4.1)~(4.2) has a unique solution (u,p) €
M x W and the problem (4.3)—(4.4) has a unique solution (un,pn) € M x W for
N =0,1,2,--- Furthermore we have the following error estimate if ’U,h“do € H*(Ty,) x
H?(Tg,):

| A1 (u,v) = AY (u, 0)] < |ull2,ry, - [0ll1 s Vd = do, Yo €V, (4.7)

c
N+ Do ers,:

Proof. By Lemma 1 and 4, we know that A(u,v)+ Ag(u,v)+ A1 (u,v) and A(u,v)+
Ao (u,v) + AY (u,v) are two bounded and coercive bilinear forms on V x V. By Lemma
2, we know that B(u,q) is a bounded bilinear form on V' x W, and satisfies the B-B
condition. From the Brezzi Theorem [2], we obtain that the problem (4.1)—(4.2) has
a unique solution (u,p) € M x W and the problem (4.3)—-(4.4) has a unique solution
(UN,pN) eMxW.

Let e, =u —upn, e, =p — pn, then (e, e,) satisfy

(4.8)

lu—unllv + llp — pnllw <

Aley,v) + Ag(ew,v) + AV (ew,v) + B(v,ep) = AV (u,v) — Ay (u,v), Yov €V, (4.9)
Bl(ey,q) =0, VqeW. (4.10)
Taking v = e, in (4.9) and ¢ = ¢, in (4.10), we obtain
ﬁolleull%/ <A(ey, eu) < Aley, eu) + Ao(€u €u) + A{V(em eu)

C
:Ajlv(u7eu) — Ai(u,eq) < (N + 1)3/26/\N(d—d0) HUH27FdO ) ”eUH%,Fd

c
= (N + 1)3/2¢ v (d—do) \|U||2,Fd0 leullv,

where c is a constant, which has different meaning in different place. Thus
c
< .
Heu” _50(N T 1)3/26)\N(d*d0) HUHQ,FdO

B(v,e,) =AY (u,v) — A1 (u,v) — Aley,v) — Ag(ew,v) — AY (ey,v)

C
S |:(N + 1)3/26/\N(d*d0

sllullzrg, + (@0 + az)lleu]v | - [loflv

Then

1 B(v,ep)
lepllw =|lp —pnllw < — sup
B vevioy llvllv
1 c
S5 |V T Do 14lara + (@0 + az)llealy

C
= (N + 1)3/2eAn (d—do) [ull2,ry,

where ¢ = £ [1 + %} Then the inequality (4.8) follows immediately.
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5. The Finite Element Approximation of the Problem (4.3)-(4.4)

Let 7, be a regular partition of the domain Q27 and suppose V}, and W), are finite
element subspaces of V' and W. Particularly, we also assume they are the optimal
choice. Then Vj, and W), should satisfy the following conditionsl

a). The errors inf ||u —v|y and inf |p — ¢|[w have the same order in h, i. e.

IS q€Wh

there is a constant «, such that
inf [ju —vlly < ah™[ulmi1200, inf |[[p—qllw < ah™|plm2,0,- (5.1)
vEV), q h
b). There exists a constant [ independent of h, such that

B(v,q)
sup
vevinfor Ivllv

> Bllgllw, Vg€ Wh. (5.2)

Let My, be a subset of M, which satisfies V3, = {up, — vp| Yup, vy € My}. Consider the
finite element approximation of the problem (4.3)—(4.4):

Find (u?,p%) € My, x Wy, such that
Al v) + Ag(uly, v) + AN (W, v) + B(v,pl%) =0, Yo eV, (5.3)
B(uly,q) =0, Vg€ W,

Theorem 3. The problem (5.3)~(5.4) has a unique solution (ul, p%) € My, x Wy,

The proof of this theorem is similiar to the proof of theorem 2. It is omitted here.

Theorem 4. Let (u,p) be the solution of the problem (4.1)—~(4.2) and (u%,ph;) be
the solution of the problem (5.3)—(5.4). Suppose u € H™T1(Qr) x H™(Qr), ulr,, €
H?(Ty,) x H*(Tyg,), p € H™(Q7). Then we have the following error estimate:

m727QT:|

‘27Fd07 (5.5)

lu —ufllv + llp — PR llw <ch™[[ulms1.2.0r + [P

C
+ (N + 1)3/2eAn (d—do) I

where ¢, ¢ independent of h, u, p, N.
Proof. Let el = u —uf, e’; = p — p%. Then from the equalities (4.1)-(4.2) and
(5.3)—(5.4), (e, pl) satisf is
Aleg, v) + Ao (e, v) + AY (€], v) + B(v, )
=AY (u,v) — A1(u,v), Yo €V, (5.6)
B(ez,q) =0, VgeW,. (5.7)

Then we have that

Golluh, — ug — v||F <A —ug — v, uly —ug —v) < Ay — ug — v, uly — ug — v)
+ Ao(ully — ug — v, uly —ug —v) + AV (Ul — ug — v, uly — ug —v)

=A(u —up — v,uly —ug —v) + Ao(u — ug — v, uly —ug —v)
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+ AN (u — up — v, uly —ug —v) — A(el, ulty — ug —v)
— Ag(el, uly —ug —v) — AN (el uly —ug — )
=A(u — ug — v, uly —ug —v) + Ag(u — ug — v, uly — ug — v)
+ AN (u = ug — v, uly —ug —v) + Ay (u, vy — ug —v)
— AL (u,uly — uo — v) + Bluly — uo — v,p — q)
<(ao + az)llu—uo = vlly - uly —uo —v|lv

M

h
)Hu 2,lq |ur —uo —vflv

C
N+ 1)3/2e>\N(d*d0
+aallp—qllw - July —uo —v|, Yo eV, Vge W,

where ug € My, Vi, = {vn, € V| B(vp,q) = B(—uo,q), Vg € Wp}. Thus

1
Jufy — uo — vllv S%[(ao + ag)||u —uo — vl|v

c
N + 1)3/2e>\N(d*do) |

1 ull2,ry, + a1llp — gqllwl.
letllv <[lu = uo = vllv + [[v+ uo — uy||v

; |
(N + 1)3/2e>\N(d—d0)

1
<[ (6o + a0 + a2 Ju—uo — vlly + [ul

+aillp—alw] YoeVi geW

Hence

o + a9

Bo

h . ar .
e VS( —|—1) inf ||u—wug—v||ly +—= inf ||p—q|llw
et i | v+ S inf o —al
c

¥ B + e @ 1l

c
Bo(N + 1)3/2eAn(d—do) HUH2,FdO

Schm[\u|m+172,QT + ’p|m72,QT] +

In order to estimate the error ||p — p ||, we consider

B(v,py —q) =B(v,p — q) — B(v,¢ey)

=B(v,p — q) + Aley,v) + Ao(el;, v) + AT (€, 0) + A1 (u,v) — AY (u,v)

<arlvllv - Ip = allw + (a0 + a2)leglly - [[v]lv

C
i (N + 1)3/2eAn (d—do) ”uH2’Fd0 ollv-
Then
1 B U7ph —q
lepllw <lp —allw + lla = P llw < lp — allw + = sup Blv.py —a)
Brvevingoy  llvllv

c

1
<llp — gllw + =~ |a1llp — dllw + (a0 + az) el +

ail

(N + 1)3/2¢ v (d—do) lull2.ra,

}
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oo + Qo

o)

C
/Bl (N + 1)3/26)\N(d*d0

]
<(1+3)Ip —allw + lebllv + Sllulle.ry,s Va € Wi

Thus

h ary . Qo + Qg
<(1+22) inf |p- LTt
lebllw <(1+ ﬁl)qlegvhllp qllw +

b
Cc

Bi(N + 2w 1

C
/31 (N + 1)3/26/\N(d—d0

h
lewllv +

Slllar,

<ch™[|ulm+1.2,0, + [Plm2.0r] + 2,y -

Then the inequality (5.5) is proved.

6. Numerical Implementation and Example

For the sake of simplicity, let 7, be a rectangle partition of Q7, with Qr = Uger, K,
where K is a rectangle.

For each rectangle K € 7, connected the mid-points of the opposite sides of K,
then each rectangle K is divided into four smaller rectangles. Let 7; denote this
new partition. Therefore let Vi, = {v € V| v|k is a bilinear polynomial, VK € 7},
Wi, ={p € W| p|k is constant, VK € 7, }, M}, = {v € M| v|k is a bilinear polynomial,
VK € 7;}. Then V}, and W}, satisfy the B-B condition and the following approximate
property'8l: inf ey |u—v|v < chlulag.q, and infeew, ||p—qllw < chlpli2.0,. We use
this finite element approximation to solve the following example.

Example The effect of the artificial boundary conditions for Oseen equations.

Suppose that the unbounded domain Q = {x € R?| b < 21 < +00, 0 < x3 < L}.
Let

ui(z) =a+ 21 [ame"i”(mlb) LA”_”LZTm) bmex(mxmb)] cos 772
us(z) = i {ame (1) o) (m)(zlb):| i T2
m=1
p(w)z—anilame 1 (21-) mz@’
where
2 m 3y .

Then (u, p) is the unique solution of the following boundary value problem:

0
aa—u+Vp:VAu, inQ, V.-u=0, in ),
z1
8u1
87112‘$2=07L - u2’x2:O,L - 07 b S Tl < +OO,

uilr, = a, wuslr, = x2(L —22), U — Us, when x3 — +o0.
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We take I'y = {z € R?}| 21 = d, 0 < x5 < L} and then consider the finite element
approximation of the above problem in the bounded domain Qp = {z| b < z; < d,
0 <z < L}. Wealso take b=0,d=1, L=1,v=1and a = 1.0.

Three meshes were used in computation. Figure 1 shows the partition 7, for mesh
A. Mesh B was generated by divided each rectangle in mesh A into four small rectangles.
And mesh C was similarly generated from mesh B. Bilinear finite element approximation
to u and constant finite element approximation to p were used in computation. Table

1 shows the maximum errors u — u/

and p— p?\, over the mesh points when N = 5. We
can see from the table that the convergence is fast and the rate is higher than linear.
Tables 2-4 show the maximum errors of u — uffv and p — pﬁ{, for mesh A, B and C when
N =0,1,3,5. As we can see from the tables, the artificial boundary conditions are
very effective and N = 1 is good enough for mesh A, B and C, this because the meshes

are too coarse and the error we used is maximum error in the domain.

Table 1. Maximum error when N =5
mesh A B C
max [u1 — u1ly| | 3.849E—2 | 1.645E—2 | 5.855E—3
max |us — ua2l| | 2.600E—2 | 8.446E—3 | 2.323E—3
max |p — p%| | 3.074E-2 | 1.419E—2 | 5.847E—3

Table 2. Maximum error for mesh A
N 0 1 3 5
max |uy —uﬁ(;\ 3.273E—2| 3.847TE—2 | 3.847TE—2| 3.849E—2
max|u2—u2§(,\ 2.242E—-2 [ 2.594E—2 | 2.594E—2 | 2.600E—2
max |p — p%| |1.459E—1|3.235E—2|3.235E—2 3.074E—2
Fig. 1 Mesh A
Fig. 2 Fig. 3
Table 3 Maximum error for mesh B
N 0 1 3 5
max |u1 7u1?\,| 3.140E—2 | 1.645E—2 | 1.645E—2 | 1.645E—2
max |us — ua2l;| | 1.905E—2 | 8.446E—3 | 8.446E—3 | 8.446E—3
max |p—p?\,| 2.384E—1 | 1.419E—2 | 1.419E—2 | 1.419E-2
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Table 4. Maximum error for mesh C
N 0 1 3 5
max |u1 — ulili,| 3.450E—2 | 5.855E—3 | 5.855E—3 | 5.855E—3
max |us — us| | 1.965E—2 | 2.323E—3 | 2.323E—3 | 2.323E—3
max |p — p%| 3.000E—1 | 5.848E—3 | 5.848E—3 | 5.847TE—3

Fig. 4 Fig. 5

Figures 2-5 show the relative error of u at outflow boundary I'y for meshes B and
C. Then the effect of N is shown for meshes B and C. As shown in the Figures, N =3
gives good approximation and therefore in computations very few terms in the bilinear
form AY (u,v) are needed in order to get good accuracy.

The example shows that the artificial boundary condition presented in this paper is
very effective. Furthermore this approach can be applied to problems of two dimensional
incompressible viscous flow around obstacles.

Acknowledgement I wish to thank my faculty adviser, Prof. H. Han, for many
helpful discussions on this subject.

References

[1] W. Bao, Artificial Boundary Conditions for Incompressible Viscous Flows and its Applica-
tions, Ph. D. thesis, Tsinghua University, 1995.

[2] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising
from Langrange multipliers, Rech. Oper. Ser. Rouge Anal. Numer., 8 (R-2) (1984), 129
151.

[3] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1990.

[4] K. Feng, Asymptotic radiation conditions for reduced wave equations, J. Comput. Math.,
2 (1984), 130.

[5] C.I. Goldstein, A finite element method for solving Helmholtz type equations in waveguides
and other unbounded domains, Math. Comp., 39 (1982), 309.

[6] T.M. Hagstrom, H.B. Keller, Asymptotic boundary conditions and numerical methods for
nonlinear elliptic problems on unbounded domains, Math. Comp., 48 (1987), 449.



256 W.Z. BAO

[7] T.M. Hagstrom, H.B. Keller, Exact boundary conditions at an artificial boundary for partial
differential equations in cylinders, STAM J. Math. Anal., 17 (1986), 322.

[8] L. Halpern, Artificial boundary conditions for the linear advection diffusion equations, Math.
Comp., 46 (1986), 425.

[9] L. Halpern, M. Schatzman, Artificial boundary conditions for incompressible viscous flows,
SIAM J. Math. Anal., 20 (1989), 308.

[10] H. Han, An economical finite element scheme for Navier-Stokes equations, J. Comput.
Math., 2 (1987), 5.

[11] H. Han, W. Bao, An artificial boundary condition for the incompressible viscous flows using
the method of lines, Int. J. Numer. Methods Fluids, 22 (1996), 483.

[12] H. Han, W. Bao, An artificial boundary condition for the incompressible viscous flows in a
no-slip channel, J. Comput. Math., 13 (1995), 51.

[13] H. Han, J. Lu, W. Bao, A discrete artificial boundary condition for steady incompressible
viscous flows in a no-slip channel using a fast iterative method, J. Comput. Phys., 114
(1994), 201.

[14] H. Han, X. Wu, Approximation of infinite boundary condition and its application to finite
element methods, J. Comput. Math., 3 (1985), 179.

[15] H. Han, X. Wu, The approximation of the exact boundary condition at an artificial bound-
ary for linear elastic equations and its application, Math. Comp., 59 (1992), 21.

[16] S.G. Mikhlin, The problem of the Minimum of a Quadratic Functional, Holden-Day, Inc.
San Franciaco, London, Amsterdam, 1965.

[17] F. Nataf, An open boundary condition for the computation of the steady incompressible
Navier Stokes equations, J. Comput. Phys., 85 (1989), 104.

[18] J.T. Oden, O. Jacquotte, A stable second-order accurate finite element scheme for the
analysis of two-dimensional incompressible viscous flows, in Finite Element Flow Analysis,
ed. Tadakiko Kawai, University of Tokyo Press, 1982.



