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A STRUCTURE-PRESERVING DISCRETIZATION OFNONLINEAR SCHR�ODINGER EQUATION�1)Ming-you Huang Ru Qu Cheng-hun Gong(Institute of Mathematis, Jilin University, Changhun 130023, P.R. China)AbstratThis paper studies the geometri struture of nonlinear Shr�odinger equationand from the view-point of preserving struture a kind of fully disrete shemes ispresented for the numerial simulation of this important equation in quantum. Ithas been shown by theoretial analysis and numerial experiments that suh dis-rete shemes are quite satisfatory in keeping the desirable onservation propertiesand for simulating the long-time behaviour.Key words: Shr�odinger equation, Hamiltonian system, Disrete shemes, Struturepreserving algorithm. 1. IntrodutionMany important di�erential equations of evolution type in physis and mehanishave spei� geometri struture. For instane, the Hamiltonian systems in lassialmehanis, the Shr�odinger equation in quantum, the Korteweg-de Vries and Klein-Gordon equations of nonlinear waves have sympleti struture, i.e. the evolutions inphase spases of these equations are anonial mappings. To simulate onviningly thedynami behaviour of di�erential equations, it is very natural to look for disretizedsystems whih preserve as muh as possible the geometri struture and symmetries ofthe original ontinuous systems. Suh disretization methods would be more satisfa-tory than the onventional methods in keeping the desirable onservation properties andsimulating the long-time and global behaviour. In reent 10 years, studies on numerialmethods from the view-point of geometry have beome more and more popular. Sine1984, the sympleti methods initiated by Feng K.[1℄ for omputation of Hamiltoniansystems have been studied systematially by Qin M.Z.[2℄, Sanz-Serna J.M.[3℄, ChannelP.J. and Sovel C.[4℄, et.. Huang M.Y. in [5℄ and [6℄ disussed the struture preserv-ing methods for nonlinear wave equation and Korteweg-de Vries equation, where thedisretizations are related to the spetral or �nite element approximations of partialdi�erential equations and used to ompute the time periodi solutions and the solitarywaves respetively.In this paper, we shall disuss the disrete approximation of Shr�odinger equation,whih preserves the geometri struture and desirable properties of the ontinuous� Reeived Otober 5, 1995.1)The researh was supported by the State Major Key Projet for basi Researhes and SieneFoundation of National Eduation Ministry.



554 M.Y. HUANG, R. QU AND C.C. GONGsystem. As a model, here we onsider the following nonlinear Shr�odinger equationwith one spae variable i�u�t + �2u�2x � juj2u = 0; (1.1)where i = p�1, unknown funtion u = �+ i is assumed to be periodi in x or rapidlydeay as x! �1.To study the geometri struture of equation (1.1), we introdue the funtional byintegral H(u) = 12 Z +L�L [�2x +  2x + (�2 +  2)2℄dx;where 0 < L < +1 when the periodi boundary ondition with period 2L is onsideredand L = 1 when the rapidly deay boundary ondition is onsidered, then (1.1) isequivalent to the following system with unknown funtions � and  :���t =� �2 �2x + 2(�2 +  2) = ÆHÆ � �t =�2��2x � 2(�2 +  2)� = �ÆHÆ� (1.2)where ÆHÆ , ÆHÆ� respresent the variations of H(u) with respet to  and � respetively.From (1.2) we see that the equation (1.1) has a Hamiltonian (Sympleti) struture.It is easy to show that the solution u(t) = u(t; x) of (1.1) or (1.2) has the followingonservation properties:I1(u(t)) = Z +L�L (�2 +  2)dx = Const. (Total Mass of partiles);I2(u(t)) = Z +L�L  �xdx = Const. (Total momentum);I3(u(t)) = H(u(t)) = Const. (Total energy):In long time simulation problems, to maintain these onservation properties is onsid-ered to be partiularly important.2. Disrete ApproximationIn this setion, a properly disretization of equation (1.1) with periodi boundaryondition will be introdued based on formulation (1.2).Assume that� �2�x2 �j(x) = �j�j(x); �j(�L) = �j(L); j = 1; 2; � � �i.e. �j(x), j = 1; 2; � � � are eigenfuntions of the operator ��xx and �j, j = 1; 2; � � �the orresponding eigenvalues, and onsider f�j(x)g to be a ortho-normalized basis of



A Struture-preserving Disretization of Nonlinear Shr�odinger Equation 555L2(�L;L). Set u(t; x) = �+ i = 1Xj=1(qj(t) + ipj(t))�j(x);then H(u) = H(p; q) = 12 1Xj=1�j(p2j + q2j ) + b(p; q);where b(p; q) = 12 Z +1�1 (�2 +  2)2dx:Thus, (1.2) is redued to8>><>>: dqjdt = �jpj + �b�pj = �H�pjdpjdt = ��jqj � �b�qj = ��H�qj ; j = 1; 2; � � � (2.1)In this way, the Shr�odinger equation (1.1) an be viewed as an in�nite-dimensionalHamiltonian system. To set up a �nite-dimensional approximation of (2.1), letHN(p; q) = 12 NXj=1�j(p2j + q2j ) + bN (p; q);where bN (p; q) = b(uN ); uN = NXj=1(qj(t) + ipj(t))�j(x) = �N + i N ;and we use the Hamiltonian system de�ned by funtion HN (p; q)8>><>>: dqjdt = �HN�pj = �jpj + �bN�pjdpjdt = ��HN�qj = ��jqj � �bN�qj ; j = 1; 2; � � � ; N (2.2)as a semidisrete approximation of (1.1). This approximation not only preserves theHamiltonian struture but also maintains the onservation properties of the originalequation.We shall get fully disrete sheme from (2.2) by arrying further disretization intime variable. Let � > 0 be the time step, tn = n� , n = 0; 1; 2; � � � ; and denotepn+12j = pn+1j + pnj2 ; qn+12j = qn+1j + qnj2 ;then the simplist di�erene sheme with seond order auray for the numerial inte-gration of (2.2) should be the midpoint sheme:8>>><>>>: qn+1j � qnj� = �jpn+12j + �bN�pj (pn+12 ; qn+12 )pn+1j � pnj� = ��jqn+12j � �bN�qj (pn+12 ; qn+12 ); j = 1; 2; � � � ; N: (2.3)



556 M.Y. HUANG, R. QU AND C.C. GONGFrom the geometry theory of ODEs, we know that the evolution operators of Hamil-tonian systems are annonial mappings in the phase spae. It has been point out in[1℄ that the midpoint sheme (2.3) maintains the sympleti struture of Hamiltoniansystems, i.e. (2.3) is a sympleti sheme.Remark. In the phase spae R2N of Hamiltonian system (2.2), the nondegenerateskew-bilinear form!2(�; �) = �TJ2N�; �; � 2 R2NJ2N = � 0 �ININ 0 � ; IN � unitary matrix of orderNde�nes a sympleti struture on R2N . A linear operator S on R2N is named as sym-pleti operator, if !2(S�; S�) = !2(�; �); 8�; � 2 R2N :A di�erentiable map g = g(z) : R2N ! R2N is alled annonial transformation, ifits Jaobian g� = (�g)(z) is a sympleti operator for every z 2 R2N .Denote the evolution operator of (2.2) by gt = gt(z), t 2 R, z 2 R2N . For any�xed t, gt is a onnonial transformation on R2N , and the family gt, t 2 R forms aontinuous group of annonial mappings. The single step di�erene shemes of (2.2)an be written in form zn+1 = �� (zn); n = 0;�1; � � � (2.4)whih de�nes a family of mappings on R2N depending on a parameter � > 0. If forall � > 0, �� : R2N ! R2N are annonial mappings, then we say sheme (2.4) is asympleti sheme.In addition to the struture preserving feature, the fully desrete appromximation(2.3) has the total mass onservation property as indiated byTheorem 1. Any solution (pn; qn) of the fully disrete sheme (2:3) satis�esI1(pn; qn) = NXj=1((pnj )2 + (qnj )2) = I1(p0; q0) onservation of the total mass of partilesProof. Multiplying the �rst and the seond equation of (2.3) by qn+12 and pn+12respetively and taking sum over j we obtainNXj=1(qn+1j )2 � NXj=1(qnj )2 = 2� NXj=1�jpn+12j qn+12j + 2� NXj=1 qn+12j �bN�pj (pn+12 ; qn+12 );NXj=1(pn+1j )2 � NXj=1(pnj )2 = �2� NXj=1�jpn+12j qn+12j � 2� NXj=1 pn+12j �bN�qj (pn+12 ; qn+12 ):Sine NXj=1 qj �bN�pj (p; q) = NXj=1 pj �bN�qj (p; q) = 2 Z +L�L (�2N +  2N )�N Ndx;



A Struture-preserving Disretization of Nonlinear Shr�odinger Equation 557then from above two equalities we seeNXj=1�(pn+1j )2 + (qn+1j )2� = NXj=1�(pnj )2 + (q2j )2�whih shows the onlusion of the theorem.However, we failed to prove sheme (2.3) satisfying the onservation property ofenergy. After areful observation, we �nd that the following modi�ed midpoint sheme8>>>>>><>>>>>>: qn+1j � qnj� = �jpn+12j + �bN�pj !n+12pn+1j � pnj� = ��jqn+12j �  �bN�qj !n+12 (2.5)simultaneously satis�es the total mass and the energy onservation law, where��bN�pj �n+12 = 2 Z +L�L [(�2N )n+12 + ( 2N )n+12 ℄ n+12N �jdx;��bN�qj �n+12 = 2 Z +L�L [(�2N )n+12 + ( 2N )n+12 ℄�n+12N �jdx;In fat, we haveTheorem 2. The solution (pn; qn) of sheme (2:5) satis�esI1(pn; qn) = NXj=1((pnj )2 + (qnj )2) = I1(p0; q0)and HN(pn; qn) = NXj=1 �j2 ((pnj )2 + (qnj )2) + bN (pn; qn) = HN (p0; q0):Proof. The �rst onlusion is proved in the same way as Th.1. To prove the seondonlusion, we multiply the �rst and seond equation of (2:5) by (pn+1j � pnj ) and(qn+1j � qnj ) respetively to obtain1� NXj=1(qj+1j � qnj )(pn+1j � pnj ) =12 NXj=1((pn+1j )2 � (pnj )2)2�j+ NXj=1��bN�pj �n+12 (pn+1j � pnj )and1� NXj=1(pj+1j � pnj )(qn+1j � qnj ) = �12 NXj=1((qn+1j )2� (qnj )2)2�j � NXj=1��bN�qj �n+12 (qn+1j � qnj ):



558 M.Y. HUANG, R. QU AND C.C. GONGNotie thatNXj=1 ��bN�pj �n+12 (pn+1j � pnj ) + NXj=1��bN�qj �n+12 (qn+1j � qnj )=12 Z +L�L [(�n+1N )2 + ( n+1N )2 + (�nN )2 + ( nN )2℄� [(�n+1N )2 + ( n+1N )2 � (�nN )2 � ( nN )2℄dx=12 Z +L�L [(�n+1N )2 + ( n+1N )2℄2dx� 12 Z +L�L [(�nN )2 + ( nN )2℄2dx;then ombining above equalities, we get12 NXj=1�j((pn+1j )2 + (qn+1j )2) + bN (pn+1; qn+1) = 12 NXj=1�j((pnj )2 + (qnj )2) + bN (pn; qn)whih shows the seond onlusion of the theorem.Theorem 2 tells us that for given initial funtions �0(x),  0(x) 2 H1(R), the solution(�nN ;  nN ) of (2.5) will be uniformly bounded not only in L2(R) but also in H1(R) evenas t!1. The results of Theorem 2 indiate that the modi�ed midpoint sheme (2.5)has a better stability property than (2.3), and it is easy to see, sheme (2.5) also hasthe auray of seond order in � . Moreover, due to[(�2N )n+12 + ( 2N )n+12 ℄� [(�n+12N )2 + ( n+12N )2℄ = ��n+1N � �nN2 �2 + � n+1N � �nN2 �2;we see that sheme (2.5) di�ers from the midpoint sheme (2.3) only in a perturbationterm o(�2).Denote U = (�;  )T and de�ne SN to be the subspae spanded by eigenfuntionsf�j(x), j = 1; 2; � � � ; Ng. Let PN be the projetion operator from L2(R) � L2(R) ontoSN � SN . Thus sheme (2.5) an be rewritten in operator formUn+1N � UnN� = �J2�xxUn+12N + PN (jUn+1N j2 + jUnN j2)J2Un+12N ; (2.6)where J2 = � 0 �11 0 � ; (vTJ2v = 0;8v 2 R2):This formulation will �t the need to arry the onvergene analysis and error estimationof the disrete method. Based on the uniform boundedness of the approximate solutionsguaranteed by Theorem 2, by a onventional argument similar to �nite element analysiswe easily proveTheorem 3. For given initial data U0 = (�0;  0), assume that the solution U =(�;  ) of (1:2) exists and is smooth. Then when � > 0 suÆiently small, the disreteproblem (2:6) has an unique solution UnN = (�nN ;  nN ), and the following error estimateholds kUnN � U(tn; xj)k � eCtnfkUN0 � U(0; x)k +O(N�s + �2)g



A Struture-preserving Disretization of Nonlinear Shr�odinger Equation 559where C is a onstant independent of N and � , s is an integer determined by thesmoothness of the exat solution U .4. Numerial ExperimentAs an example, we onsider the following periodi boundary value problem of thenonlinear Shr�odinger equationi�u�t + �2u�x2 � 2juj2u = 0; 0 < x < 1; t > 0u(0; t) = u(1; t) (3.1)u(x; 0) = sin 2�xand use shemes (2.3) and (2.5) proposed in Setion 2 to ompute the approximatesolution of this problem. In the Fourier expansion with respet to spae variable wehoose N = 10, and for the further disretization of time variable we take � = 0:01.All the Fourier oeÆients are omputed by exat formula. Sine (2.3) and (2.5) areimpliit shemes, we make use of iteration method in eah time step to ompute thesolution.Table 1 reords the total mass and total energy values of the approximate solution of(2.3) and (2.5) for the �rst 182 steps. The experimental results show that the sheme(2.5) and sheme (2.3) preserve not only the mass onservation but also the energyonservation law prety well. Figs.1 and 2 are the pitures of the approximate solutions�nN and  nN omputed by sheme (2.3) for time t = 0:0; 0:1; � � � ; 0:5.Table 1Time step Total energy Total mass Total energy Total massn Sheme(2.3) Sheme(2.3) Sheme(2.5) Sheme(2.5)2 5.6848024770 1.0000000000 5.6848024772 1.000000000012 5.6848024691 0.9999999991 5.6848024575 0.999999997322 5.6848024464 0.9999999955 5.6848024580 0.999999997332 5.6848024364 0.9999999940 5.6848024637 0.999999998242 5.6848024571 0.9999999972 5.6848024295 0.999999992952 5.6848024320 0.9999999933 5.6848023984 0.999999988162 5.6848024391 0.9999999944 5.6848024160 0.999999990872 5.6848024324 0.9999999934 5.6848023942 0.999999987482 5.6848024198 0.9999999914 5.6848023770 0.999999984792 5.6848024599 0.9999999976 5.6848024093 0.9999999898102 5.6848024644 0.9999999983 5.6848024008 0.9999999884112 5.6848024615 0.9999999979 5.6848023891 0.9999999866122 5.6848024332 0.9999999935 5.6848024066 0.9999999893132 5.6848024059 0.9999999892 5.6848023798 0.9999999852142 5.6848023818 0.9999999855 5.6848023905 0.9999999868152 5.6848023574 0.9999999817 5.6848023820 0.9999999855162 5.6848023854 0.9999999861 5.6848024021 0.9999999886172 5.6848023722 0.9999999840 5.6848024024 0.9999999887182 5.6848023937 0.9999999873 5.6848023887 0.9999999866
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