BOUNDARY ELEMENT APPROXIMATION OF STEKLOV EIGENVALUE PROBLEM FOR HELMHOLTZ EQUATION*1)2)

Wei-jun Tang
(Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)
Zhi Guan Hou-de Han
(Department of Applied Mathematics, Tsinghua University, Beijing 100084, China)

Abstract

Steklov eigenvalue problem of Helmholtz equation is considered in the present paper. Steklov eigenvalue problem is reduced to a new variational formula on the boundary of a given domain, in which the self-adjoint property of the original differential operator is kept and the calculating of hyper-singular integral is avoided. A numerical example showing the efficiency of this method and an optimal error estimate are given.

Key words: Steklov eigenvalue problem, differential operator, error estimate, boundary element approximation.

1. Introduction

We consider the following Steklov eigenvalue problem:
Find nonzero u and number λ, such that

$$
\begin{align*}
& -\Delta u+u=0, \quad \text { in } \Omega \\
& \frac{\partial u}{\partial n}=\lambda u, \quad \text { on } \Gamma \tag{1.1}
\end{align*}
$$

where $\Omega \subset R^{2}$ is a bounded domain with sufficient smooth boundary $\Gamma, \frac{\partial}{\partial n}$ is the outward normal derivative on Γ.

Courant and Hilbert ${ }^{[1]}$ studied the following eigenvalue problem:

$$
\begin{equation*}
\Delta u=0, \quad \text { in } \Omega, \quad \frac{\partial u}{\partial n}=\lambda u, \quad \text { on } \Gamma, \tag{1.2}
\end{equation*}
$$

which was reduced to the eigenvalue problem of an integral equation by using the Green's function of $\Delta u=0$ with Nuemann boundary condition. From Fredholm theorem, we know that (1) the problem (1.2) has infinite number of eigenvalues, which are all real numbers, (2) suppose that $u_{n}(x), u_{m}(x)$ are two eigenvalues of the problem (1.2) corresponding two different eigenvalues λ_{n} and λ_{m}, then

[^0]\[

$$
\begin{equation*}
\int_{\Gamma} u_{n}(x) u_{m}(x) d s_{x}=0 \tag{1.3}
\end{equation*}
$$

\]

i.e. the trace of $u_{n}(x)$ and $u_{m}(x)$ on Γ are orthogonal on the space of $L^{2}(\Gamma)$.

Moreover, Courant and Hilbert ${ }^{[1]}$ pointed out that analogous considerations held for the general self-adjoint second order elliptic differential equation, so for the problem (1.1).

But it is difficult to obtain the numerical solution of the problem (1.1), or (1.2) by the integral formula given by Courant and Hilbert. The reason is that for only a few of special domains, the Green's function is known. Bramble and Osborn ${ }^{[2]}$ developed a finite element method for the Steklov eigenvalue problem and the optimal error estimate was given. Han, Guan and He discussed the boundary element approximation of the problem (1.2) [9] and the error estimate was given in [10] by Han and Guan. In this paper, a equivalent variational formula on the boundary Γ for the problem (1.1) is proposed, using the fundamental solution of $-\Delta u+u=0$. Then the boundary finite element approximation of the problem (1.1) was obtain. A numerical example shows that the new method is very efficient.

2. A New Variational Formula on the Boundary Γ of Problem (1.1) and Its Boundary Element Approximation

The fundamental solution of equation $-\Delta u+u=0$ in Ω is the modified Bessel function of zero order $K_{0}(|x-y|)$, which is given by

$$
\begin{equation*}
K_{0}(r)=\frac{\pi i}{2} H_{0}^{(1)}(i r)=\sum_{n=0}^{\infty} a_{n} r^{2 n} \log \frac{1}{r}+\sum_{n=1}^{\infty} b_{n} r^{2 n}, a_{0}=1, \tag{2.1}
\end{equation*}
$$

with $a_{n}, b_{n}(n=1,2, \cdots)$ unique determined nearby $r=0$ and, we have

$$
\begin{equation*}
K_{0}(r)=\sqrt{\frac{\pi}{2 r}} e^{-r}+\cdots, \tag{2.2}
\end{equation*}
$$

at infinity. So $\lim _{r \rightarrow+\infty} K_{0}(r)=0 . K_{0}(r)$ satisfies the following differential equation

$$
\begin{equation*}
\frac{d^{2} K_{0}(r)}{d r^{2}}+\frac{1}{r} \frac{d K_{0}(r)}{d r}-K_{0}(r)=0, \quad r \neq 0 . \tag{2.3}
\end{equation*}
$$

By using Green's formula it is obtained:

$$
\begin{equation*}
u(x)=-\frac{1}{2 \pi} \int_{\Gamma} u(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}+\frac{1}{2 \pi} \int_{\Gamma} p(y) K_{0}(|x-y|) d s_{y}, \quad \forall x \in \Omega, \tag{2.4}
\end{equation*}
$$

where $u(x)$ is any solution of equation $-\Delta u+u=0, p(y)=\left.\frac{\partial u(y)}{\partial n_{y}}\right|_{\Gamma}$, and n_{y} denotes the outward unit normal to Γ at point y. The formula (2.4) shows that every function u satisfying $-\Delta u+u=0$ in Ω and continuously differentiable on $\Omega+\Gamma$ can be represented as the potential of a distribution on the boundary Γ consisting of a single-layer of density
$p(y)=\frac{\partial u(y)}{\partial n_{y}}$ and a double-layer of density $-u(x)$. From the continuity of the singlelayer potential and the discontinuity of the double-layer potential on $\Gamma[3],[4]$, the first relationship between $\left.u\right|_{\Gamma}$ and p is obtained:

$$
\begin{equation*}
\frac{1}{2} u(x)=-\frac{1}{2 \pi} \int_{\Gamma} u(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}+\frac{1}{2 \pi} \int_{\Gamma} p(y) K_{0}(|x-y|) d s_{y}, \quad \forall x \in \Gamma . \tag{2.5}
\end{equation*}
$$

Furthermore, by using the properties of the derivatives of the single and the double layer potentials [5], it is obtained that

$$
\begin{equation*}
\frac{1}{2} p(x)=-\frac{1}{2 \pi} \int_{\Gamma} u(y) \frac{\partial^{2} K_{0}(|x-y|)}{\partial n_{x} \partial n_{y}} d s_{y}+\frac{1}{2 \pi} \int_{\Gamma} p(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{x}} d s_{y}, \quad \forall x \in \Gamma, \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
\int_{\Gamma} u(y) \frac{\partial^{2} K_{0}(|x-y|)}{\partial n_{x} \partial n_{y}} d s_{y}= & \frac{d}{d s_{x}} \int_{\Gamma} \frac{d u(y)}{d s_{y}} K_{0}(|x-y|) d s_{y} \\
& -\int_{\Gamma} u(y) K_{0}(|x-y|) \cos \left(n_{x}, n_{y}\right) d s_{y} \tag{2.7}
\end{align*}
$$

Hence on the boundary Γ we have

$$
\begin{aligned}
\left.\frac{\partial u(x)}{\partial n_{x}}\right|_{\Gamma}= & p(x)=\frac{1}{2} p(x)-\frac{1}{2 \pi} \frac{d}{d s_{x}} \int_{\Gamma} \frac{d u(y)}{d s_{y}} K_{0}(|x-y|) d s_{y} \\
& +\frac{1}{2 \pi} \int_{\Gamma} u(y) K_{0}(|x-y|) \cos \left(n_{x}, n_{y}\right) d s_{y}+\frac{1}{2 \pi} \int_{\Gamma} p(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{x}} d s_{y}
\end{aligned}
$$

Then the boundary condition in the problem (1.1) is rewritten as follows

$$
\begin{align*}
& \frac{1}{2} p(x)-\frac{1}{2 \pi} \frac{d}{d s_{x}} \int_{\Gamma} \frac{d u(y)}{d s_{y}} K_{0}(|x-y|) d s_{y}+\frac{1}{2 \pi} \int_{\Gamma} u(y) K_{0}(|x-y|) \\
& \quad \cdot \cos \left(n_{x}, n_{y}\right) d s_{y}+\frac{1}{2 \pi} \int_{\Gamma} p(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{x}} d s_{y} \\
& =\lambda u(x), \quad x \in \Gamma . \tag{2.8}
\end{align*}
$$

In fact the equalities (2.5) and (2.8) hold for any solution $u, u \in H^{1}(\Omega)$, satisfying the Helmholtz equation in weak sense. In this paper, $H^{\alpha}(\Omega)$ denotes the Sobolev space on the domain Ω with norm $\|\cdot\|_{\alpha, \Omega}$ and $H^{\beta}(\Gamma)$ denotes the Sobolev space on the boundary Γ with norm $\|\cdot\|_{\beta, \Gamma}$ as usual [6]

Let $V=H^{\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma) .\|(v, q)\|_{V}=\left(\|v\|_{\frac{1}{2}, \Gamma}^{2}+\|q\|_{-\frac{1}{2}, \Gamma}^{2}\right)^{\frac{1}{2}}$.
By multiplying (2.8) by a function $v \in H^{\frac{1}{2}}(\Gamma)$ and (2.5) by a function $q \in H^{-\frac{1}{2}}(\Gamma)$, and by integrating over Γ, the following equivalent variational form of (1.1) is derived:

Find nonzero $(u, p) \in V$ and number λ, such that

$$
\begin{align*}
& a_{0}(\dot{u}, \dot{v})+a_{1}(u, v)-b(p, v)=\lambda \int_{\Gamma} u v d s, \quad \forall v \in H^{\frac{1}{2}}(\Gamma), \\
& a_{0}(p, q)+b(q, u)=0, \quad \forall q \in H^{-\frac{1}{2}}(\Gamma), \tag{2.9}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{0}(p, q)=\frac{1}{2 \pi} \int_{\Gamma} \int_{\Gamma} p(y) q(x) K_{0}(|x-y|) d s_{x} d s_{y} \\
& a_{1}(u, v)=\frac{1}{2 \pi} \int_{\Gamma} \int_{\Gamma} u(y) v(x) K_{0}(|x-y|) \cos \left(n_{x}, n_{y}\right) d s_{x} d s_{y} \\
& b(p, v)=-\frac{1}{2 \pi} \int_{\Gamma} \int_{\Gamma} p(y) v(x) \frac{\partial K_{0}(|x-y|)}{\partial n_{x}} d s_{x} d s_{y}-\frac{1}{2} \int_{\Gamma} v(x) p(x) d s_{x} \\
& \dot{u}(y)=\left.\frac{d u(y)}{d s_{y}}\right|_{\Gamma} \\
& \dot{v}(y)=\left.\frac{d v(y)}{d s_{y}}\right|_{\Gamma} .
\end{aligned}
$$

Let $A(u, p ; v, q)=a_{0}(\dot{u}, \dot{v})+a_{1}(u, v)-b(p, v)+b(q, u)+a_{0}(p, q)$.
Then the problem (2.9) can be rewritten as follows:
Find nonzero $(u, p) \in V$ and number λ, such that

$$
\begin{equation*}
A(u, p ; v, q)=\lambda \int_{\Gamma} u v d s, \quad \forall(v, q) \in V . \tag{2.10}
\end{equation*}
$$

For the bilinear $a_{0}(p, q), a_{1}(p, q)$ and $b(q, v)$, the following lemma holds ${ }^{[5,7,8]}$
Lemma 2.1. (1) $a_{0}(p, q)$ is a bounded bilinear form on $H^{-\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma)$ and $H^{-\frac{1}{2}}(\Gamma)$-elliptic, i.e. there are two constants $M_{0}>0, \alpha_{0}>0$, such that $\left|a_{0}(p, q)\right| \leq$ $M_{0}\|p\|_{-\frac{1}{2}, \Gamma},\|q\|_{-\frac{1}{2}, \Gamma}, \forall p, q \in H^{-\frac{1}{2}}(\Gamma), a_{0}(q, q) \geq \alpha_{0}\|q\|_{-\frac{1}{2}, \Gamma}^{2}, \forall q \in H^{-\frac{1}{2}(\Gamma)}$.
(2) Suppose $p \in H^{-\frac{1}{2}}(\Gamma) \cap H^{-\frac{1}{2}+t}(\Gamma),(0 \leq t \leq 1)$, then a constant $M_{t}>0$ must exist such that $\left|a_{0}(p, q)\right| \leq M_{t}\|p\|_{-\frac{1}{2}+t, \Gamma}\|q\|_{-\frac{1}{2}-t, \Gamma}, \forall q \in H^{-\frac{1}{2}}(\Gamma)$.
(3) $b(q, v)$ is a bounded bilinear form on $H^{-\frac{1}{2}}(\Gamma) \times H^{\frac{1}{2}}(\Gamma)$, and $a_{1}(p, q)$ is a bounded bilinear form on $H^{\frac{1}{2}}(\Gamma) \times H^{\frac{1}{2}}(\Gamma)$, i.e. there are two constants M_{1}, M_{2}, such that $\left|a_{0}(q, v)\right| \leq M_{1}\|v\|_{-\frac{1}{2}, \Gamma}\|q\|_{-\frac{1}{2}, \Gamma}, \quad \forall q \in H^{-\frac{1}{2}}(\Gamma), \quad v \in H^{-\frac{1}{2}}(\Gamma), \quad\left|a_{1}(p, q)\right| \leq M_{2}\|p\|_{\frac{1}{2}, \Gamma}$ $\|q\|_{\frac{1}{2}, \Gamma}, \forall p, q \in H^{\frac{1}{2}}(\Gamma)$.

From lemma 2.1, another lemma can be obtained.
Lemma 2.2. $A(u, p ; v, q)$ is a bounded bilinear form on $V \times V$, namely there is a constant $M>0$, such that $|A(u, p ; v, q)| \leq M\|(u, p)\|_{V}\|(v, q)\|_{V}$.

To prove the coerciveness of $A(u, p ; v, q)$, define the linear operator K_{1} from $H^{-\frac{1}{2}}(\Gamma)$ to $H^{\frac{1}{2}}(\Gamma)$, and K_{2} from $H^{\frac{1}{2}}(\Gamma)$ to $H^{\frac{1}{2}}(\Gamma)$ by

$$
\begin{align*}
& K_{1} q=\frac{1}{2 \pi} \int_{\Gamma} q(y) K_{0}(|x-y|) d s_{y}, \quad \forall q \in H^{-\frac{1}{2}}(\Gamma) . \tag{2.11}\\
& K_{2} v=-\frac{1}{2 \pi} \int_{\Gamma} v(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}+\frac{1}{2} v(y), \quad \forall v \in H^{\frac{1}{2}}(\Gamma) . \tag{2.12}
\end{align*}
$$

From [7], [5] we know that there are two constants $d_{1}, d_{2}>0$, such that

$$
\begin{align*}
& \left\|K_{1} q\right\|_{\frac{1}{2}, \Gamma} \geq d_{1}\|q\|_{-\frac{1}{2}, \Gamma}, \quad \forall q \in H^{-\frac{1}{2}}(\Gamma) \tag{2.13}\\
& \left\|K_{2} v\right\|_{\frac{1}{2}, \Gamma} \geq d_{2}\|v\|_{\frac{1}{2}, \Gamma}, \quad \forall v \in H^{\frac{1}{2}}(\Gamma) \tag{2.14}
\end{align*}
$$

Lemma 2.3. There exists a constant $\mu>0$, such that

$$
\begin{equation*}
A(v, q ; v, q) \geq \mu\|(v, q)\|_{V}^{2}, \quad \forall(v, q) \in V \tag{2.15}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
& u_{1}(x)=\frac{1}{2 \pi} \int_{\Gamma} q(y) K_{0}(|x-y|) d s_{y}, \quad x \in \Omega \\
& u_{2}(x)=\frac{1}{2 \pi} \int_{\Gamma} q(y) K_{0}(|x-y|) d s_{y}, \quad x \in \Omega^{c} \\
& u_{3}(x)=-\frac{1}{2 \pi} \int_{\Gamma} v(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}, \quad x \in \Omega \\
& u_{4}(x)=-\frac{1}{2 \pi} \int_{\Gamma} v(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}, \quad x \in \Omega^{c}
\end{aligned}
$$

where $\Omega^{c}=R^{2} \backslash \bar{\Omega}$.
From the boundary behaviour of the double layar potential, the following equations hold

$$
\begin{aligned}
& \left.u_{1}(x)\right|_{\Gamma}=\left.u_{2}(x)\right|_{\Gamma} \\
& \left.\frac{\partial u_{1}(x)}{\partial n_{x}}\right|_{\Gamma}=\frac{1}{2 \pi} \int_{\Gamma} q(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{x}} d s_{y}+\frac{1}{2} q(x), \\
& \left.\frac{\partial u_{2}(x)}{\partial n_{x}}\right|_{\Gamma}=\frac{1}{2 \pi} \int_{\Gamma} q(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{x}} d s_{y}-\frac{1}{2} q(x), \\
& \left.u_{3}(x)\right|_{\Gamma}=-\frac{1}{2 \pi} \int_{\Gamma} v(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}+\frac{1}{2} v(x), \\
& \left.u_{4}(x)\right|_{\Gamma}=-\frac{1}{2 \pi} \int_{\Gamma} v(y) \frac{\partial K_{0}(|x-y|)}{\partial n_{y}} d s_{y}-\frac{1}{2} v(x), \\
& \left.\frac{\partial u_{3}(x)}{\partial n_{x}}\right|_{\Gamma}=\left.\frac{\partial u_{4}(x)}{\partial n_{x}}\right|_{\Gamma}
\end{aligned}
$$

which is followed by

$$
\left.\frac{\partial u_{1}(x)}{\partial n_{x}}\right|_{\Gamma}-\left.\frac{\partial u_{2}(x)}{\partial n_{x}}\right|_{\Gamma}=q(x),\left.\quad u_{3}(x)\right|_{\Gamma}-\left.u_{4}(x)\right|_{\Gamma}=v(x)
$$

on the other hand when $|x| \rightarrow+\infty$, we have

$$
u_{i}(x)=o\left(\frac{1}{|x|^{2}}\right), \quad(i=2,4), \quad \frac{\partial u_{i}(x)}{\partial n_{x}}=o\left(\frac{1}{|x|^{2}}\right), \quad(i=2,4)
$$

An application of the Green's formula yields

$$
\int_{\Omega}\left(\nabla u_{1} \nabla u_{1}+u_{1}^{2}\right) d x+\int_{\Omega}\left(\nabla u_{3} \nabla u_{3}+u_{3}^{2}\right) d x
$$

$$
\begin{aligned}
& +\int_{\Omega^{c}}\left(\nabla u_{2} \nabla u_{2}+u_{2}^{2}\right) d x+\int_{\Omega^{c}}\left(\nabla u_{4} \nabla u_{4}+u_{4}^{2}\right) d x \\
= & \int_{\Gamma}\left(\frac{\partial u_{1}}{\partial n_{x}}-\frac{\partial u_{2}}{\partial n_{x}}\right) u_{1}(x) d s_{x}+\int_{\Gamma} \frac{\partial u_{3}}{\partial n_{x}}\left(u_{3}(x)-u_{4}(x)\right) d s_{x}=A(v, q ; v, q) .
\end{aligned}
$$

Hence the follows hold

$$
\begin{equation*}
A(v, q ; v, q) \geq\left\|u_{1}\right\|_{1, \Omega}^{2}+\left\|u_{3}\right\|_{1, \Omega}^{2} . \tag{2.16}
\end{equation*}
$$

From the trace theorem and inequalities (2.16), (2.13), and (2.14) there are two constants $c_{1}>0, c_{2}>0$, such that

$$
\begin{align*}
& \left\|u_{1}\right\|_{1, \Omega} \geq c_{1}\left\|u_{1}\right\|_{\frac{1}{2}, \Gamma}=c_{1}\left\|K_{1} q\right\|_{\frac{1}{2}, \Gamma} \geq c_{1} d_{1}\|q\|_{-\frac{1}{2}, \Gamma}, \tag{2,17}\\
& \left\|u_{3}\right\|_{1, \Omega} \geq c_{2}\left\|u_{3}\right\|_{\frac{1}{2}, \Gamma}=c_{2}\left\|K_{2} v\right\|_{\frac{1}{2}, \Gamma} \geq c_{2} d_{2}\|v\|_{-\frac{1}{2}, \Gamma}, \tag{2.18}
\end{align*}
$$

so the inequality (2.15) immediately follows with $\mu=\max \left(c_{1}^{2} d_{1}^{2}, c_{2}^{2} d_{2}^{2}\right), A(v, q ; v, q) \geq$ $\mu\|(v, q)\|_{V}^{2},(v, q) \in V$. From lemma 2.2 and 2.3, the eigenvalue problem (2.9) on the boundary Γ is equivalent to the Steklov eigenvalue problem (1.1).

Now suppose that the boundary Γ of the domain Ω is represented as $x_{1}=x_{1}(s)$, $x_{2}=x_{2}(s), 0 \leq s \leq L$, and $x_{j}(0)=x_{j}(L), j=1,2$. Furthermore, Γ is divided into segments $\{T\}$ by the points $x^{i}=\left(x_{1}\left(s_{i}\right), x_{2}\left(s_{i}\right)\right), i=0,1,2, \cdots, N$, with $0=s_{0}<s_{1}<$ $\cdots<s_{N}=L$. Define $h=\max _{1 \leq i \leq N}\left|s_{i}-s_{i-1}\right|$, and this partition of Γ is denoted as J_{h}. Let

$$
\begin{aligned}
& S_{h}=\left\{v_{h}\left|v_{h} \in C^{0}(\Gamma), v_{h}\right|_{T} \text { is a linear function, } \forall T \in J_{h}\right\} . \\
& M_{h}=\left\{q_{h}\left|q_{h}\right|_{T} \text { is a constant, } \forall T \in J_{h}\right\} .
\end{aligned}
$$

It is obviously that S_{h} is a subspace of $H^{\frac{1}{2}}(\Gamma)$ with dimension N and M_{h} is a subspace of $H^{-\frac{1}{2}}(\Gamma)$ with dimension $N . S_{h}$ and M_{h} are two regular finite element space in sense of Babuška and Aziz ${ }^{[8]}$, which satisfy the following approximation properties:

$$
\begin{align*}
& \inf _{v_{h} \in S_{h}}\left\|u-v_{h}\right\|_{\frac{1}{2}, \Gamma} \leq c h^{t}\|u\|_{\frac{1}{2}+t, \Gamma}, \quad \forall u \in H^{\frac{1}{2}+t}(\Gamma) \tag{2.19}\\
& \inf _{q_{h} \in M_{h}}\left\|p-q_{h}\right\|_{-\frac{1}{2}, \Gamma} \leq c h^{t}\|p\|_{-\frac{1}{2}+t, \Gamma}, \quad \forall p \in H^{-\frac{1}{2}+t}(\Gamma), \tag{2.20}
\end{align*}
$$

where $0 \leq t \leq 1$.
Now we consider the discrete problem of (2.9)
Find nonzero $\left(u_{h}, p_{h}\right) \in S_{h} \times M_{h}$ and number λ_{h}, such that

$$
\begin{gather*}
a_{0}\left(\dot{u}_{h}, \dot{v}_{h}\right)+a_{1}\left(u_{h}, v_{h}\right)-b\left(p_{h}, v_{h}\right)=\lambda_{h} \int_{\Gamma} u_{h} v_{h} d s, \quad \forall v_{h} \in S_{h}, \\
a_{0}\left(p_{h}, q_{h}\right)+b\left(q_{h}, u_{h}\right)=0, \quad \forall q_{h} \in M_{h} . \tag{2.21}
\end{gather*}
$$

Assuming that the base functions of space S_{h} and the space M_{h} are given, the problem (2.21) can be reduced to a matrix eigenvalue problem. By solving it, the approximation solution of original problem (1.1) can be obtained.

3. The Error Estimate of the Boundary Element Approximation

In this section, the error estimate of the boundary element approximation will be discussed by the general approximation theory of eigenvalues for a certain class of the compact operators [2]. Hence we identify the boundary eigenvalue problem (2.9) with the eigenvalues of a compact operator. Let $\mu=\lambda+1$, then the problem (2.9) can be rewritten as follows:

Find nonzero $(u, p) \in V$ and number λ, such that

$$
\begin{gather*}
a_{0}(\dot{u}, \dot{v})+\langle u, v\rangle+a_{1}(u, v)-b(p, v)=\mu\langle u, v\rangle, \quad \forall v \in H^{\frac{1}{2}}(\Gamma), \\
a_{0}(p, q)+b(q, u)=0, \quad \forall q \in H^{-\frac{1}{2}}(\Gamma), \tag{3.1}
\end{gather*}
$$

where $\langle u, v\rangle=\int_{\Gamma} u v d s$.
For any given $u \in H^{\frac{1}{2}}(\Gamma), b(q, u)$ is a bounded linear functional on $H^{-\frac{1}{2}}(\Gamma)$. From the lemma 2.1, the following variational problem

$$
\begin{gather*}
\text { Find } p \in H^{-\frac{1}{2}}(\Gamma), \text { such that } \\
a_{0}(p, q)+b(q, u)=0, \quad \forall q \in H^{-\frac{1}{2}}(\Gamma), \tag{3.2}
\end{gather*}
$$

has a unique solution p. Let $P u=p$, then we obtain the bounded operator P : $H^{\frac{1}{2}}(\Gamma) \rightarrow H^{-\frac{1}{2}}(\Gamma)$, and there is a constant C, such that

$$
\begin{equation*}
\|P u\|_{-\frac{1}{2}, \Gamma} \leq C\|u\|_{\frac{1}{2}, \Gamma}, \quad \forall u \in H^{\frac{1}{2}}(\Gamma) \tag{3.3}
\end{equation*}
$$

In fact, for any given $u \in H^{\frac{1}{2}}(\Gamma)$, it can be extended to the total domain Ω and $u \in H^{1}(\Omega)$ is the weak solution of Helmholtz equation $-\Delta u+u=0$. Then $P u=\left.\frac{\partial u}{\partial n}\right|_{\Gamma}$, and the operator P can be extented ${ }^{[7]}$ to $P: H^{s+1}(\Gamma) \rightarrow H^{s}(\Gamma), s \geq-\frac{1}{2}$, and

$$
\begin{equation*}
\|P u\|_{s, \Gamma} \leq C\|u\|_{s+1, \Gamma} . \tag{3.4}
\end{equation*}
$$

By using $p=P u$, the unknown function p can be eliminated in the problem (3.1). We note that $a_{0}(P u, P v)=-b(P u, v), \forall v \in H^{\frac{1}{2}}(\Gamma)$. Then the problem (3.1) is reduced to Find nonzero $u \in H^{\frac{1}{2}}(\Gamma)$ and number μ, such that

$$
\begin{equation*}
E(u, v)=\mu\langle u, v\rangle, \quad \forall v \in H^{\frac{1}{2}}(\Gamma) . \tag{3.5}
\end{equation*}
$$

where $E(u, v)=a_{0}(\dot{u}, \dot{v})+a_{1}(u, v)+a_{0}(P u, P v)+\langle u, v\rangle$. From the lemma 2.1, 2.2 and 2.3, the following lemma is obtained.

Lemma 3.1. $E(u, v)$ is a bounded bilinear form on $H^{\frac{1}{2}}(\Gamma) \times H^{\frac{1}{2}}(\Gamma)$ and $H^{\frac{1}{2}}(\Gamma)$ elliptic, i.e. there exist two constants $M_{3}>0, \alpha_{3}>0$, such that

$$
|E(u, v)| \leq M_{3}\|u\|_{\frac{1}{2}, \Gamma}\|v\|_{\frac{1}{2}, \Gamma}, \quad \forall u, v \in H^{\frac{1}{2}}(\Gamma)
$$

$$
E(v, v) \geq \alpha_{3}\|v\|_{\frac{1}{2}, \Gamma}^{2}, \quad \forall v \in H^{\frac{1}{2}}(\Gamma)
$$

For any given $g \in H^{-\frac{1}{2}}(\Gamma)$, consider the following variational problem

$$
\text { Find nonzero } u \in H^{\frac{1}{2}}(\Gamma), \text { such that }
$$

$$
\begin{equation*}
E(u, v)=\langle g, v\rangle, \quad \forall v \in H^{\frac{1}{2}}(\Gamma) \tag{3.6}
\end{equation*}
$$

From the lemma 3.1, and Lax-Milgram theorem, the problem (3.7) has a unique solution $u \in H^{\frac{1}{2}}(\Gamma)$. Let $T g=u$, we obtain a bounded operator $T: H^{-\frac{1}{2}}(\Gamma) \rightarrow H^{\frac{1}{2}}(\Gamma)$ In fact, for any given $g \in H^{-\frac{1}{2}}(\Gamma), T g=u$ is the restriction on Γ of the solution of the following boundary problem: $-\Delta u+u=0$, in $\Omega, \frac{\partial u}{\partial n}+u=g$, on G. Hence we know that ${ }^{[7]} T$: $H^{s}(\Gamma) \rightarrow H^{s+1}(\Gamma), s \geq-\frac{1}{2}$, and

$$
\begin{equation*}
\|T g\|_{s+1, \Gamma} \leq C\|u\|_{s+\frac{3}{2}, \Omega} \leq C\|g\|_{s, \Gamma} \tag{3.7}
\end{equation*}
$$

Suppose $\frac{1}{\mu}$ is a nonzero eigenvalue of T on $H^{-\frac{1}{2}}(\Gamma)$, i.e. there is a nonzero $g \in H^{-\frac{1}{2}}(\Gamma)$, such that $T g=\frac{1}{\mu} g$. Then $E(T g, v)=\langle g, v\rangle=\mu\langle T g, v\rangle, \forall v \in H^{\frac{1}{2}}(\Gamma)$, and $T g$ is nonzero. Thus μ is an eigenvalue of the problem (3.5) with $T g$, the corresponding eigenfunction. Conversely, suppose μ is a nonzero eigenvalue of the problem (3.5) with the corresponding eigenfunction u, namely $E(u, v)=\mu\langle u, v\rangle, \quad \forall v \in H^{\frac{1}{2}}(\Gamma)$. Then $T u=\frac{1}{\mu} u, \frac{1}{\mu}$ is an eigenvalue of T with the corresponding eigenfunction u. Therefore the eigenvalues of the problem (3.1) are the reciprocals of the eigenvalues of the compact operator T.

Similarly, in the approximation problem (2.21), let $\mu_{h}=\lambda_{h}+1$, then
Find nonzero $\left(u_{h}, p_{h}\right) \in V_{h}$ and number μ_{h}, such that

$$
\begin{gather*}
a_{0}\left(\dot{u_{h}}, \dot{v_{h}}\right)+\left\langle u_{h}, v_{h}\right\rangle+a_{1}\left(u_{h}, v_{h}\right)-b\left(p_{h}, v_{h}\right)=\mu_{h}\left\langle u_{h}, v_{h}\right\rangle, \quad \forall v_{h} \in S_{h} \\
a_{0}\left(p_{h}, q_{h}\right)+b\left(q_{h}, u_{h}\right)=0, \quad \forall q_{h} \in M_{h} \tag{3.8}
\end{gather*}
$$

For any given $u \in H^{\frac{1}{2}}(\Gamma)$, consider the following variational problem
Find nonzero $p_{h} \in M_{h}$, such that

$$
\begin{equation*}
a_{0}\left(p_{h}, q\right)+b(q, u)=0, \quad \forall q \in M_{h} \tag{3.9}
\end{equation*}
$$

By the lemma 2.1, the problem (3.9) has a unique solution p_{h}. Let $P_{h} u=p_{h}$, then we get an operator $P_{h}: H^{s+1}(\Gamma) \rightarrow M_{h}, s \geq-\frac{1}{2}$, and

$$
\begin{equation*}
\left\|P_{h} u\right\|_{-\frac{1}{2}, \Gamma} \leq C\|u\|_{\frac{1}{2}, \Gamma} \tag{3.10}
\end{equation*}
$$

Obviously, $P_{h} u$ is the boundary element approximation of $P u$ in space M_{h}, and the following error estimate holds ${ }^{[7]}$

$$
\begin{equation*}
\left\|P u-P_{h} u\right\|_{-\frac{1}{2}, \Gamma} \leq C h^{s}\|P u\|_{s-\frac{1}{2}} \tag{3.11}
\end{equation*}
$$

It is noted that $a_{0}\left(P_{h} u, P_{h} v\right)=-b\left(P_{h} u, v\right), \forall v \in H^{\frac{1}{2}}(\Gamma)$. Then the eigenvalue problem (3.8) is reduced to

Find nonzero $u_{h} \in S_{h}$ and number μ_{h}, such that

$$
\begin{equation*}
E_{h}\left(u_{h}, v\right)=\mu_{h}\left\langle u_{h}, v\right\rangle, \quad \forall v \in S_{h}, \tag{3.12}
\end{equation*}
$$

where $E_{h}(u, v)=a_{0}(\dot{u}, \dot{v})+\langle u, v\rangle+a_{1}(u, v)+a_{0}\left(P_{h} u, P_{h} v\right)$. It is straight forward to check the following lemma.

Lemma 3.2. There exist two positive constants M_{4}, α_{4}, independent of h, such that

$$
\begin{align*}
& \left|E_{h}(u, v)\right| \leq M_{4}\|u\|_{\frac{1}{2}, \Gamma}\|v\|_{\frac{1}{2}, \Gamma}, \quad \forall u, v \in H^{\frac{1}{2}}(\Gamma) . \tag{3.13}\\
& E_{h}(v, v) \geq \alpha_{4}\|v\|_{\frac{1}{2}, \Gamma}^{2}, \quad \forall v \in H^{\frac{1}{2}}(\Gamma) . \tag{3.14}
\end{align*}
$$

Hence for any given $g \in H^{-\frac{1}{2}}(\Gamma)$, the variational problem
Find $u_{h} \in S_{h}$, such that

$$
\begin{equation*}
E_{h}\left(u_{h}, v\right)=\langle g, v\rangle, \quad \forall v \in S_{h}, \tag{3.15}
\end{equation*}
$$

has a unique solution u_{h}. Let $T_{h} g=u_{h}$, a bounded operator is obtained $T_{h}: H^{-\frac{1}{2}}(\Gamma) \rightarrow$ $S_{h} \subset H^{\frac{1}{2}}(\Gamma)$, and $\left\|T_{h} g\right\|_{\frac{1}{2}, \Gamma} \leq C\|g\|_{-\frac{1}{2}, \Gamma}$. Similarly, the eigenvalues of the problem (3.12) are the reciprocals of the eigenvalues of the operator T_{h}. Thus the eigenvalues of the problem (3.1) can be compared with the boundary element approximations by comparing the eigenvalues of the compact operator T with the approximate operator T_{h}. In order to obtain the eigenvalue estimates of T and T_{h}, we need to estimate the error $T-T_{h}$.

Lemma 3.3. For any $g \in H^{-\frac{1}{2}}(\Gamma)$, it holds that

$$
\begin{equation*}
E_{h}\left(\left(T-T_{h}\right) g, v\right)=-a_{0}\left(\left(P-P_{h}\right) T g, P v\right), \quad \forall v \in S_{h} \tag{3.16}
\end{equation*}
$$

Proof. From the definition of T and T_{h}, we derive $E(T g, v)=\langle g, v\rangle, \forall v \in S_{h}$. $E_{h}\left(T_{h} g, v\right)=\langle g, v\rangle, \forall v \in S_{h}$. Hence for any $v \in S_{h}$ it is obtained that

$$
\begin{aligned}
0 & =E(T g, v)-E_{h}\left(T_{h} g, v\right)=E_{h}\left(T g-T_{h} g, v\right)+a_{0}(P T g, P v)-a_{0}\left(P_{h} T g, P_{h} v\right) \\
& =E_{h}\left(\left(T-T_{h}\right) g, v\right)+a_{0}\left(\left(P-P_{h}\right) T g, P v\right)+a_{0}\left(P_{h} T g,\left(P-P_{h}\right) v\right) .
\end{aligned}
$$

On the other hand, by the definitions of the operator P and P_{h} we obtain $a_{0}(P v, q)+$ $b(q, v)=0, \forall v \in S_{h}, q \in M_{h} . a_{0}\left(P_{h} v, q\right)+b(q, v)=0, \forall v \in S_{h}, q \in M_{h}$. Thus $a_{0}\left(\left(P-P_{h}\right) v, q\right)=0, \forall v \in S_{h}, q \in M_{h}$. From the symmetry of the bilinear form $a_{0}(p, q)$ and $P_{h} T g \in M_{h}$ the following equality is derived $a_{0}\left(P_{h} T g,\left(P-P_{h}\right) v\right)=0$, $\forall g \in H^{-\frac{1}{2}}(\Gamma), v \in S_{h}$. Then the lemma 3.3 is proved.

Lemma 3.4. For any $g \in H^{-\frac{1}{2}+t}(\Gamma),(0 \leq t \leq 1)$, there exists a constant C such that

$$
\begin{equation*}
\left\|T g-T_{h} g\right\|_{\frac{1}{2}, \Gamma} \leq C h^{t}\|g\|_{-\frac{1}{2}+t, \Gamma} . \tag{3.17}
\end{equation*}
$$

Proof. From the lemma 3.2, it holds that

$$
\begin{aligned}
\mid T g-T_{h} g \|_{\frac{1}{2}, \Gamma}^{2} & \leq \frac{1}{\alpha_{4}} E_{h}\left(\left(T-T_{h}\right) g,\left(T-T_{h}\right) g\right) \\
& =\frac{1}{\alpha_{4}}\left\{E_{h}\left(\left(T-T_{h}\right) g, T g-\chi\right)+E_{h}\left(\left(T-T_{h}\right) g, \chi-T_{h} g\right)\right\} \\
& =\frac{1}{\alpha_{4}}\left\{E_{h}\left(\left(T-T_{h}\right) g, T g-\chi\right)-a_{0}\left(\left(P-P_{h}\right) T g, P\left(\chi-T_{h} g\right)\right)\right\}, \quad \forall \chi \in S_{h} .
\end{aligned}
$$

The last equality is from the lemma 3.3. Furthermore from the lemma 3.2 and lemma 2.1, it is obtained that

$$
\left|E_{h}\left(\left(T-T_{h}\right) g, T g-\chi\right)\right| \leq M_{4}\left\|\left(T-T_{h}\right) g\right\|_{\frac{1}{2}, \Gamma}\|T g-\chi\|_{\frac{1}{2}, \Gamma},
$$

and

$$
\begin{aligned}
\mid a_{0}((P- & \left.\left.P_{h}\right) T g, P\left(\chi-T_{h} g\right)\right)\left|\leq\left|a_{0}\left(\left(P-P_{h}\right) T g, P(T g-\chi)\right)\right|\right. \\
& +\left|a_{0}\left(\left(P-P_{h}\right) T g, P\left(T-T_{h}\right) g\right)\right| \\
\leq & C\left\|\left(P-P_{h}\right) T g\right\|_{-\frac{1}{2}, \Gamma}\left\{\|P(T g-\chi)\|_{-\frac{1}{2}, \Gamma}+\left\|P\left(T-T_{h}\right) g\right\|_{-\frac{1}{2}, \Gamma}\right\} .
\end{aligned}
$$

On the other hand, the inequalities (3.11), (3.4) and (3.7) lead to

$$
\begin{aligned}
& \left\|\left(P-P_{h}\right) T g\right\|_{-\frac{1}{2}, \Gamma} \leq C h^{t}\|P T g\|_{-\frac{1}{2}+t, \Gamma} \leq C h^{t}\|g\|_{-\frac{1}{2}+t, \Gamma} . \\
& \|P(T g-\chi)\|_{-\frac{1}{2}, \Gamma} \leq C\|T g-\chi\|_{\frac{1}{2}, \Gamma} . \\
& \left\|P\left(T-T_{h}\right) g\right\|_{-\frac{1}{2}, \Gamma} \leq C\left\|\left(T-T_{h}\right) g\right\|_{\frac{1}{2}, \Gamma} .
\end{aligned}
$$

Hence the following inequality is got

$$
\begin{aligned}
\left\|\left(T-T_{h}\right) g\right\|_{\frac{1}{2}, \Gamma}^{2} \leq & C\left\{\left\|\left(T-T_{h}\right) g\right\|_{\frac{1}{2}, \Gamma}\left[\|T g-\chi\|_{\frac{1}{2}, \Gamma}+h^{t}\|g\|_{-\frac{1}{2}+t, \Gamma}\right]\right. \\
& \left.+h^{t}\|g\|_{-\frac{1}{2}+t, \Gamma}\|T g-\chi\|_{\frac{1}{2}, \Gamma}\right\}, \quad \forall \chi \in S_{h} .
\end{aligned}
$$

Finally by the estimate

$$
\inf _{\chi \in S_{h}}\|T g-\chi\|_{\frac{1}{2}, \Gamma} \leq C h^{t}\|T g\|_{\frac{1}{2}+t, \Gamma} \leq C h^{t}\|g\|_{-\frac{1}{2}+t, \Gamma} .
$$

The inequality (3.17) is proved.
Lemma 3.5. For any $g \in H^{-\frac{1}{2}+t}(\Gamma), \psi \in H^{-\frac{1}{2}+t}(\Gamma),(0 \leq s, t \leq 1)$, the following inequality holds

$$
\begin{equation*}
\left|\left\langle\left(T-T_{h}\right) g, \psi\right\rangle\right| \leq C h^{t+s}\|g\|_{-\frac{1}{2}+t, \Gamma}\|\psi\|_{-\frac{1}{2}+s, \Gamma} . \tag{3.18}
\end{equation*}
$$

Proof. From the definition of the operator T it is known that $\langle T g, \psi\rangle=E(T g, T \psi)$. $\left\langle T_{h} g, \psi\right\rangle=E\left(T_{h} g, T \psi\right)$. Hence it is derived that

$$
\begin{aligned}
\left\langle\left(T-T_{h}\right) g, \psi\right\rangle & =E\left(\left(T-T_{h}\right) g, T \psi\right) \\
& =E_{h}\left(\left(T-T_{h}\right) g, T \psi\right)+a_{0}\left(P\left(T-T_{h}\right) g, P T \psi\right)-a_{0}\left(P_{h}\left(T-T_{h}\right) g, P_{h} T \psi\right)
\end{aligned}
$$

$$
\begin{aligned}
= & E_{h}\left(\left(T-T_{h}\right) g, T \psi\right)+a_{0}\left(P\left(T-T_{h}\right) g,\left(P-P_{h}\right) T \psi\right) \\
= & E_{h}\left(\left(T-T_{h}\right) g,\left(T-T_{h}\right) \psi\right)+a_{0}\left(P\left(T-T_{h}\right) g,\left(P-P_{h}\right) T \psi\right) \\
& -a_{0}\left(\left(P-P_{h}\right) T g, P T_{h} \psi\right) \\
= & E_{h}\left(\left(T-T_{h}\right) g,\left(T-T_{h}\right) \psi\right)+a_{0}\left(P\left(T-T_{h}\right) g,\left(P-P_{h}\right) T \psi\right) \\
& +a_{0}\left(\left(P-P_{h}\right) T g, P\left(T-T_{h}\right) \psi\right)-a_{0}\left(\left(P-P_{h}\right) T g, P T \psi\right) \\
= & E_{h}\left(\left(T-T_{h}\right) g,\left(T-T_{h}\right) \psi\right)+a_{0}\left(P\left(T-T_{h}\right) g,\left(P-P_{h}\right) T \psi\right) \\
& +a_{0}\left(\left(P-P_{h}\right) T g, P\left(T-T_{h}\right) \psi\right)-a_{0}\left(\left(P-P_{h}\right) T g,\left(P-P_{h}\right) T \psi\right) .
\end{aligned}
$$

By the lemma 3.2 and 3.4, it holds that

$$
\begin{aligned}
\left|E_{h}\left(\left(T-T_{h}\right) g,\left(T-T_{h}\right) \psi\right)\right| & \leq M_{4}\left\|\left(T-T_{h}\right) g\right\|_{\frac{1}{2}, \Gamma}\left\|\left(T-T_{h}\right) \psi\right\|_{\frac{1}{2}, \Gamma} \\
& \leq C h^{t+s}\|g\|_{-\frac{1}{2}+t, \Gamma}\|\psi\|_{-\frac{1}{2}+s, \Gamma} .
\end{aligned}
$$

Furthermore from the inequalities (3.4), (3.17), (3.11) and (3.7) lead to

$$
\begin{aligned}
& \left|a_{0}\left(P\left(T-T_{h}\right) g,\left(P-P_{h}\right) T \psi\right)\right| \leq C h^{s+t}\|g\|_{-\frac{1}{2}+t, \Gamma}\|\psi\|_{-\frac{1}{2}+s, \Gamma} . \\
& \left|a_{0}\left(\left(P-P_{h}\right) T g, P\left(T-T_{h}\right) \psi\right)\right| \leq C h^{s+t}\|g\|_{-\frac{1}{2}+t, \Gamma}\|\psi\|_{-\frac{1}{2}+s, \Gamma} . \\
& \left|a_{0}\left(\left(P-P_{h}\right) T g,\left(P-P_{h}\right) T \psi\right)\right| \leq C h^{s+t}\|g\|_{-\frac{1}{2}+t, \Gamma}\|\psi\|_{-\frac{1}{2}+s, \Gamma} .
\end{aligned}
$$

Hence the inequality (3.18) follows immediately.
Let $\left\|T-T_{h}\right\|_{-t, s}=\sup _{\psi \in H^{s}(\Gamma)} \sup _{g \in H^{t}(\Gamma)} \frac{\left\langle\left(T-T_{h}\right) g, \psi\right\rangle}{\|g\|_{t, \Gamma}\|\psi\|_{s, \Gamma}}, \forall s, t \geq 0$. In the inequality (3.18), taking $t=\frac{1}{2}, s=\frac{1}{2}$ it is obtained that

$$
\begin{equation*}
\left\|T-T_{h}\right\|_{0,0} \leq C h . \tag{3.19}
\end{equation*}
$$

From the well known eigenvalue convergence result [3], if ν^{1}, ν^{2}, \cdots, are the nonzero eigenvalues of T ordered by decreasing magnitude, taking account of algebraic multiplicities, then for each h there is an ordering (again counting according to algebraic multiplicities) of the eigenvalues of $T_{h}, \nu^{1}(h), \nu^{2}(h), \cdots$, such that $\lim _{h \rightarrow 0} \nu^{j}(h)=\nu^{j}$ for each j. Hence for the Steklov eigenvalue problem (1.1), the following theorem holds that

Theorem 3.1. If $\lambda^{1}, \lambda^{2}, \cdots$, are the eigenvalues of the Steklov eigenvalue problem (1.1) ordered by increasing magnitude, taking account of algebraic multiplicities, then for each h there is an ordering (again counting according to algebraic multiplicities) of the eigenvalues of the eigenvalue problem $(2.21), \lambda^{1}(h), \lambda^{2}(h), \cdots$, such that $\lim _{h \rightarrow 0} \lambda^{j}(h)=$ λ^{j} for each j.

Let λ be an eigenvalue of the Steklov eigenvalue problem (1.1) with algebraic multiplicity m. From the theorem 3.1 there are m eigenvalues $\lambda^{1}(h), \lambda^{2}(h), \cdots, \lambda^{m}(h)$ of the problem (2.21) such that $\lim _{h \rightarrow 0} \lambda^{j}(h)=\lambda$. Furthermore $\nu=\frac{1}{\lambda+1}$ is an eigenvalue of the compact operators T with algebraic multiplicity m, and there are m eigenvalues
$\nu^{1}(h)=\frac{1}{\lambda^{1}(h)+1}, \nu^{2}(h)=\frac{1}{\lambda^{2}(h)+1}, \cdots, \nu^{m}(h)=\frac{1}{\lambda^{m}(h)+1}$ of the operator T_{h}, such that $\lim _{h \rightarrow 0} \nu^{j}(h)=\nu, j=1,2, \cdots, m$. Taking $t=\frac{1}{2}, s=1 ; t=1, s=\frac{1}{2}$ and $t=1, s=1$ in the inequality (3.18) respectively, it follows that

$$
\left\|T-T_{h}\right\|_{0, \frac{1}{2}} \leq C h^{\frac{3}{2}} ; \quad\left\|T-T_{h}\right\|_{-\frac{1}{2}, 0} \leq C h^{\frac{3}{2}} ; \quad\left\|T-T_{h}\right\|_{-\frac{1}{2}, \frac{1}{2}} \leq C h^{2} .
$$

An application of the theorem 3.2 in [2] yields the following error estimate

$$
\left|\nu-\frac{1}{m} \sum_{j=1}^{m} \nu^{j}(h)\right| \leq C h^{2} .
$$

Thus, for the Steklov eigenvalue problem the optimal error of the approximation can be estimated by:

Theorem 3.2. The following error estimate holds

$$
\begin{equation*}
|\lambda-\tilde{\lambda}(h)| \leq C h^{2}, \tag{3.20}
\end{equation*}
$$

where $\tilde{\lambda}(h)=\left[\frac{1}{m} \sum_{j=1}^{m} \frac{1}{\lambda^{j}(h)+1}\right]^{-1}-1$.

4. Numerical example

Assume that the boundary Γ of domain Ω is the unit circle, then the solution of equation $-\Delta u+u=0$ can be represented by polar coordinates (r, θ) :

$$
u(r, \theta)=a_{0} I_{0}(r)+\sum_{n=1}^{\infty} I_{n}(r)\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

where $I_{n}(r)$ is the modified Bessel function of n order. The solution of (1.1) can be found exactly. The eigenvalues of (1.1), $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n}, \cdots$, are derived as

$$
\lambda_{0}=\frac{\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{1}{2}\right)^{2 k+1}}{\sum_{k=0}^{\infty} \frac{1}{k!k!}\left(\frac{1}{2}\right)^{2 k}}, \quad \lambda_{n}=\frac{\sum_{k=0}^{\infty} \frac{2 k+n}{k!(k+n)!}\left(\frac{1}{2}\right)^{2 k}}{\sum_{k=0}^{\infty} \frac{1}{k!(k+n)!}\left(\frac{1}{2}\right)^{2 k}}, \quad(n=1,2, \cdots) .
$$

Table 1

N	No.	λ	$\lambda(h)$	$\|\lambda-\lambda(h)\| / \lambda$
4	1	0.4463900	0.4463853	$1.0 \mathrm{E}-5$
	2	1.2401937	1.1663211	$6.0 \mathrm{E}-2$
	3	1.2401937	1.1663211	$6.0 \mathrm{E}-2$
	4	2.1633061	1.1798572	$4.6 \mathrm{E}-1$

Table 2

N	No.	λ	$\lambda(h)$	$\|\lambda-\lambda(h)\| / \lambda$
8	1	0.4463900	0.4463892	$1.8 \mathrm{E}-6$
	2	1.2401937	1.2361035	$3.3 \mathrm{E}-3$
	3	1.2401937	1.2361035	$3.3 \mathrm{E}-3$
	4	2.1633061	2.0663995	$4.5 \mathrm{E}-2$
	5	2.1633061	2.0663995	$4.5 \mathrm{E}-2$
	6	3.1234693	2.4059694	$3.2 \mathrm{E}-1$
	7	3.1234693	2.4059694	$3.2 \mathrm{E}-1$
	8	4.0991784	4.4638917	$4.1 \mathrm{E}-1$

Table 3

N	No.	λ	$\lambda(h)$	$\|\lambda-\lambda(h)\| / \lambda$
16	1	0.4463900	0.4463897	$5.6 \mathrm{E}-7$
	2	1.2401937	1.2398677	$2.6 \mathrm{E}-4$
	3	1.2401937	1.2398677	$2.6 \mathrm{E}-4$
	4	2.1633061	2.1576004	$2.6 \mathrm{E}-3$
	5	2.1633061	2.1576004	$2.6 \mathrm{E}-3$
6	3.1234693	3.0831201	$1.3 \mathrm{E}-2$	
7	7	3.1234693	3.0831201	$1.3 \mathrm{E}-2$
	8	4.0991784	3.9235421	$4.3 \mathrm{E}-2$
	9	4.0991784	3.9235421	$4.3 \mathrm{E}-2$

Table 5

N	No.	λ	$\lambda(h)$	$\|\lambda-\lambda(h)\| / \lambda$
32	1	0.4463900	0.4463898	$3.6 \mathrm{E}-7$
	2	1.2401937	1.2401639	$2.4 \mathrm{E}-5$
	3	1.2401937	1.2401639	$2.4 \mathrm{E}-5$
4	2.1633061	2.1629144	$1.8 \mathrm{E}-4$	
5	2.1633061	2.1629144	$1.8 \mathrm{E}-4$	
6	3.1234693	3.1210453	$7.8 \mathrm{E}-4$	
7	3.1234693	3.1210453	$7.8 \mathrm{E}-4$	
8	4.0991784	4.0894507	$2.4 \mathrm{E}-3$	
9	4.0991784	4.0894507	$2.4 \mathrm{E}-3$	
10	5.0828424	5.0531427	$5.8 \mathrm{E}-3$	
11	5.0828424	5.0531427	$5.8 \mathrm{E}-3$	
12	6.0711122	5.9956369	$1.2 \mathrm{E}-2$	
13	6.0711122	5.9956369	$1.2 \mathrm{E}-2$	
14	7.0622843	6.8940502	$2.4 \mathrm{E}-2$	
15	7.0622843	6.8940502	$2.4 \mathrm{E}-2$	
16	8.0554020	7.7159208	$4.2 \mathrm{E}-2$	
17	8.0554020	7.7159208	$4.2 \mathrm{E}-2$	
18	9.0498868	8.3082573	$8.2 \mathrm{E}-2$	
19	9.0498868	8.4176671	$7.0 \mathrm{E}-2$	
20	10.045369	8.4176671	$1.6 \mathrm{E}-1$	
21	10.045369	8.4394114	$1.6 \mathrm{E}-1$	
22	11.041600	8.4394114	$2.4 \mathrm{E}-1$	
23	11.041600	8.7598205	$2.1 \mathrm{E}-1$	
24	12.038409	8.7598205	$2.7 \mathrm{E}-1$	
25	12.038409	8.9466070	$2.6 \mathrm{E}-1$	
26	13.035672	8.9466070	$3.1 \mathrm{E}-1$	
27	13.035672	9.1003002	$3.0 \mathrm{E}-1$	
28	14.033299	9.1003002	$3.5 \mathrm{E}-1$	
29	14.033299	9.2500676	$3.4 \mathrm{E}-1$	
30	15.031211	9.2500676	$3.8 \mathrm{E}-1$	
31	15.031211	9.2953988	$3.8 \mathrm{E}-1$	
32	16.029388	9.2953988	$4.2 \mathrm{E}-1$	

Table 4

N	No.	λ	$\lambda(h)$	$\|\lambda-\lambda(h)\| / \lambda$
16	10	5.0828424	4.1776521	$1.8 \mathrm{E}-1$
	11	5.0828424	4.4066215	$1.3 \mathrm{E}-1$
	12	6.0711122	4.4066215	$2.7 \mathrm{E}-1$
	13	6.0711122	4.5227156	$2.6 \mathrm{E}-1$
	14	7.0622843	4.5227156	$3.6 \mathrm{E}-1$
	15	7.0622843	4.6836211	$3.4 \mathrm{E}-1$
	16	8.0554020	4.6836211	$4.2 \mathrm{E}-1$

Table 6

N	No.	λ	$\lambda(h)$	$\|\lambda-\lambda(h)\| / \lambda$
64	1	0.4463900	0.4463898	$3.8 \mathrm{E}-7$
	2	1.2401937	1.2401959	$1.8 \mathrm{E}-6$
	3	1.2401937	1.2401959	$1.8 \mathrm{E}-6$
4	2.1633061	2.1632757	$1.4 \mathrm{E}-5$	
5	2.1633061	2.1632757	$1.4 \mathrm{E}-5$	
6	3.1234693	3.1233061	$5.2 \mathrm{E}-5$	
7	3.1234693	3.1233061	$5.2 \mathrm{E}-5$	
8	4.0991784	4.0985680	$1.5 \mathrm{E}-4$	
9	4.0991784	4.0985680	$1.5 \mathrm{E}-4$	
10	5.0828424	5.0810625	$3.5 \mathrm{E}-4$	
11	5.0828424	5.0810625	$3.5 \mathrm{E}-4$	
12	6.0711122	6.0667543	$7.2 \mathrm{E}-4$	
13	6.0711122	6.0667543	$7.2 \mathrm{E}-4$	
14	7.0622843	7.0528876	$1.3 \mathrm{E}-3$	
15	7.0622843	7.0528876	$1.3 \mathrm{E}-3$	
16	8.0554020	8.0369855	$2.3 \mathrm{E}-3$	
17	8.0554020	8.0369855	$2.3 \mathrm{E}-3$	
18	9.0498868	9.0163677	$3.7 \mathrm{E}-3$	
19	9.0498868	9.0163677	$3.7 \mathrm{E}-3$	
20	10.045369	9.9878516	$5.7 \mathrm{E}-3$	
21	10.045369	9.9878516	$5.7 \mathrm{E}-3$	
22	11.041600	10.947525	$8.5 \mathrm{E}-3$	
23	11.041600	10.947525	$8.5 \mathrm{E}-3$	
24	12.038409	11.890545	$1.2 \mathrm{E}-2$	
25	12.038409	11.890545	$1.2 \mathrm{E}-2$	
26	13.035672	12.810962	$1.7 \mathrm{E}-2$	
27	13.035672	12.810962	$1.7 \mathrm{E}-2$	
28	14.033299	13.701548	$2.4 \mathrm{E}-2$	
29	14.033299	13.701548	$2.4 \mathrm{E}-2$	
30	15.031211	14.553675	$3.2 \mathrm{E}-2$	
31	15.031211	14.553675	$3.2 \mathrm{E}-2$	
32	16.029388	15.357241	$4.2 \mathrm{E}-2$	

In this example, Γ is divided into N segments with equal arc length by the nodes $x^{i}=\left(x_{1}\left(s_{i}\right), x_{2}\left(s_{i}\right)\right), i=0,1, \cdots, N$. The matrix eigenvalue problem which is derived from the discrete problem (2.21) is solved approximately by numerical method. The numerical results are arranged in the following table 1 to table 6 . As can be seen
from the table entries, the convergence of $\lambda(h)$ to λ is quadratic. It shows that the approximate method in this paper is very efficient, especially for the first few eigenvalues. In the following tables, λ_{i} and $\lambda_{i}(h)$ denote the exact eigenvalue of (1.1) and its approximation for $i=0,1,2, \cdots$.

References

[1] R. Courant, D. Hilbert, Methods of Mathematical Physics, I, Interscience Publishers Inc., New York, 1953.
[2] J.H. Bramble, J.E. Osborn, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Edited by A. K. Aziz, Academic Press (1972), 387-408.
[3] I. Petrols, Lectures On Integral Equations (in Russian), GITTl, 1953.
[4] J. Zhu, Boundary Element Analysis of Elliptic Boundary Value Problem, Science Pub., 1991 (in Chinese).
[5] H. Han, Boundary integro-differential equations of elliptic boundary value problems and their numerical solutions, Scientia Sinica, Ser. A, 31(1988), 1153-1165.
[6] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag (1972).
[7] G.C. Hsiao, E.L. Wendland, J. Math. Anal. Appl., 58(1977), 449-481.
[8] Le Roux M. N., R.A.I.R.O., Anal. Numér., 11(1977), 27-60.
[9] H. Han, Z. Guan, B. He, Boundary element approximation of Stekelov eigenvalue problem, A Journal of Chinese Univ. Appl. Math., Ser. A, 9(1994), 231-238.
[10] H. Han, Z. Guan, An analysis of the boundary element approximation of Steklov eigenvalue problem, Numerical Methods for Partial Differential Equations, World Scientific, (1994), 35-51.

[^0]: * Received July 11, 1995.
 ${ }^{1)}$ The Climbing Program of National Key Project of Foundation.
 ${ }^{2)}$ The computation was supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Science

