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CALCULATION OF PENALTIES IN ALGORITHM OF MIXEDINTEGER PROGRAMMING SOLVING WITH REVISED DUALSIMPLEX METHOD FOR BOUNDED VARIABLES�1)Yi-ming Wei(Institute of Poli
y and Management, CAS, Beijing 100080, P.R. China)Qing-huai Hu(Wuhan Institute of Chemi
al Te
hnology, Wuhan 430073, P.R. China)Abstra
tThe bran
h-and-bound method with the revised dual simplex for bounded vari-ables is very e�e
tive in solving relatively large-size integer linear programmingproblems. This paper, based on the general forms of the penalties by Beale andSmall and the stronger penalties by Tomlin, des
ribes the modi�
ations of thesepenalties used for the method of bounded variables. The same examples from Pe-tersen are taken and the satisfa
tory results are shown in 
omparison with thoseobtained by Tomlin.Key words: Penalties, Stronger penalties, The revised dual simplex method forbounded variables. 1. Introdu
tionThe studies on the bran
h-and-bound algorithm of integer programming have been
arried out sin
e 60's. The e�orts in improving the algorithm are mainly 
on
entratedon speeding up the related LP solution for ea
h node and making better sele
tion of nodeand bran
h for examing in order to approa
h the optimal solution as qui
k as possible.As a better strategy to estimate the problem bound and to sele
t bran
h, Beals andSmall proposed the penalties in 1965[2℄, and then Tomlin made modi�
ations or exten-sions in 1969 by 
riterion for abandoning unpro�table bran
hes. This stronger 
riterionis obtained by making use of Gomory 
utting-plane 
onstraints. These modi�
ationshave been in
orporated into the famous UMPIRT system and are used su

essfullyto solve many large pra
ti
al mixed integer programming problems[3;7℄. Moreover inaspe
t of speeding up solution of the LP problem for ea
h node sele
ted, the authorwould re
ommend the revised dual simplex method for bounded variables in whi
h abran
h is treated by introdu
ing an additive bounded restri
tion as that with a loweror upper bound 
hange. Thus a pro
edure of sensitivity analysis to this 
hange is 
ar-ried out in a 
ontinuous way based on the present basis inverse. The method works� Re
eived O
tober 8, 1997.1)This work was supported by the Chinese Postdo
toral S
ien
e Fundation.
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omes one of the main reasons of satisfa
tory solution speed. Sin
ethe penalties dedu
ed by Beale and Small and th estronger penalties by Tomlin areall general formulas used for the dual simplex or revised dual simplex method without
onsideration of bounded variables. As further modi�
ations or extensions, this pa-per des
ribes 
al
ulation of penalties and stronger penalties for the bran
h-and-boundalgorithm of mixed integer linear programming solving with the revised dual simplexmethod for bounded variables. In manifesting the e�e
tiveness of the algorithm forbounded variable not only. But also the penalties and stronger penalties dedu
ed bythe author, the same examples from Petersen[5℄ are taken and the results are 
omparedwith those obtained by Tomolin.2. Bran
h-and-Bound Algorithm with Revised Dual Simplex Methodfor Boundd VariablesThe general mixed integer linear programming model with bounded variables 
anbe put in matrix and ve
tor forms as follows:Minimize Z = CXSubje
t to AX = bL � X � U (1)Xk integer K 2 IWhere I is the notation set of integer variables whi
h are pla
ed �rst and followed bythe other 
ontinuous variables as ve
tor elements in X.Dedu
ing the lower boundes as zeros by transforming X 0 = X � L and using thesame notations in (1), the problem be
omes as follows:Minimize Z = CXSubje
t to AX = b0 � X � U (2)Xk integer K 2 IFor the problem at some sele
ted node, let A be de
omposed into [B;N1; N2℄, where Bis basis, and N1 and N2 
onsist of nonbasi
 
olumns 
orresponding to nonbasi
 variablesat their lower bounds XN1 = 0 and upper bounds XN2 = U respe
tively. A

ordinglylet R1 being the notation set of nonbasi
 variables at their lower bounds, and R2, thenotation set of nobasi
 variables at their upper bounds. Thus the basi
 variables XBand the related obje
tive fun
tion value Z 
an be expressed as follows:
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ulation of Penalties in Algorithm of Mixed Integer Programming Solving with ... 547XB = B�1b�B�1N1XN1 �B�1N2XN2Z = CBB�1b+ (CN1 � CBB�1N1)XN1 + (CN2 � CBB�1N2)XN2To use the bran
h-and-bound method, now some basi
 integer variable with a fra
tionalvalue at the moment is sele
ted to be bran
hed by introdu
ing one of following additiverestri
tions: Xk � [X�k ℄ (4)or Xk � [X�k ℄ + 1 (5)Where [X�k ℄ is the nearest integer value of Xk, that isXk = [X�k ℄ + fk 0 � fk � 1 (6)A
tually the restri
tion (4) means an upper bound 
hange for the sele
ted basi
 variableXk, but restri
tion (5), a lower bound 
hange for Xk in the problem at the node. Thusa treatment of sensitivity analysis 
an be pro
essed by use of the revised dual simplexmethod for bounded variables in a 
ontinuous way based on the basis inverse at hand.It works very fast and be
omes one of the main reasons of satisfa
tory solution speed.3. Cal
ulation of Penalties for Revised Dual Simplex Method forBounded VariablesStarting from expressions in (3), the ve
tor of basi
 variables and the related ob-je
tive fun
tion value 
an be rewritten as follows:XB = �b� Xj2R1 YjXj � Xj2R2 YjXjZ = �z + Xj2R1(Cj � Zj)Xj + Xj2R2(Cj � Zj)Xj (7)Taking into a

ount the �rst restri
tion (4) whi
h means a upper bounded 
hange forthe basi
 variable Xk, thus from the right hand side of (7) that the basi
 variable Xkgoes beyond its new upper bound, and this row is then sele
ted as the pivoting row.Some other nonbasi
 variable Xk may enter in the basis, substituting Xk and makingit at its upper bound level. hen
e it results in a 
hange (i.e. the penalty pd) of theobje
tive fun
tion value after the tableau pivoting. Thus Pd 
an be 
al
ulated bypd = t � fk (8)where t = Minimum ft1; t2g (9)
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j � zjykj : ykj > 0o (10)t2 = Minimumj2R2 n
j � zjykj : ykj < 0o (11)To determine penalty Pu 
orresponding to restri
tion (5) whi
h means a lower bound
hange for the basi
 variable Xk, the basi
 variable Xk at that time is less than its newlower bound and this row is then sele
ted as the povoting row. Again, using the reviseddual simplex 
al
ulations, it follows that:Pu = t � (1� fk) (12)t is the same as that in (9), butt1 = Minimumj2R1 n
j � zj�ykj : ykj < 0o (13)t2 = Minimumj2R2 n
j � zj�ykj : ykj > 0o (14)On
e the penalties are 
omputed, and estimated problem bound at the node 
an be
al
ulated by Z = Z0 +Minimum fPd; Pug (15)Note that some signs in the expressions above are di�erent from those proposed byBeale and Tomlin et
.[1;2;7℄. Be
ause the LP problem here is minimized. There shouldbe a minus before Minimum fPd; Pug in (15) and a negative sign should be added fort1; t2 expressions above while 
onsidering a maximizing problem.4. Cla
ulation of Stronger Penalties for Revised Dual SimplexMethod for Bounded VariablesThe stronger penalties 
an be dedu
ed from the fa
t that some nonbasi
 variables(at their lower bounds or upper bounds) must be integers. Consider the equationasso
iated with an integer Xk in the optimum tableau of the 
urrent node. When therestri
tion (4) is imposed, some nonbasi
 variable Xq having ykq > 0 and lo
ating at itslower bound must be in
reased (above zero); and another nonbasi
 variable Xp havingYkp < 0 and lo
ating at its upper bound must be de
reased (below its upper bound) inorder to de
rease the right hand side value for this equation to remain satis�ed. But ifsu
h a nonbasi
 variable is also integer, then its value must be in
reased or de
reasedat least one. This means that the asso
iated penalty must be at least equal �
q (or �
p),and the revised stronger penalty is then given as:p0d = min8<: min(t1; t2) � fk; j 62 Imaxf maxj2R1;ykj>0[
j � zj; t1 � fk℄; maxj2R2;ykj<0[�
j + zj ; t2 � fk℄g; j 2 Ig (16)Where t1 and t2 are these as (10) and (11) respe
tively.
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orresponding to restri
tion (5), it yieldsp0u = min8>>><>>>: min(t1; t2) � (1� fk); j 62 Imaxf maxj2R1;ykj<0[
j � zj ; t1 � (1� fk)℄;maxj2R2;ykj>0[�
j + zj ; t2 � (1� fk)℄g; j 2 IgWhere t1 and t2 are those as (13) and (14) respe
tively.Moreover like Tomlin did, and even stronger 
ondition 
an be also derived fromthe Gomory 
utting-plane 
onstraint in this 
ase. Considering the restri
tion (4) andequation (6) as well as the equation for basi
 integer Xk in (7)m, a equation 
an beformulated, while some nonbasi
 variables have some 
hanges �xj, as follows:Xk � [X�k ℄ = fk � Xj2R1 ykj�xj � Xj2R2 ykj�xj � 0 (18)Hen
e � Xj2R1 ykj�xj � Xj2R2 ykj�xj � �fk (19)and furthermore that� Xj2R1;ykj>0 ykj�xj � Xj2R2;ykj<0 ykj�xj � �fk (20)However on the other hand for restri
tion (5), it follows that� Xj2R1;ykj<0 ykj�xj � Xj2R2;ykj>0 ykj�xj � fk � 1 (21)or � Xj2R1;ykj<0� fkykj1� fk ��xj � Xj2R2;ykj>0� fkykj1� fk��xj � �fk (22)Combining both 
onditions of (20) and (22) and 
onsidering that the �xj is of the same
ost 
oeÆ
ient as xj has in the obje
tive fun
tion, thus the 
utting-plane 
onstraint(m-
ut)[6℄ 
an be 
onstru
ted as follows:Xj2R1;ykj<0 � fkykj1� fk�xj + Xj2R2;ykj>0 � fkykj1� fk�xj � Xj2R1;ykj<0(ykj)xj� Xj2R2;ykj>0(ykj)xj � �fk (23)and the stronger one[4;7℄ is s = �fk + Xj2NB �kjxj (24)
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�kj =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ykj if j 62 I and j 2 R1; ykj > 0fkykj(fk � 1) if j 62 I and j 2 R1; ykj < 0ykj if j 62 I and j 2 R2; ykj < 0fkykj(fk � 1) if j 62 I and j 2 R2; ykj > 0ykj if j 2 I and fkj � fkfk(1� fk)(fk � 1) if j 2 I and fkj > fk (25)

where fkj is de�ned su
h thatfkj = [y�kj℄ + fkj; 0 � fkj � 1 (26)Thus a minimum penalty p� is p� = minj2NB n
j � fk�kj o (27)where 
j = ( 
j � zj if j 2 R1�
j + zj if j 2 R2 (28)The P � is a stronger 
riterion whi
h is used to test the node �rstly to see whether thenode must be dis
arded or bran
hed.5. ImplementationA pa
kage of mixed integer linear programming using the revised dual simplex algo-rithm for bounded variables and the stronger penalties dudu
ed for bounded variableswas 
oded by the author, whi
h is used for solving relatively large size problems in the�eld with su

ess. In order to manifest the e�e
tiveness of the algorithm for boundedvariable not only, but also the related penalties, the same examples from Petersen aretaken and the results are listed in Table 1 in 
omparison with those obtained by Tomlin.Note that the results in the Table are these using the stronger penalties only, and thedata given refer to the e�ort required to rea
h the a
tual optimum solution and the totale�ort required to 
omplete the tree sear
h to verify this optimum. It is known from theTable that, in 
omparison with those by Tomlin, the total numbers of iterations for mostof examples (ex
ept problems 3 and 4) when using the pa
kage proposed by the authorby use of the revised dual simplex method for bounded variables, are lower than thoseby Tomlin, and are obviously lower for larger problems in parti
ular, eventhough thenumbers of bran
hes are not the 
ase. The reason for fewer total iterations is basi
allydue to the algorithm for bounded variables. But the reason for more bran
hes thanthat by Tomlin is possibly the weaker 
riterion for sele
tion of basi
 integer variablefor bran
hing in the pa
kage made by the authors. The method used in pa
kage by
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ording to the greatest 
ost value in the obje
tive fun
tionfor simpli
ity, rather than that by 
onsidering the penalties for all 
andidates of basi
integer variable to be sele
ted for bran
hing[6℄.Table 1 Test Cal
ulation on Petersen's Problemsand result 
omparisons (optimum solution)Pro m n Results by Tomlin Results by Author(Modi�ed algorithm) (Stronger penalties)Bran
hes simplex Time� Bran
hes simplex Time��made iterations (se
onds) made iterations (se
onds)1 10 6 4 12 1 5 7 32 10 10 8 29 2 10 27 43 10 15 15 81 5 25 112 134 10 20 17 72 6 26 116 145 10 28 22 136 9 23 41 96 5 39 45 431 19 28 115 127 5 50 84 855 42 110 579 52(Complete sear
h)Pro m n Results by Tomlin Results by Author(Modi�ed algorithm) (Stronger penalties)Bran
hes simplex Time� Bran
hes simplex Time��made iterations (se
onds) made iterations (se
onds)1 10 6 4 12 1 5 15 42 10 10 11 49 3 11 43 63 10 15 20 127 8 45 160 174 10 20 19 87 7 26 126 155 10 28 22 169 10 37 135 156 5 39 49 525 22 38 298 257 5 50 86 926 44 110 605 55Computer and Univa
 1108 under Exe
 II, early AST 386 SX/16 personal 
omputerpa
kage used experimental version of UMPIRE pa
kage made by the author� In
lude all CP time used in I/O operations (problem input, printout of all integersolutions found, and a tra
e of the tree sear
h)�� In
lude all CP time used in I/O operations (reading data from disk�le, printout all integersolutions found on disk, and a tra
e of the tree sear
h)It is, on the other hand, obvious that the pa
kage runs fast. It takes few or severalse
onds to solve any of the problems even though the 
omputer used for the testingis just an usual personal 
omputer AST 386 SX/16. As an example of relatively largeproblems, it 
an be referred to the mailing list 
ompilation problem in [8℄. The problemis of 736 variables (among them 94 are integers) and 316 
onstraints. It takes just 15minutes to solve it in a Compaq 4/33 personal 
omputer using the pa
kage.6. Con
lusionsAs des
ribed above that the 
ombination of the revised dual simplex method forbounded variables with the penalties or, in parti
ular, the stronger penalties derived



552 Y.M. WEI AND Q.H. HUin the paper is very e�e
tive in solving the pure integer, mixed integer or zero-oneinteger programming problems, espe
ially the relatively large-size problems. Futherimprovements in both the algorithm and program te
hnique are ne
essary in order toobtain more satisfa
tory results.A
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