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ON THE CONVERGENCE OF ASYNCHRONOUS NESTEDMATRIX MULTISPLITTING METHODS FOR LINEARSYSTEMS�1)Zhong-zhi Bai(State Key Laboratory of Sienti�/Engineering Computing, Institute of ComputationalMathematis and Sienti�/Engineering Computing, Chinese Aademy of SienesP.O. Box 2719, Beijing 100080, China)De-ren Wang(Department of Mathematis, Shanghai University, Shanghai 201800, China)D.J. Evans(Parallel Algorithms Researh Centre, Loughborough University of Tehnology Loughborough,U.K.)AbstratA lass of asynhronous nested matrix multisplitting methods for solving large-sale systems of linear equations are proposed, and their onvergene harateriza-tions are studied in detail when the oeÆient matries of the linear systems aremonotone matries and H-matries, respetively.Key words: Solution of linear systems, Asynhronous parallel iteration, Matrixmultisplitting, Relaxation method, Convergene.1. IntrodutionThere has been a lot of literature (see [1℄{[6℄ and [12℄) on the parallel iterativemethods for the large-sale system of linear equationsAx = b; A 2 L(Rn) nonsingular; x; b 2 Rn (1.1)in the sense of matrix multisplitting sine the pioneering work of O'Leary and White(see [1℄) was published in 1985. One of the most reent result may be the studieson a lass of asynhronous parallel matrix multisplitting relaxation methods proposedin [6℄. These methods, just as was pointed out in [6℄, are suitable to the high speedmultiproessor systems (MIMD-systems). However, the method given in the paperrequires eah proessor of the MIMD-system to solve a sub-system of linear equationsat every iterative step. The omputations of the solutions of these � sub-systemsof linear equations then turn to the main tasks in onrete implementations of this� Reeived May 26, 1997.1)Projet 19601036 supported by the National Natural Siene Foundation of China.



576 Z.Z. BAI, D.R. WANG AND D.J. EVANSasynhronous parallel matrix multisplitting relaxation method. Therefore, it deservesfurther investigation on both the method model and the onvergene theory.In this paper, through ombining eah iteration distributed on the orrespondingproessor with an inner iteration, whih is used to solve its sub-system of linear equa-tions, we onstrut a lass of new asynhronous matrix multisplitting methods, whihare alled, following the ustomary, asynhronous nested matrix multisplitting meth-ods. The onvergene properties of these new methods are disussed in detail when theoeÆient matrix A 2 L(Rn) is a monotone matrix as well as an H-matrix. This workan be thought of a further development of [6℄, and also a generalization of [9℄{[10℄ toasynhronous matrix multisplitting methods.For the onveniene of the subsequent disussions, in the remainder of this setion,we will restate the �rst asynhronous parallel matrix multisplitting method in [6℄.We reall that a olletion of triples (Mi; Ni; Ei) (i = 1; 2; � � � ; �) (� � n, a givenpositive integer) is alled a multisplitting of a matrix A 2 L(Rn) if Mi; Ni; Ei 2 L(Rn)(i = 1; 2; � � � ; �) with eah Ei being nonnegatively diagonal, and satisfy: (1) A =Mi�Ni(i = 1; 2; � � � ; �); (2) det(Mi) 6= 0(i = 1; 2; � � � ; �); and (3)Xi Ei = I(I 2 L(Rn)is the identity matrix).Here, we have assumed that the MIMD-system onsidered is made up of � CPU's.Correspondingly, the following notations are also indespensable: (i) for 8p 2 N0 =f0; 1; 2; � � �g, J = fJ(p)gp2N0 is used to denote a sequene of nonempty subset of the setf1; 2; � � � ; �g; (ii) S = fs1(p); s2(p); � � � ; s�(p)gp2N0 are � in�nite sequenes. The sets Jand S have the following properties: (a) for 8i 2 f1; 2; � � � ; �g, the set fp 2 N0ji 2 J(p)gis in�nite; (b) for 8i 2 f1; 2; � � � ; �g;8p 2 N0, it holds that si(p) � p; and () for8i 2 f1; 2; � � � ; �g, it holds that limp!1 si(p) =1.With these preparations, the asynhronous parallel matrix multisplitting methodin [6℄ an be desribed as follows:ALGORITHM (see [6℄): Suppose that we have got approximations x0; x1; � � � ; xpto the solution x� of (1.1). Then the (p + 1)-th approximation xp+1 of x� an bealulated by xp+1 =Xi Eixi;p (1.2)with xi;p being either xp for i =2 J(p) or the solution of the sub-system of linear equationsMixi;p = Nixsi(p) + b (1.3)for i 2 J(p).2. Asynhronous Nested Matrix Multisplitting MethodsFor the purpose of establishing our new methods, we �rst introdue the followingonept: A olletion (Mi : Fi; Gi;Ni;Ei) (i = 1; 2; � � � ; �) is alled a two-level multi-splitting of a matrix A 2 L(Rn) if (Mi; Ni; Ei) (i = 1; 2; � � � ; �) is a multisplitting ofit and Mi = Fi � Gi;det(Fi) 6= 0(i = 1; 2; � � � ; �). Based on this onept, by solving



On the Convergene of Asynhronous Nested Matrix Multisplitting Methods for Linear Systems 577eah of the sub-system of linear equations (1.3) with an inner iteration method again,we an set up the following asynhronous nested matrix multisplitting method for thesystem of linear equations (1.1):METHOD I: Suppose that we have got approximations x0; x1; � � � ; xp to the so-lution x� of (1.1). Then the (p+ 1)-th approximation xp+1 of x� an be alulated by(1.2) and xi;p = ( xi;p;mi;p ; for i 2 J(p),xp; for i =2 J(p); (2.1)where eah xi;p;mi;p is determined by the following formulae with the starting pointxi;p;0 = xsi(p):xi;p;m+1 = F�1i Gixi;p;m + F�1i (Nixsi(p) + b); m = 0; 1; � � � ;mi;p � 1; (2.2)while fmi;pgp2N0(i = 1; 2; � � � ; �) are in�nite positive integer sequenes, whih may bedetermined either expliitly in advane or impliitly in the implementing proess of themethod.Obviously, this method overs the ALGORITHM in the previous setion ited from[6℄ as well as the methods proposed in [8℄{[10℄.By substituting (2.1){(2.2) into (1.2), we an equivalently express Method I asxp+1 = Xi2J(p)Ei��F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�jF�1i Ni�xsi(p) + Xi=2J(p)Eixp+ Xi2J(p)Ei mi;p�1Xj=0 �F�1i Gi�jF�1i b: (2.3)As a matter of fat, there are various kinds of two-level multisplittings. For example,if in the two-level multisplitting (Mi : Fi; Gi;Ni;Ei) (i = 1; 2; � � � ; �) of the matrixA 2 L(Rn), for eah i 2 f1; 2; � � � ; �g, we partiularly take Fi = Di�Li, Di = diag(Mi)with det(Di) 6= 0 and Gi = Ui, where Li 2 L(Rn) is stritly lower triangular andUi 2 L(Rn) is zero-diagonal, satisfying Mi = Di � Li � Ui(i = 1; 2; � � � ; �), then anew two-level multisplitting (Mi : Di � Li; Ui;Ni;Ei) (i = 1; 2; � � � ; �) of the matrixA is obtained. Based on this speial two-level matrix multisplitting, Method I an beimmediately formulated as the following form:METHOD II: Suppose that we have got approximations x0; x1; � � � ; xp to thesolution x� of (1.1). Then the (p + 1)-th approximation xp+1 of x� an be alulatedby (1.2) and (2.1), where eah xi;p;mi;p is determined by the following formulae8>>>><>>>>: xi;p;0 = xsi(p);xi;p;m+1 = (Di � rLi)�1[(1� !)Di + (! � r)Li+!Ui℄xi;p;m + (Di � rLi)�1!(Nixsi(p) + b);m = 0; 1; � � � ;mi;p � 1 (2.4)



578 Z.Z. BAI, D.R. WANG AND D.J. EVANSfor eah i 2 J(p). The meanings of the sequenes fmi;pgp2N0 (i = 1; 2; � � � ; �) are thesame as in Method I, while r 2 [0;1) is alled a relaxation fator and ! 2 (0;1) anaeleration fator.Sine the sub-system of linear equations (1.3) is solved for eah i 2 f1; 2; � � � ; �g byan aelerated overrelaxation (AOR) method, we all Method II as asynhronous nestedmatrix multisplitting AOR method (ANMM-AOR method). When the relaxation pa-rameter pair (r; !) is speially hosen to be (!; !), (1,1) and (0,1), et., the orrespond-ing methods resulted from (1.2), (2.1) and (2.4) are alled as asynhronous nestedmatrix multisplitting SOR method (ANMM-SOR method), asynhronous nested ma-trix multisplitting Gauss-Seidel method (ANMM-GS method) and asynhronous nestedmatrix multisplitting Jaobi method (ANMM-J method) and so on, respetively.Analogously, by substituting (2.4) and (2.1) into (1.2), and making use of the ex-pressionsLi(r; !) = (Di � rLi)�1[(1� !)Di + (! � r)Li + !Ui℄; i = 1; 2; � � � ; �; (2.5)Method II an be simply written asxp+1 = Xi2J(p)Ei��Li(r; !)�mi;p + mi;p�1Xj=0 �Li(r; !)�j!(Di � rLi)�1Ni�xsi(p)+ Xi=2J(p)Eixp + Xi2J(p)Ei mi;p�1Xj=0 �Li(r; !)�j(Di � rLi)�1!b: (2.6)In order to set up the onvergene theories of the above two asynhronous nestedmatrix multisplitting methods, we need to de�ne the in�nite number sequene fmlgl2N0in aordane with the following rule: m0 is the least positive integer suh that[0�s(p)�p<m0 J(p) = f1; 2; � � � ; �g;in general, ml+1 is the least positive integer suh that[ml�s(p)�p<ml+1 J(p) = f1; 2; � � � ; �g; l = 0; 1; 2; � � � ;where s(p) = mini si(p). Evidently, s(p) � p. Sine limp!1 si(p) = 1, we obviously havelimp!1 s(p) =1. For the meaning of the sequene fmlgl2N0 , one an see [6℄ for detail.3. Conepts and LemmasWe adopt the notations and onepts used in [2℄{[3℄, [6℄ and [10℄{[12℄. The followinglemma, having been on�rmed in [10℄, summarizes relations between di�erent splittingsand results on onvergene properties of these splittings.Lemma 1. Let A = B �C be a splitting.



On the Convergene of Asynhronous Nested Matrix Multisplitting Methods for Linear Systems 579a) If the splitting is regular or weak regular, then �(B�1C) < 1 i� A�1 � 0.b) If the splitting is an M -splitting, then �(B�1C) < 1 i� A is an M -matrix.) If the splitting is an H-splitting, then A and B are H-matries and it holds that�(B�1C) � �(hBi�1jCj) < 1.d) If the splitting is an M -splitting, then it is a regular splitting.e) If the splitting is an M -splitting and A is an M -matrix, then it is an H-splittingand also an H-ompatible splitting.f) If the splitting is an H-ompatible splitting and A is an H-matrix, then it is anH-splitting and thus onvergent.De�ne nonnegative diagonal matrix sequenes fI(1)p gp2N0 and fI(2)p gp2N0 2 L(Rn)by I(1)p = Xi2J(p)Ei and I(2)p = Xi=2J(p)Ei (p = 0; 1; 2; � � �), with Ei (i = 1; 2; � � � ; �) beingthe weighting matries, i.e., Ei � 0 (i = 1; 2; � � � ; �) are diagonal and satisfyXi Ei = I.Then in light of [6℄{[7℄ we know that the following lemmas hold.Lemma 2. Let x 2 Rn be a positive vetor(x > 0). If the sequene f"pgp2N0satis�es j"p+1j � I(1)p x+ I(2)p j"pj; p = 0; 1; 2; � � � :Then for any nonnegative integer q � p� 1,j"p+1j � �I � pYj=p�q�1 I(2)j �x+ pYj=p�q�1 I(2)j j"p�q�1j:Lemma 3. Let m�1 = 0 and I(l) = ml�1Qp=ml�1 I(2)p (l = 0; 1; 2; � � �). Then for anypositive vetor x 2 Rn, there exists f(l)gl2N0 2 [0; ℄ � [0; 1) suh that I(l)x � (l)x(l =0; 1; 2; � � �). 4. Convergene Analysis of Method IBeause the oeÆient matrix in (1.1) is nonsingular, there exists a unique x� 2 Rnsuh that Ax� = b. Notiing the de�nition of Method I in setion 2, aording to (2.3)we easily know that the following relation holds:x� = Xi2J(p)Ei��F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�jF�1i Ni�x� + Xi=2J(p)Eix�+ Xi2J(p)Ei mi;p�1Xj=0 �F�1i Gi�jF�1i b: (4.1)Let "p denote the error vetor "p = xp � x�, by subtrating (4.1) from (2.3) we seethat f"pgp2N0 should satisfy"p+1 = Xi2J(p)EiTi;p"si(p) + Xi=2J(p)Ei"p; (4.2)



580 Z.Z. BAI, D.R. WANG AND D.J. EVANSwhereTi;p = �F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�jF�1i Ni; i = 1; 2; � � � ; �; p 2 N0: (4.3)Evidently, if j"pj ! 0 as p!1, then we an onlude the onvergene of Method I. Inthe remainder of this setion, we will verify this fat by onsidering two ases of (1.1):A 2 L(Rn) is a monotone matrix and an H-matrix, respetively.4.1 Monotone matrix aseTheorem 4.1. Let A 2 L(Rn) be a monotone matrix, and (Mi : Fi; Gi;Ni;Ei)(i =1; 2; � � � ; �) be a two-level multisplitting of it with A = Mi � Ni (i = 1; 2; � � � ; �) beingregular and Mi = Fi �Gi (i = 1; 2; � � � ; �) weak regular. Then, for any starting vetorx0 2 Rn, the iterative sequene fxpgp2N0 generated by Method I onverges independentlyof the sequenes fmi;pgp2N0 to the unique solution x� of the system of linear equations(1:1).Proof. Sine A 2 L(Rn) is a monotone matrix, we see that for any positive vetoru 2 Rn, there exists a positive vetor v 2 Rn suh that Av = u. Sine A =Mi�Ni(i =1; 2; � � � ; �) are regular splittings, v�M�1i Niv =M�1i Av =M�1i u > 0 (i = 1; 2; � � � ; �).Moreover, as Mi = Fi �Gi (i = 1; 2; � � � ; �) are weak regular splittings, we haveM�1i = (I � F�1i Gi)�1F�1i ; i = 1; 2; � � � ; �: (4.4)Now, from (4.3) we know that Ti;p(i = 1; 2; � � � ; �;8p 2 N0) are nonnegative andTi;p = �F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�j(I � F�1i Gi)M�1i Ni= I � �I � �F�1i Gi�mi;p�M�1i A: (4.5)Through substituting (4.4) into (4.5) and making use of the identity�I � �F�1i Gi�mi;p�(I � F�1i Gi)�1 = mi;p�1Xj=0 (F�1i Gi)j ;we obtain Ti;p = I � mi;p�1Xj=0 (F�1i Gi)jF�1i A:Therefore, we haveTi;pv = v � mi;p�1Xj=0 (F�1i Gi)jF�1i u = v � F�1i u� mi;p�1Xj=1 (F�1i Gi)jF�1i u� v � F�1i u; i = 1; 2; � � � ; �:



On the Convergene of Asynhronous Nested Matrix Multisplitting Methods for Linear Systems 581Additionally, beause of F�1i u > 0 (i = 1; 2; � � � ; �), we see that v � F�1i u < v (i =1; 2; � � � ; �). Hene, there exists a � 2 [0; 1) suh that v � F�1i u � �v (i = 1; 2; � � � ; �),whih further implies thatTi;pv � �v; i = 1; 2; � � � ; �; 8p 2 N0: (4.6)Based on (4.2){(4.3) and (4.6), we see that one we generally supposej"tj � �v; t = 0; 1; � � � ; p (4.7)for some � 2 [0;1), it holds thatj"p+1j � Xi2J(p)EiTi;pj"si(p)j+ Xi=2J(p)Eij"pj � Xi2J(p)EiTi;p�v + Xi=2J(p)Eij"pj� �� Xi2J(p)Eiv + Xi=2J(p)Eij"pj;or j"p+1j � ��I(1)p v + I(2)p j"pj; (4.8)where we have used the fats si(p) � p and j"si(p)j � �v for i = 1; 2; � � � ; �.As a matter of fat, we an always admit that the initial error vetor "0 satis�esj"0j � Æv (4.9)for some suitably hosen Æ 2 (0;1). Up to now, the proof of the theorem an beful�lled in three parts by making use of (4.7){(4.9).Part I. j"pj � Æv, 8p 2 N0. Evidently, by indution this fat an be immediatelyveri�ed beginning from (4.9) and making use of the observation (4.8).Part II. j"pj � �lv, 8p � ml, where ��1 = Æ, �l = (� + (1 � �)(l))�l�1 (l =0; 1; 2; � � �), and the sequene f(l)gl2N0 is de�ned in Lemma 3. In fat, for l = 0, byLemma 2 and (4.7){(4.8) with � = Æ, we obtainj"pj � �I(1)p Æv + I(2)p j"p�1j � �I � p�1Yj=0 I(2)j ��Æv + p�1Yj=0 I(2)j j"0j:Aording to (4.9) and Lemma 3, we havej"pj � �I � p�1Yj=0 I(2)j ��Æv + p�1Yj=0 I(2)j Æv = ��I + (1� �) p�1Yj=0 I(2)j �Æv� (�I + (1� �)I(0))Æv � (� + (1� �)(0))Æv = �0v:This shows that j"pj � �lv(8p � ml) is valid for l = 0. Now, suppose that j"pj ��lv(8p � ml) is true for l � 1. Then by using Lemmas 2 and 3 and starting from(4.7){(4.8) with � = �l, we get for p � ml+1 thatj"pj � �I(1)p �lv + I(2)p j"p�1j � �I � p�1Yj=ml I(2)j ���lv + p�1Yj=ml I(2)j j"ml j



582 Z.Z. BAI, D.R. WANG AND D.J. EVANS� �I � p�1Yj=ml I(2)j ���lv + p�1Yj=ml I(2)j �lv:Similar to the above derivation for l = 0, we an also onlude that j"pj � �l+1v(8p �ml+1). By indution, we have proved the onlusion.Part III. j"pj �! 0 (p �! 1). To test this fat, we let �(l) = � + (1 � �)(l) (l =0; 1; 2; � � �). Clearly, for l = 0; 1; 2; � � �, it holds that �(l) 2 [0; �℄ with � = �+(1��) < 1and �l+1 = �(l+1)�l with �0 = �(0)Æ. Sine�l+1 = �(l+1)�l = � � � = l+1Yj=0�(j)Æ � �l+2Æ �! 0 (l �!1);by taking limits on both sides of the inequality in Part II, we immediately obtainj"pj �! 0 (p �!1).An important ase of Theorem 4.1 is the following onvergene theory about theALGORITHM proposed in [6℄ for monotone matrix.Theorem 4.2. Let A 2 L(Rn) be a monotone matrix, and (Mi; Ni; Ei) (i =1; 2; � � � ; �) be a multisplitting of it with A =Mi�Ni(i = 1; 2; � � � ; �) being weak regular.Then, for any starting vetor x0 2 Rn, the iterative sequene fxpgp2N0 generated bythe ALGORITHM onverges to the unique solution x� of the system of linear equations(1:1).4.2 H-matrix aseTheorem 4.3. Let A 2 L(Rn) be an H-matrix, and (Mi : Fi; Gi;Ni;Ei) (i =1; 2; � � � ; �) be a two-level multisplitting of it with both A = Mi � Ni (i = 1; 2; � � � ; �)and Mi = Fi �Gi (i = 1; 2; � � � ; �) being H-ompatible splittings. Then, for any start-ing vetor x0 2 Rn, the iterative sequene fxpgp2N0 generated by Method I onvergesindependently of the sequenes fmi;pgp2N0 to the unique solution x� of the system oflinear equations (1:1).Proof. By Lemma 1 f), A =Mi�Ni(i = 1; 2; � � � ; �) are H-splittings. From Lemma1 ), we see that Mi(i = 1; 2; � � � ; �) are H-matries. Therefore,hAi = hMii � jNij; i = 1; 2; � � � ; � (4.10)are M -splittings. Similarly, we know that Fi(i = 1; 2; � � � ; �) are H-matries andhMii = hFii � jGij; i = 1; 2; � � � ; � (4.11)are also M -splittings.Now, from (4.3), for i = 1; 2; � � � ; � and p 2 N0, we an obtain the following esti-mates: jTi;pj � �hFii�1jGij�mi;p + mi;p�1Xj=0 �hFii�1jGij�jhFii�1jNij: (4.12)De�ne T̂i;p = �hFii�1jGij�mi;p + mi;p�1Xj=0 �hFii�1jGij�jhFii�1jNij: (4.13)



On the Convergene of Asynhronous Nested Matrix Multisplitting Methods for Linear Systems 583and onsider the sequene f"̂pgp2N0 generated by"̂0 = j"0j � jx0 � x�j; "̂p+1 = Xi2J(p)EiT̂i;p"̂si(p) + Xi=2J(p)Ei"̂p; p = 0; 1; 2; � � � : (4.14)By omparing (4.13) and (4.14) with (4.3) and (4.2), and onsidering (4.10){(4.11),following the proof proess of Theorem 4.1 we an immediately onlude that underthe onditions of this theorem, "̂p �! 0 as p �!1.On the other hand, by indution we an provej"pj � "̂p; p = 0; 1; 2; � � � : (4.15)In fat, when p = 0 (4.15) is obviously true. Suppose that (4.15) is true for p =0; 1; 2; � � � ; t. Then si(t) � t (i = 1; 2; � � � ; �) diretly give the estimatesj"si(t)j � "̂si(t); i = 1; 2; � � � ; �: (4.16)Now, for p = t+1, from (4.2) and (4.12){(4.14) as well as (4.16), by diret alulationswe getj"t+1j � Xi2J(t)EijTi;tjj"si(t)j+ Xi=2J(t)Eij"tj � Xi2J(t)EiT̂i;t"̂si(t) + Xi=2J(t)Ei"̂t = "̂t+1;whih shows (4.15) is also true for p = t+ 1.5. Convergene Analysis of Method IIAnalogous to setion 4, we know that the error vetor sequene f"pgp2N0 orre-sponding to Method II satis�es"p+1 = Xi2J(p)EiTi;p(r; !)"si(p) + Xi=2J(p)Ei"p; (5.1)where 8><>: Ti;p(r; !) = �Li(r; !)�mi;p + mi;p�1Pj=0 �Li(r; !)�j!(Di � rLi)�1Ni;i = 1; 2; � � � ; �; p 2 N0: (5.2)Clearly, to prove the onvergene of Method II, we only need to verify j"pj ! 0 asp !1. Beause the test of this fat is similar to the orresponding one of Method I,here, we only use the onvergene theory for the H-matrix ase as an example to showits proving skeleton, while for the ompletion of the onvergene theory of Method II,we also list its onvergene theorem for the monotone matrix ase but omit its proof.Theorem 5.1. Let A 2 L(Rn) be a monotone matrix, and (Mi : Di�Li; Ui;Ni;Ei)(i = 1; 2; � � � ; �) be a two-level multisplitting of it with A =Mi�Ni (i = 1; 2; � � � ; �) beingregular and Di � 0, Li � 0, Ui � 0 (i = 1; 2; � � � ; �). Then, for any starting vetor x0 2Rn, the iterative sequene fxpgp2N0 generated by Method II onverges independently of



584 Z.Z. BAI, D.R. WANG AND D.J. EVANSthe sequenes fmi;pgp2N0 to the unique solution x� of the system of linear equations(1:1) provided the relaxation parameters r and ! satisfy 0 � r � !; 0 < ! � 1.Theorem 5.2. Let A 2 L(Rn) be an H-matrix with D = diag(A) and B = D�A.Assume that (Mi : Di � Li; Ui;Ni;Ei) (i = 1; 2; � � � ; �) is a two-level multisplitting ofthe matrix A with A =Mi �Ni (i = 1; 2; � � � ; �) being H-ompatible splittings,hMii = jDij � jLij � jUij; i = 1; 2; � � � ; � (5.3)and diag (Mi) = Di = D; i = 1; 2; � � � ; �: (5.4)Then, for any starting vetor x0 2 Rn, the iterative sequene fxpgp2N0 generated byMethod II onverges independently of the sequenes fmi;pgp2N0 to the unique solutionx� of the system of linear equations (1:1) provided the relaxation parameters r and !satisfy 0 � r � !; 0 < ! < 2=(1 + �(jDj�1jBj)): (5.5)Proof. In light of Lemma 1 f) we know that Mi (i = 1; 2; � � � ; �) are H-matries.Let Ci = Di �Mi; i = 1; 2; � � � ; �; (5.6)by (5.3){(5.4) we easily see thatjCij = jLij+ jUij; i = 1; 2; � � � ; �: (5.7)Beause (Di � rLi) (i = 1; 2; � � � ; �) are H-matries, we havej(Di � rLi)�1j � hDi � rLii�1 = (jDij � rjLij)�1; i = 1; 2; � � � ; �: (5.8)Moreover, for the matries Li(r; !) (i = 1; 2; � � � ; �) de�ned by (2.5), we have thefollowing estimates:jLi(r; !)j � j(Di � rLi)�1j[j1� !jjDij+ (! � r)jLij+ !jUij℄� (jDij � rjLij)�1[j1� !jjDij+ (! � r)jLij+ !jUij℄ := L̂i(r; !): (5.9)Presently, by (5.8){(5.9) we an obtain from (5.2) thatjTi;p(r; !)j � jLi(r; !)jmi;p + mi;p�1Xj=0 jLi(r; !)jj!(jDij � rjLij)�1jNij� �L̂i(r; !)�mi;p + mi;p�1Xj=0 �L̂i(r; !)�j!(jDij � rjLij)�1jNij (5.10)holds for eah i 2 f1; 2; � � � ; �g.De�neT̂i;p(r; !) = �L̂i(r; !)�mi;p + mi;p�1Xj=0 �L̂i(r; !)�j!(jDij � rjLij)�1jNij; (5.11)



On the Convergene of Asynhronous Nested Matrix Multisplitting Methods for Linear Systems 585and onsider the sequene f"̂pgp2N0 yielded by"̂0 = j"0j � jx0 � x�j; "̂p+1 = Xi2J(p)EiT̂i;p(r; !)"̂si(p) + Xi=2J(p)Ei"̂p: (5.12)For i = 1; 2; � � � ; �, let8>>>>>>><>>>>>>>:
A(!) = 1�j1�!j! jDj � jBj;Mi(!) = 1�j1�!j! jDj � jCij;Ni(!) = jNij;Fi(r; !) = 1! (jDj � rjLij);Gi(r; !) = 1! [j1� !jjDj+ (! � r)jLij+ !jUij℄: (5.13)Then it obviously holds that8>>>>>><>>>>>>: A(!) =Mi(!)�Ni(!);Mi(!) = Fi(r; !) � Gi(r; !);L̂i(r; !) = Fi(r; !)�1Gi(r; !);T̂i;p(r; !) = �L̂i(r; !)�mi;p + mi;p�1Pj=0 �L̂i(r; !)�jFi(r; !)�1Ni(!): (5.14)Sine A 2 L(Rn) is an H-matrix, we have �(jDj�1jBj) < 1. Notiing the varyingregion (5.5) of the relaxation parameter pair (r; !), we see that A(!) 2 L(Rn) is anM -matrix. Furthermore, asjCij = jDj � hMii = jDj � (hAi + jNij) = jBj � jNij � jBj; i = 1; 2; � � � ; �;in aordane with [13, 2.4.10℄ we know that Mi(!) 2 L(Rn) (i = 1; 2; � � � ; �) are M -matries, too. Therefore, both A(!) =Mi(!)�Ni(!) andMi(!) = Fi(r; !)�Gi(r; !)are M -splittings for i = 1; 2; � � � ; � under the onditions of this theorem. By makinguse of Theorem 4.1, we know that "̂p �! 0 as p �!1.Similar to the proof of Theorem 4.3, we an also on�rm that f"̂pgp2N0 is a majoriz-ing sequene of f"pgp2N0 de�ned by (5.1){(5.2), i.e., j"pj � "̂p (p = 0; 1; 2; � � �). Hene,we �nally obtain "p �! 0(p �!1).6. Numerial ResultsFor a given positive integer en, let n = en2 and onsider the system of linear equations(1.1) with 8><>: A = BlokTridiag(�I; eB;�I) 2 L(Rn);eB = tridiag(�1; 4;�1) 2 L(R~n);b = (10; 10; � � � ; 10)T 2 Rn:This example naturally omes from the �nite di�erene disretization of a Dirihletproblem on the unit square [0; 1℄ � [0; 1℄; see [11℄ and [13℄ for details. This system oflinear equations is solved by the ANMM-AOR method and ANMM-SOR method.



586 Z.Z. BAI, D.R. WANG AND D.J. EVANSIn our omputations, with (2� � 1) positive integers n1; n2; � � � ; n2��1 satisfyingnk = ken2��1 (k = 1; 2; � � � ; 2�� 1) we let proessor i solve the variables xj(j = enn2i�3 +1; enn2i�3 + 2; � � � ; enn2i). Here, we stipulate that n�1 = 0 and n2� = en. The inneriteration numbers are taken to bemi;p � mip (i = 1; 2; � � � ; �; p 2 N0), and the splittingand the weighting matries are taken to be Ni =Mi �A andMi = diag( ~nn2i�3z }| {4I; � � � ; 4I; ~n(n2i�n2i�3)z }| {eB; � � � ; eB ; 4I; � � � ; 4I);Ei = diag( ~nn2i�3z }| {0; � � � ; 0; ~n(n2i�n2i�3)z }| {�~nn2i�3+1I; � � � ; �~nn2iI; 0; � � � ; 0);Li = the stritly lower triangular matrix of (�Mi);Ui = the stritly upper triangular matrix of (�Mi);respetively, where �j = 8><>: 0:5; if enn2i�3 + 1 � j � enn2i�2;1:0; if enn2i�2 + 1 � j � enn2i�1;0:5; if enn2i�1 + 1 � j � enn2i:We remark that this system of linear equations and this two-level multisplitting of thematrix A 2 L(Rn) satisfy all the theoretial hypotheses made in the previous setions.The parallel omputer used is the SGI Power Challenge multiproessor loated inOxford University Computing Laboratory. Computations are done orresponding ton = 6400, and various proessor numbers � and relaxation parameter pairs (r; !). Allour omputations are started from an initial vetor having all omponents equal to�100, and terminated one the urrent iterations xp obey kAxp � bk1kAx0 � bk1 � 10�7 or thestopping riterion is not satis�ed after 8000 iteration steps. For � = 4, the orrespond-ing sequential CPU time (CPU) in seonds and parallel speed-up (SP) are listed in thefollowing numerial tables. Here, the SP is de�ned to be the ratio of the sequential CPUto the orresponding parallel runnings. We remark that the parallel CPU time is notlisted in the numerial tables sine it an be easily obtained by dividing the sequentialCPU by the orresponding parallel SP. From our omputations we see that suitablehoies of the relaxation parameters r and ! an greatly aelerate the onvergenerates of the relaxation methods, and the asynhronous nested matrix multisplittingrelaxation methods have better numerial behaviour than the ordinary asynhronousmultisplitting relaxation methods. Moreover, the asynhronous nested matrix multi-splitting AOR method has larger onvergene domain than the asynhronous nestedmatrix multisplitting SOR method, and the onvergene rate of the former is, in gen-eral, moderately faster than that of the later. Evidently, the numerial results furtheron�rm the theories established in the previous setions, and also show that our newmethods are feasible and eÆient for solving the system of linear equations (1.1) on thehigh-speed multiproessor systems.



On the Convergene of Asynhronous Nested Matrix Multisplitting Methods for Linear Systems 587Table I: ANMM-SOR method! 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6CPU 235.1 184.8 178.7 165.3 168.8 118.1 1 1 1mip=1 SP 3.1 3.1 3.1 3.1 3.2 3.1 { { {CPU 203.3 159.9 160.5 153.9 146.7 128.3 189.7 1 1mip=2 SP 3.0 3.1 3.1 3.2 3.1 3.1 3.2 { {CPU 176.6 161.7 162.2 156.5 157.6 148.7 167.2 1 1mip=3 SP 3.3 3.1 3.1 3.1 3.2 3.1 3.1 { {CPU 178.7 171.3 175.1 159.8 166.1 161.3 171.3 163.0 171.6mip=4 SP 3.1 3.1 3.0 3.1 3.2 3.1 3.2 3.2 3.1CPU 200.9 183.1 188.9 177.9 173.3 179.6 194.7 196.1 1mip=5 SP 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.2 {Table II: ANMM-AOR methodr 1.0 1.1 1.2 1.3 1.4 1.1 1.2 1.2 1.1! 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6CPU 220.2 176.4 149.8 119.4 111.3 119.3 1 1 1mip=1 SP 3.0 3.1 3.3 3.1 3.1 3.1 { { {CPU 164.7 139.2 121.4 116.4 102.5 117.4 115.7 151.2 146.1mip=2 SP 3.1 3.1 3.1 3.1 2.9 3.1 3.2 3.2 3.1CPU 155.4 154.1 132.7 150.3 147.7 126.7 134.8 105.3 1mip=3 SP 3.0 3.1 3.1 3.1 3.1 3.1 3.2 3.2 {CPU 173.4 163.4 151.7 152.8 154.7 164.2 157.4 134.7 159.3mip=4 SP 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.2 3.1CPU 189.1 182.5 177.2 178.3 175.4 181.1 183.7 172.3 193.2mip=5 SP 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.2 3.1Aknowledgement. The authors are very muh indebted to the referees for theirvaluable suggestions about the original manusript of this paper. They also thank Dr.Y.G. Huang for his help during the running of the numerial experiments and ProfessorJ.C. Sun for his disussion on asynhronous parallel iterations. Part of this work wasful�lled during the �rst author's visit of Oxford University Computing Laboratory andAtlas Centre, Rutherford Appleton Laboratory in England during August 1997-August1998, and he sinerely thanks his advisors, Professors A.J. Wathen and I.S. Du�, fortheir warm enouragements and helps.Referenes[1℄ D.P. O'Leary, R.E. White, Multisplittings of matries and parallel solution of linear systems,SIAM J. Alg. Dis. Methods, 6 (1985), 630{640.[2℄ A. Frommer, G. Mayer, Convergene of relaxed parallel multisplitting methods, LinearAlgebra Appl., 119 (1989), 141{152.[3℄ D.R. Wang, On the onvergene of the parallel multisplitting AOR algorithm, Linear Al-gebra Appl., 154-156 (1991), 473{486.[4℄ L. Elsner, Comparison of weak regular splittings and multisplitting methods, Numer. Math.,56 (1989), 283{289.
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