RELATIONS BETWEEN TWO SETS OF FUNCTIONS DEFINED BY THE TWO INTERRELATED ONE-SIDE LIPSCHITZ CONDITIONS*1)

Shuang-suo Zhao
(Department of Mathematics, Lanzhou University, Lanzhou 730000, China)
Chang-yin Wang
(Communication center, Department of Communications, Gansu Province, Lanzhou 730030, China)
Guo-feng Zhang
(Department of Mathematics, Lanzhou University, Lanzhou 730000, China)

Abstract

In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the righthand function $f(y)$ satisfy one-side Lipschitz condition $$
<f(y)-f(z), y-z>\leq \nu^{\prime}\|y-z\|^{2}, f: \Omega \subseteq C^{m} \rightarrow C^{m}
$$ or another related one-side Lipschitz condition $$
[F(Y)-F(Z), Y-Z]_{D} \leq \nu^{\prime \prime}\|Y-Z\|_{D}^{2}, F: \Omega^{s} \subseteq C^{m s} \rightarrow C^{m s}
$$ this paper demonstrates that the difference of the two sets of all functions satisfying the above two conditions respectively is at most that $\nu^{\prime}-\nu^{\prime \prime}$ only is constant independent of stiffness of function f.

Key words: Stiff ODEs, One-side Lipschitz condition, Logarithmic norm.

In the theoretical study of numerical solution of stiff ODEs, authors usually assume that the righthand function f of

$$
\begin{equation*}
y^{\prime}(t)=f(y(t)), \quad y\left(t_{0}\right)=y_{0}, \quad t \in\left[t_{0}, T\right], \quad f: \Omega \subseteq C^{m} \rightarrow C^{m} \tag{1}
\end{equation*}
$$

satisfy the one-side Lipschitz condition ${ }^{[1,2,3]}$

$$
\begin{equation*}
<f(y)-f(z), y-z>\leq \nu\|y-z\|^{2}, \forall y, z \in \Omega \tag{2}
\end{equation*}
$$

[^0]however, in some cases(such as study of existence and uniqueness of the solution), the function f is assumed to satisfy another one-side Lipschitz condition
\[

$$
\begin{equation*}
[F(Y)-F(Z), Y-Z]_{D} \leq \nu\|Y-Z\|_{D}^{2} \tag{3}
\end{equation*}
$$

\]

where Ω is a convex domain in $C^{m}, Y=\left(y_{1}^{T}, y_{2}^{T}, \cdots, y_{s}^{T}\right)^{T} \in \Omega^{s}:=\overbrace{\Omega \times \Omega \times \cdots \times \Omega}^{s \text { times }}$, $F(Y)=\left(f^{T}\left(y_{1}\right), f^{T}\left(y_{2}\right), \cdots, f^{T}\left(y_{s}\right)\right)^{T},\langle\cdot, \cdot\rangle$ is an inner-product in $C^{m},\|\cdot\|$ is the corresponding norm, $D=\left(d_{i j}\right)$ is a s-by-s Hermite positive definite matrix, $[F(Y), Z]_{D}=$ $\sum_{i, j=1}^{s} d_{i j}<f\left(y_{i}\right), z_{j}>,\|\cdot\|_{D}$ is the corresponding norm.

Definition:

$$
\begin{gathered}
\mathcal{F}_{1}(\nu)=\left\{f(y) \mid \operatorname{Re}<f(y)-f(z), y-z>\leq \nu\|y-z\|^{2}, f^{\prime}(y) \text { is existed, } \forall y, z \in \Omega\right\}, \\
\mathcal{F}_{2}(\nu)=\left\{f(y) \mid \operatorname{Re}[F(Y)-F(Z), Y-Z]_{D} \leq \nu\|Y-Z\|_{D}^{2}, f^{\prime}(y) \text { is existed, } \forall Y, Z \in \Omega^{s}\right\},
\end{gathered}
$$

where $f^{\prime}(y)$ is a Frechet-derivative of $f(y)$ with respect to y. Up to date, there is no result for the relation of $\mathcal{F}_{1}(\nu)$ and $\mathcal{F}_{2}(\nu)$. The goal of this paper is to investigate this problem.

Theorem 1. If D is a diagonally positive definite matrix, then

$$
\mathcal{F}_{1}(\nu)=\mathcal{F}_{2}(\nu)
$$

Proof. For $\forall f(y) \in \mathcal{F}_{2}(\nu)$, it follows from the definition that

$$
\begin{equation*}
\operatorname{Re} \sum_{i=1}^{s} d_{i i}<f\left(y_{i}\right)-f\left(z_{i}\right), y_{i}-z_{i}>=\operatorname{Re}[F(Y)-F(Z), Y-Z]_{D} \leq \nu\|Y-Z\|_{D}^{2} \tag{4}
\end{equation*}
$$

if $f(y) \notin \mathcal{F}_{1}(\nu)$, then there exist $y, z \in \Omega$ such that

$$
R e<f(y)-f(z), y-z \gg \nu\|y-z\|^{2} .
$$

Let $Y=\left(y^{T}, y^{T}, \cdots, y^{T}\right)^{T}$ and $Z=\left(z^{T}, z^{T}, \cdots, z^{T}\right)^{T} \in \Omega^{s}$, then

$$
\operatorname{Re} \sum_{i=1}^{s} d_{i i}<f(y)-f(z), y-z \gg \nu\|Y-Z\|_{D}^{2}
$$

That is conflict with (4), so $\mathcal{F}_{2}(\nu) \subseteq \mathcal{F}_{1}(\nu)$. On the other hand, it is obvious that $\mathcal{F}_{1}(\nu) \subseteq \mathcal{F}_{2}(\nu)$. Therefore, $\mathcal{F}_{1}(\nu)=\mathcal{F}_{2}(\nu)$.

Theorem 2. Assume that the D be a Hermite positive definite matrix and $f(y)=$ $B y+\hat{B}$ be a linear function, then $f \in \mathcal{F}_{1}(\nu) \Longleftrightarrow f \in \mathcal{F}_{2}(\nu)$.

Proof. For the inner-products $\left\langle\cdot, \cdot>\right.$ and standard inner-product $(y, z)=y^{*} z$ in C^{m}, there exists a Hermite positive definite matrix Q such that

$$
<y, z>=(y, Q z), \quad \forall y, z \in C^{m}
$$

So, for an arbitrary block diagonal matrix $H=\operatorname{block}-\operatorname{diag}(B, B, \cdots, B) \in C^{m s \times m s}$, we have

$$
[H Y, Z]_{D}=(H Y,(D \otimes Q) Z)=(G H Y, G Z), \forall Y, Z \in C^{m s},
$$

where $G=(D \otimes Q)^{\frac{1}{2}}, \otimes$ is Kronecker product symbol. Especially, when $Z=Y$, we have

$$
[H Y, Y]_{D}=(G H Y, G Y), \quad[Y, Y]_{D}=(G Y, G Y), \forall Y \in C^{m s}
$$

It is easy to conclude that

$$
\begin{equation*}
\operatorname{Re} \frac{[H Y, Y]_{D}}{[Y, Y]_{D}}=\operatorname{Re} \frac{\left(G H G^{-1} Z, Z\right)}{(Z, Z)}=\frac{1}{2} \frac{\left(\left(G H G^{-1}+G^{-1} H^{*} G\right) Z, Z\right)}{(Z, Z)}, Z=G Y \tag{6}
\end{equation*}
$$

when $f(y)=B y+\hat{B}, F(Y)-F(Z)=H(Y-Z)$, where $H=I_{s} \otimes B, I_{s}$ is a s-by-s identity matrix. It is obvious that

$$
\left\{\begin{array}{l}
G H G^{-1}=(D \otimes Q)^{\frac{1}{2}}\left(I_{s} \otimes B\right)(D \otimes Q)^{-\frac{1}{2}}=I_{s} \otimes\left(Q^{\frac{1}{2}} B Q^{-\frac{1}{2}}\right), \tag{7}\\
G^{-1} H^{*} G=I_{s} \otimes\left(Q^{-\frac{1}{2}} B^{*} Q^{\frac{1}{2}}\right)
\end{array}\right.
$$

It folows from(6) and (7) that

$$
\begin{aligned}
\operatorname{Re} \frac{[F(Y)-F(Z), Y-Z]_{D}}{[Y-Z, Y-Z]_{D}} & =\operatorname{Re} \frac{[H(Y-Z), Y-Z]_{D}}{[Y-Z, Y-Z]_{D}} \\
& =\frac{1}{2} \frac{\left(\left(I_{s} \otimes\left(Q^{\frac{1}{2}} B Q^{-\frac{1}{2}}+Q^{-\frac{1}{2}} B^{*} Q^{\frac{1}{2}}\right)\right) \tilde{Z}, \tilde{Z}\right)}{(\tilde{Z}, \tilde{Z})}, \quad \tilde{Z}=G(Y-Z) .
\end{aligned}
$$

For $Q^{\frac{1}{2}} B Q^{-\frac{1}{2}}+Q^{-\frac{1}{2}} B^{*} Q^{\frac{1}{2}}$ is a Hermite matrix, so,

$$
\begin{equation*}
\max _{Y \neq Z} R e \frac{[F(Y)-F(Z), Y-Z]_{D}}{[Y-Z, Y-Z]_{D}}=\frac{1}{2} \lambda_{\max }\left(Q^{\frac{1}{2}} B Q^{-\frac{1}{2}}+Q^{-\frac{1}{2}} B^{*} Q^{\frac{1}{2}}\right) . \tag{8}
\end{equation*}
$$

On the other hand, we have also

$$
\begin{aligned}
\max _{y \neq z}\left\{R e \frac{\langle f(y)-f(z), y-z>}{\langle y-z, y-z>}\right\} & =\max _{y \neq z}\left\{R e \frac{\langle B(y-z), y-z>}{\langle y-z, y-z>}\right\} \\
& =\frac{1}{2} \lambda_{\max }\left(Q^{\frac{1}{2}} B Q^{-\frac{1}{2}}+Q^{-\frac{1}{2}} B^{*} Q^{\frac{1}{2}}\right)
\end{aligned}
$$

compared with (8), the desired result holds.
Lemma. If $f(y) \in \mathcal{F}_{1}(\nu)$, then $\mu\left(f^{\prime}(z)\right) \leq \nu, \forall z \in \Omega$; if $f(y) \in \mathcal{F}_{2}(\nu)$, then $\mu\left(F^{\prime}(Y)\right) \leq \nu, \forall Y \in \Omega^{s}$, where $\mu(A)$ is the logarithmic norm of n-by-n complex matrix A, namely,

$$
\mu(A)=\max _{z \in C^{n}, z \neq 0} R e \frac{[A z, z]}{[z, z]}, \quad n=m, \text { or }, n=m s
$$

$[\cdot, \cdot]$ is the inner-product in C^{n}.

Proof. If $f(y) \in \mathcal{F}_{1}(\nu)$, then

$$
R e<f(y)-f(z), y-z>\leq \nu\|y-z\|^{2}, \forall y, z \in \Omega
$$

Let $y=z+t w, w \in C^{m}, t \in R, z \in \Omega$, for the Ω is a convex domain, so $y \in \Omega$ as t is small enough, from the above inequality, we have

$$
R e<f(z+t w)-f(z), t w>\leq \nu t^{2}\|w\|^{2}
$$

It follows that

$$
\operatorname{Re}<f^{\prime}(z) w, w>\leq \nu\|w\|^{2}, \forall z \in \Omega, \forall w \in C^{m} .
$$

This showes that $\mu\left(f^{\prime}(z)\right) \leq \nu$. The proof of the another part is similar.
Theorem 3. Assume that the D be a Hermite positive definite matrix, $f(y)$ satisfy

$$
\begin{equation*}
\left\|f^{\prime}(y)-f^{\prime}(z)\right\| \leq M\|y-z\|, \quad \forall y, z \in \Omega \tag{9}
\end{equation*}
$$

then i) $f(y) \in \mathcal{F}_{2}\left(\nu+\nu^{\prime}\right)$ as $f(y) \in \mathcal{F}_{1}(\nu)$,
ii) $f(y) \in \mathcal{F}_{1}\left(\nu+\nu^{\prime \prime}\right)$ as $f(y) \in \mathcal{F}_{2}(\nu)$,
where $\nu^{\prime}, \nu^{\prime \prime}$ are defined in (11), they are only dependent on the $D,\langle\cdot, \cdot\rangle, M$ and Ω, and independent of stiffness of function f.

Proof. For $\forall Y_{i}=\left(y_{i 1}^{T}, y_{i 2}^{T}, \cdots, y_{i s}^{T}\right)^{T} \in \Omega^{s}(\mathrm{i}=1,2)$, we have

$$
F\left(Y_{1}\right)-F\left(Y_{2}\right)=H\left(Y_{1}-Y_{2}\right),
$$

where $H=\operatorname{block}-\operatorname{diag}\left(B_{1}, B_{2}, \cdots, B_{s}\right), B_{j}=\int_{0}^{1} f^{\prime}\left(y_{2 j}+\theta\left(y_{1 j}-y_{2 j}\right)\right) d \theta, j=1(1) s$. Let $H_{0}=I_{s} \otimes B_{1}, H_{1}=\operatorname{block}-\operatorname{diag}\left(0, B_{2}-B_{1}, \cdots, B_{s}-B_{1}\right)$, then

$$
H \equiv H_{0}+H_{1}, \forall Y_{1}, Y_{2} \in \Omega^{s}
$$

Therefore,

$$
\begin{equation*}
[H W, W]_{D}=\left[H_{0} W, W\right]_{D}+\left[H_{1} W, W\right]_{D}, \forall Y_{1}, Y_{2} \in \Omega^{s}, \forall W \in C^{m s} \tag{10}
\end{equation*}
$$

Definition:

$$
\begin{equation*}
\nu^{\prime}=\max _{Y_{1}, Y_{2} \in \Omega^{s}} \max _{W \neq 0} \operatorname{Re}\left(\frac{\left[H_{1} W, W\right]_{D}}{[W, W]_{D}}\right), \nu^{\prime \prime}=\max _{Y_{1}, Y_{2} \in \Omega^{s}} \max _{W \neq 0} \operatorname{Re}\left(\frac{\left[-H_{1} W, W\right]_{D}}{[W, W]_{D}}\right) . \tag{11}
\end{equation*}
$$

It is obvious for $\forall Y_{1}, Y_{2} \in \Omega^{s}, \forall W \in C^{m s}$ that

$$
\begin{equation*}
\operatorname{Re}\left[H_{1} W, W\right]_{D} \leq \nu^{\prime}[W, W]_{D}, \operatorname{Re}\left[-H_{1} W, W\right]_{D} \leq \nu^{\prime \prime}[W, W]_{D} \tag{12}
\end{equation*}
$$

For the arbitrarily fixed $Y_{1}, Y_{2} \in \Omega^{s}$, following the proving of the theorem 2, we have

$$
\begin{equation*}
\max _{W \neq 0} R e \frac{\left[H_{0} W, W\right]_{D}}{[W, W]_{D}}=\max _{w \neq 0} R e \frac{\left\langle B_{1} w, w>\right.}{\langle w, w\rangle} \tag{13}
\end{equation*}
$$

It is obvious that

$$
\max _{w \neq 0} R e \frac{\left\langle B_{1} w, w>\right.}{\langle w, w>}=\max _{w \neq 0} \int_{0}^{1} \operatorname{Re} \frac{\left\langle f^{\prime}\left(y_{21}+\theta\left(y_{21}-y_{22}\right)\right) w, w>\right.}{<w, w>} d \theta .
$$

If $f \in \mathcal{F}_{1}(\nu)$, from the lemma, we have

$$
\max _{w \neq 0} R e \frac{\left\langle B_{1} w, w>\right.}{\langle w, w>} \leq \nu
$$

By the above inequality and (13), we have

$$
\begin{equation*}
\operatorname{Re}\left[H_{0} W, W\right]_{D} \leq \nu\|W\|_{D}^{2}, \forall Y_{1}, Y_{2} \in \Omega^{s}, \forall W \in C^{m s} \tag{14}
\end{equation*}
$$

Let $W=Y_{1}-Y_{2}$, it follows from (10),(12) and (14) that

$$
\operatorname{Re}\left[H\left(Y_{1}-Y_{2}\right), Y_{1}-Y_{2}\right]_{D} \leq\left(\nu+\nu^{\prime}\right)\left\|Y_{1}-Y_{2}\right\|_{D}^{2}, \forall Y_{1}, Y_{2} \in \Omega^{s},
$$

this indicates $f(y) \in \mathcal{F}_{2}\left(\nu+\nu^{\prime}\right)$.
If $f \in \mathcal{F}_{2}(\nu)$, from (10),(12) and the lemma, we have

$$
\operatorname{Re}\left[H_{0} W, W\right]_{D}=\operatorname{Re}[H W, W]_{D}+\operatorname{Re}\left[-H_{1} W, W\right]_{D} \leq\left(\nu+\nu^{\prime \prime}\right)\|W\|_{D}^{2}
$$

Using (13), we obtain

$$
\begin{equation*}
<B_{1} w, w>\leq\left(\nu+\nu^{\prime \prime}\right)\|w\|^{2}, \forall y_{11}, y_{21} \in \Omega, \forall w \in C^{m} \tag{15}
\end{equation*}
$$

Let $w=y_{11}-y_{21}, y_{11}=y, y_{21}=z$, we obtain from (14)

$$
<f(y)-f(z), y-z>\leq\left(\nu+\nu^{\prime \prime}\right)\|y-z\|^{2}, \forall y, z \in \Omega
$$

This showes $f(y) \in \mathcal{F}_{1}\left(\nu+\nu^{\prime \prime}\right)$.
Finally, we evaluate ν^{\prime} and $\nu^{\prime \prime}$, from (11), (9) and the definition of H_{1}, it follows that

$$
\begin{aligned}
\max \left(\left|\nu^{\prime}\right|,\left|\nu^{\prime \prime}\right|\right) & \leq \max _{Y_{1}, Y_{2} \in \Omega^{s}}\left\|H_{1}\right\|_{D}=\max _{Y_{1}, Y_{2} \in \Omega^{s}} \max _{Y \neq 0}\left(\frac{\left[H_{1} Y, H_{1} Y\right]_{D}}{[Y, Y]_{D}}\right)^{\frac{1}{2}} \\
& =\max _{Y_{1}, Y_{2} \in \Omega^{s}} \max _{Z \neq 0} \frac{\left(G H_{1} G^{-1} Z, G H_{1} G^{-1} Z\right)^{\frac{1}{2}}}{(Z, Z)^{\frac{1}{2}}} \\
& \leq|G|_{m s}\left|G^{-1}\right|_{m s} \max _{Y_{1}, Y_{2} \in \Omega^{s}}\left|H_{1}\right|_{m s} \\
& =|G|_{m s}\left|G^{-1}\right|_{m s}\left\|Q^{\frac{1}{2}}\right\| \cdot\left\|Q^{-\frac{1}{2}}\right\| \max _{2 \leq j \leq s y_{1 j}, y_{2 j} \in \Omega} \max \left\|B_{j}-B_{1}\right\| \\
& \leq 3|G|_{m s}\left|G^{-1}\right|_{m s}\left\|Q^{\frac{1}{2}}\right\| \cdot\left\|Q^{-\frac{1}{2}}\right\| M \rho(\Omega),
\end{aligned}
$$

where $|\cdot|_{m s}$ denotes the spectral norm in $C^{m s}, \rho(\Omega)$ is the diameter of the set Ω. Obviously $\max \left(\left|\nu^{\prime}\right|,\left|\nu^{\prime \prime}\right|\right) \rightarrow 0$ as $\rho(\Omega) \rightarrow 0$. It follows that when the D is a nondiagonal positive definite matrix, if $\rho(\Omega)$ is very small, then the difference of $\mathcal{F}_{1}(\nu)$ and $\mathcal{F}_{2}(\nu)$ is also very small.

References

[1] K. Dekker, J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential equations, Amsterdam • New York • Oxford, North-Holland, 1984.
[2] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods, Chichester • New York • Brisbane • Toronto • Singapore, John Wiley \& Sons, 1987.
[3] Jiao-xun Kuang, Jia-xiang Xiang, On the D-suitability of implicit Runge-Kutta methods, BIT, 29 (1989), 321-327.
[4] Shou-fu Li, Existence and Uniqueness of solution of a class of operator equations, Sci. Bulle.(in chinese), 37:5 (1992), 388-391.

[^0]: * Received February 27, 1995.
 ${ }^{1)}$ Supported by the national natural science foundation.

