
Journal of Computational Mathematis, Vol.17, No.4, 1999, 379-396.
AN ITERATION METHOD FOR INCOMPRESSIBLEVISCOUS/INVISCID COUPLED PROBLEM VIA A SPECTRALAPPROXIMATION�1)Chuan-ju Xu(Department of Mathematis, Xiamen University, Xiamen 361005, China)AbstratAn eÆient iteration-by-subdomain method (known as the Shwarz alternatingalgorithm) for inompressible visous/invisid oupled model is presented. Appro-priate spetral olloation approximations are proposed. The onvergene analysisshow that the iterative algorithms onverge with a rate independent of the poly-nomial degree used.Key words: Coupled equations, Navier-Stokes equations, Euler equations, Clloa-tion approximation, Shwarz alternating algorithm.1. IntrodutionDomain deomposition methods are useful approximation tehniques to fae om-putational uid dynamis problems, espeially in omplex physial domains and usingparallel omputational environments. They have been �rst employed in �nite di�ereneand �nite element methods. In the ontext of spetral methods, they date from thelate 1970s (see for instane [3℄ and the referenes therein). Earlier appliations of thedomain deomposition methods are related to split the whole domain into subdomainsof simpler shape, and then to redue the given problem to a sequene of subproblemswhih inlude generally same equations. Reently an intensive attention fouses onthe study of possibility of using di�erent type of equations within subdomains wheredi�erent ow haraters are observable. There has been some work, done mainly byQuarteroni and his ollaborators [4, 8℄, on the oupling of ompressible visous andinvisid equations. The oupled problem of inompressible visous and invisid equa-tions has been �rst onsidered by Xu and Maday in [11℄. One of main goals of theseinvestigations was to �nd orret onditions on the interfae separating the visousand invisid subdomains. However eÆient solvers are also of great importane whensolving numerially the full time-dependent oupled equations. We propose in this pa-per an iteration-by-subdomain proedure to solve the oupled problem. The iterationalgorithm, whih involves the suessive resolution of the two subproblems, is a variantof lassial Shwarz alternating methods[9, 4, 8℄. But the present algorithm uses twonews tehniques: �rst the norms of interfae's funtion are de�ned via some interfae� Reeived January 23, 1996.1)This work was supported by Natural Siene Foundation of China under Grant K16017.



380 C.J. XU"lifting" operators, di�erent from the usual L2-norm; seondly, the interfae iterationfuntions are onstruted on weak form, due to the disontinuous veloity/ontinuouspressure formulation in the invisid subdomain (in fat we have not been able to provethe onvergene of the iterative proedure based on strong form). We give exat on-vergene analysis and prove that the iterative algorithms using a spetral olloationapproximation onverge with a rate independent of the polynomial degree used.We end this introdution by introduing some notations. Hereafter we use lettersof boldfae type to denote vetors and vetor funtions. ; 1; 2; � � � are generi posi-tive onstants independent of the disretization parameters. Let 
 to be a bounded,onneted, open subset of R2, with Lipshitz ontinuous boundary �
 (see �g.1);
� and 
+ are two open subsets of 
, with 
� \ 
+ = ;, �
� [ �
+ = �
. Let�k = �
 \ �
k; k = �;+;� = �
� \ �
+ 6= ;. n�;n+ are the unit normals to
�;
+ respetively (so n� = �n+ on �). We notie by C0(�
) the spae of ontinuousfuntions on �
. For any integer m, we notie by Hm(
) the lassial Hilbert Sobolevspaes, provided with the usual norm k � km;
, and also, with the semi-norm j � jm;
. Itis well known that the value on the boundary �
 of all elements of Hm(
) an be givena meaning through a trae operator whih maps linearly and ontinuously Hm(
) ontoa subset of L2(�
), denoted by Hm�1=2(�
), whih is a Hilbert spae for the quotientnorm k � km�1=2;�
. We use also the spae L20(
) de�ned byL20(
) = fv 2 L2(
); Z
 vdx = 0g:
�+ � �� 
� 
+

Fig.1 Computational domainThroughout this paper, with any funtion v de�ned in 
, we assoiate the pair(v�;v+), where v� (resp. v+) denotes the restrition of v to 
� (reps. 
+). Wede�ne (�; �)k; k = �;+ and (�; �)� by(uk;vk)k = Z
k ukvk dx; (�;	)� = Z� �	 d�:The salar produt on L2(
�)2 � L2(
+)2,(u;v) = (u�;v�)� + (u+;v+)+;oinides with the usual one on L2(
)2.



An iteration method for inompressible visous/invisid oupled problem ... 3812. Visous/invisid oupled problemConsider the following oupled problem: for f given in L2(
)2 and �; � positiveonstants, �nd two pairs (u�, u+), (p�, p+) de�ned in (
�, 
+) respetively, suhthat: 8>>><>>>: �u� � �4u� +rp� = f�; r � u� = 0; in 
�;�u+ +rp+ = f+; r � u+ = 0; in 
+;u� = 0; on ��;u+ � n+ = 0; on �+: (2.1)This problem, that will be hereafter referred to as visous/invisid oupled problem,stems from the use of a �nite-di�erene shema in time to the nonlinear Navier-Stokes/Euler oupled equations for inompressible ow[10℄. In this respet, � is thekinemati visosity, � is the inverse of the time-step, and f is the soure terms.Obviously, suitable onditions on the interfae � are required. That an be seen ina trial way that one ondition is needed on � in order to solve the visous problem in
�, and that a further ondition is required on � in order to solve the invisid problemin 
+. In order to �nd it, we apply the well-known vanishing visosity tehnique thatonsists of generating the interfae onditions by a limit proedure on globally visousproblems when visosity vanishes in 
+. It has been proven that the appropriateinterfae onditions are[11℄:8<: � �u��n� � p�n� = p+n+ on �;u� � n� = �u+ � n+ on �: (2.2)The equations (2.1)-(2.2) are well posed in the sense that their weak problem have oneunique solution. That an be done by onsidering the following variational formulation:�nd (u, p) 2 X �M , suh that for all v 2 X, q 2M ,�(u;v) + �(ru�;rv�)� � (p�;r � v�)� + (rp+;v+)+ � (p+n+;v�)� = (f ;v);(r � u�; q�)� � (u+;rq+)+ � (u� � n�; q+)� = 0; (2.3)where X;M are two real Hilbert spaes, de�ned byX = fv;vj
� 2 H1(
�)2;vj
+ 2 L2(
+)2;vj�� = 0g; (2.4)M = fq; qj
� 2 L2(
�); qj
+ 2 H1(
+); Z
 qdx = 0g; (2.5)with respetive normskvkX = kv�k1;
� + kv+k0;
+ ; kqkM = kq�k0;
� + jq+j1;
+ :Theorem 2.1:[11℄ For all � and � positive, problem (2:3) admits one unique so-lution.



382 C.J. XU3. Solution via an iteration-by-subdomain proedureOur goal in this setion is to prove that the solution of the oupled problem (2.1)-(2.2) an be exhibited as a limit of solutions of two subproblems within 
� and 
+respetively.We �rst remark that the pressure (p�; p+) in the oupled problem (2.1)-(2.2) isde�ned up to an additive onstant. In order to �x this onstant, we have hosen thepressure spae M of funtions with zero average in full domain 
 (see (2.5) for thede�nition of M). In fat, this hoie of M is only a matter of onveniene, and we anjust as well takeM = fq; qj
� 2 L2(
�); qj
+ 2 H1(
+); Z
+ qdx = 0g : (3.1)The former has been proven suitable for the global Uwaza algorithm[11℄. The latteris however preferable to the iteration-by-subdomain method, whih will be disussedhereafter.3.1 The iteration-by-subdomain proedureLet u0�;u0+ to be two funtions given in �. We de�ne two sequenes of funtion pair(um� ; pm� )m�1 and (um+ ; pm+ )m�1 by solving for eah m the following invisid problem in
+ ( �um+ +rpm+ = f+ ; r � um+ = 0 ; in 
+;um+ � n+ = 0 ; on �+ ; um+ � n+ = 'm ; on �; (3.2)and then the following visous problem in 
�8<: �um� � �4um� +rpm� = f� ; r � um� = 0 ; in 
�;um� = 0 ; on �� ; � �um��n� � pm�n� = pm+n+ ; on �; (3.3)where 'm = �um�1� � n+j� + (1� �)um�1+ � n+j�, � 2 [0; 1℄ is a relaxation parameter.Remark 3.1: In order for (3:2) to be well-posed, the interfae data of the �rststep, '1, has to be hosen to satisfy the ompatibility ondition:Z� '1d� = 0 :The iterative proedure will be disussed both in the ontinuous ase, and in itsspetral disrete ase (see setion 4). In both ases, we will prove the solvability ofthe subproblems and the onvergene of the iterative proedure. We �rst onsider thesolvability and a priori estimates of the problems (3.2) and (3.3).The variational formulation of (3.2) writes: �nd (um+ ; pm+ ) 2 X+ �M+, suh thatA+[(um+ ; pm+ ); (v+; q+)℄ = (f+;v+)+ � ('m; q+)�;8(v+; q+) 2 X+ �M+; (3.4)



An iteration method for inompressible visous/invisid oupled problem ... 383where X+ = L2(
+)2 ;M+ = H1(
+) \ L20(
+);and A+ is de�ned byA+[(um+ ; pm+ ); (v+; q+)℄ = �(um+ ;v+)+ + (v+;rpm+ )+ � (um+ ;rq+)+:Theorem 3.1: For all f+ 2 L2(
+)2; 'm 2 L2(�), the problem (3:4) admits oneunique solution; furthermore, its solution (um+ ; pm+ ) satis�eskum+k0;
+ + jpm+ j1;
+ � ( 1� + 2)kf+k0;
+ + 2(1 + �)k'mk0;� ; (3.5)partiularly if f+ = 0, thenkum+k0;
+ � 2k'mk0;� ; (3.6)jpm+ j1;
+ � �kum+k0;
+ � 2�k'mk0;� : (3.7)Proof. We note that A+[(um+ ; pm+ ); (v+; q+)℄ is not oerive in spae X+ �M+.Consequently, the well-posedness of problem (3.4) an not be derived by the standardLax-Milgram theorem. However we see that problem (3.4) is equivalent to the saddle-point problem:( �(um+ ;v+)+ + (v+;rpm+ )+ = (f+;v+)+; 8v+ 2 X+;(um+ ;rq+)+ = ('m; q+)�; 8q+ 2M+;whose well-posedness an be proven by applying the saddle-point theory[5℄. The esti-mations (3.5)-(3.7) an also be obtained by using standard estimation tehniques. 2We now onsider problem (3.3). Its variational formulation is: �nd (um� ; pm� ) 2X� �M�, suh thatA�[(um� ; pm� ); (v�; q�)℄ = (f�;v�)� + (pm+n+;v�)�; 8(v�; q�) 2 X� �M�; (3.8)where X� = fv� 2 H1(
�)2;v�j�� = 0g ;M� = L2(
�);and A� is de�ned byA�[(um� ; pm� ); (v�; q�)℄ = �(um� ;v�)�+ �(rum� ;rv�)�� (rv�; pm� )�+ (rum� ; q�)�:The following theorem omes from lassial results on the Stokes equations (see e.g.[2℄). Theorem 3.2: For all f� 2 L2(
�)2 and pm+ 2 L2(�), the problem (3:8) admitsone unique solution; furthermore, its solution (um� ; pm� ) satis�eskum�k1;
� + kpm�k0;
� � 0(kf�k0;
� + kpm+k0;�) ; (3.9)partiularly if f� = 0, thenkum�k1;
� + kpm�k0;
� � 0kpm+k0;� ; (3.10)where 0 depends on � and �.



384 C.J. XU3.2 Convergene of the iteration-by-subdomain proedureWe deal now with the onvergene of the iteration-by-subdomain proedure (3.2)-(3.3).We begin by de�ning the appliation L : L2(�) �! L2(�),L� = u(�)� � n+j� ; 8� 2 L2(�);and then the appliation L� : L2(�) �! L2(�),L�� = �L�+ (1� �)� ; 8� 2 L2(�);where u(�)� solves the problem: (u(�)� ; p(�)� ) 2 X� �M�, suh thatA�[(u(�)� ; p(�)� ); (v�; q�)℄ = (p(�)+ n+;v�)�; 8(v�; q�) 2 X� �M�;where p(�)+ is the solution of the following problem: (u(�)+ ; p(�)+ ) 2 X+ �M+, suh thatA+[(u(�)+ ; p(�)+ ); (v+; q+)℄ = �(�; q+)�; 8(v+; q+) 2 X+ �M+:We de�ne also the \lifting" operator F : 8� 2 L2(�); F� 2 X+ �M+ and F� solves:A+[F�; (v+; q+)℄ = �(�; q+)� 8(v+; q+) 2 X+ �M+ (3.11)Moreover set for �; � 2 L2(�):((�; �)) = A+[F�; F�℄ ; k�k2� = ((�; �)) : (3.12)Lemma 3.1: The bilinear form ((�; �)) de�ned by (3:12) is symmetri, therefore itde�nes a salar produt in L2(�).Proof. Using the notation of (3.11), we have((�; �)) = A+[F�; F�℄ = �(�; p(�)+ )� ;but (3.11) impliates �(u(�)+ ;rp(�)+ )+ = �(�; p(�)+ )� ;furthermore �(u(�)+ ;u(�)+ )+ + (u(�)+ ;rp(�)+ )+ = 0 ;then ((�; �)) = �(u(�)+ ;u(�)+ )+ ;whih gives ((�; �)) = ((�; �)) :It is then immediate that ((�; �)) de�nes a salar produt in L2(�). 2



An iteration method for inompressible visous/invisid oupled problem ... 385Theorem 3.3: There exists �0 2 (0; 1℄, suh that for all � 2 (0; �0), it existsk(�) < 1 suh that kL��k� � k(�)k�k� ; 8� 2 L2(�) : (3.13)Proof. From the symmetry of ((�; �)) we havekL��k2� = �2kL�k2� + 2�(1� �)((L�; �)) + (1� �)2k�k2� : (3.14)Aording to the de�nitions of F and L, it is veri�ed that((L�; �)) = A+[F (L�); F�℄ = A+[F (u(�)� � n+j�); F�℄= �(u(�)� � n+; p(�)+ )� = �(p(�)+ n+;u(�)� )� = �A�[(u(�)� ; p(�)� ); (u(�)� ; p(�)� )℄= ��(u(�)� ;u(�)� )� � �(ru(�)� ;ru(�)� )� � �min(�; �)ku(�)� k21;
� :Using (3.6), we getkL�k2� = A+[F (L�); F (L�)℄ � 4ku(�)� � n�k20;� � 1ku(�)� k21;
� ; (3.15)where 1 depends on the trae mapping onstant. Combining (3.14)-(3.15), we obtainkL��k2� � [1�2 � 2min(�; �)�(1 � �)℄ku(�)� k21;
� + (1� �)2k�k2� : (3.16)Using (3.10), (3.7) and the standard trae's inequalities, we haveku(�)� k21;
� � 20kp(�)+ k20;� � 2jp(�)+ j21;
+� 2�2ku(�)+ k20;
+ = 2�A+[F�; F�℄ = 2�k�k2� ; (3.17)where 2 depends on 20 and the trae mapping onstant. Finally, a ombination of (3.16)and (3.17) giveskL��k2� � [ 12��2 � 22�min(�; �)�(1� �) + (1� �)2 ℄ k�k2� :Let k(�) = q12��2 � 22�min(�; �)�(1 � �) + (1� �)2 ;we obtain (3.13). Furthermore a simple alulation showsk(�) < 1 if and only if 0 < � < �0 = min(1; 2(1 + 2�min(�; �))1 + 22�min(�; �) + 12� ): 2One of the immediate onsequenes of the above theroem is the following orollary.Corollary 3.1: Let (u+; p+); (u�; p�) to be the solution of the oupled equa-tions (2:1) and (2:2); Let (um+ ; pm+ ); (um� ; pm� ) to be the solution of the iteration prob-lems (3:2) and (3:3). Then for all � 2 (0; �0), (um+ ; pm+ ) onverges to (u+; p+) inX+ �M+ and (um� ; pm� ) onverges to (u�; p�) in X� �M� as m!1.



386 C.J. XUProof. We �rst prove'm � u� � n+j� = L�('m�1 � u� � n+j�): (3.18)In fat, by the de�nitions of L� and 'm, we haveL�('m�1 � u� � n+j�)= �L('m�1 � u� � n+j�) + (1� �)('m�1 � u� � n+j�)= �(um�1� � n+j�)� �(u� � n+j�) + (1� �)'m�1 � u� � n+j� + �(u� � n+j�)= �(um�1� � n+j�) + (1� �)(um�1+ � n+j�)� u� � n+j�= 'm � u� � n+j�:The ontration of L� and the equality (3.18) imply'm ! u� � n+ ; as m!1 :But (2.3) and (3.4) giveA+[(um+ � u+; pm+ � p+); (v+; q+)℄ = (u� � n+ � 'm; q+)�; 8(v+; q+) 2 X+ �M+;by the estimation (3.6) and (3.7), we getkum+ � u+k0;
+ + jpm+ � p+j1;
+ � k'm � u� � n+k0;�;thus um+ ! u+ in X+ ; pm+ ! p+ in M+ ; as m!1 :and hene pm+ ! p+ in L2(�) ; as m!1:But (2.3) and (3.8) giveA�[(um� � u�; pm� � p�); (v�; q�)℄ = (pm�n+ � p�n+;v�)�; 8(v�; q�) 2 X� �M�:It follows from the estimation (3.10) thatkum� � u�k1;
� + kpm� � p�k0;
� � kpm+ � p+k0;� ! 0 ;whih gives um� ! u� in X� ; pm� ! p� in M� ; as m!1 : 2



An iteration method for inompressible visous/invisid oupled problem ... 3874. An iteration-by-subdomain proedure via a spetral approximationWe approximate the iteration-by-subdomain problems (3.2) and (3.3) by a spetralolloation method. For the sake of simpliify, we onsider the domain 
 = (�2; 2) �(�1; 1), whih is broken into 
� = (�2; 0) � (�1; 1) and 
+ = (0; 2) � (�1; 1). Weassume also f 2 C0(
)2. Let us �rst introdue some notations. We denote by IPNthe spae of all polynomials of degree � N with respet to eah variable x1; x2. Wethen denote respetively by �Nk and �Nk the sets of (N + 1)2 Legendre-Gauss-Lobattopoints �ijk and (N � 1)2 Legendre-Gauss points �ijk within �
k (see, e.g. [1℄ for the exatde�nitions), �Nk = f�ijk ; �ijk = (�i1;k; �j2;k); 0 � i; j � Ng ; k�;+;�Nk = f�ijk ; �ijk = (�i1;k; �j2;k); 1 � i; j � N � 1g ; k�;+:Let hi1;k; hi2;k; 0 � i � N , denote respetively the Lagrange polynomials assoiatedto the omponents �i1;k and �i2;k. For any points �ijk and �ijk , we denote respetivelyby !ijk and �ijk the orresponding weights in the Gauss-Lobatto and Gauss integrationformula for retangular regions. For any point �ijk in �
k \ �Nk we denote by � ijkthe orresponding weight in the one-dimensional Gauss-Lobatto integration formulareferred to �
k. We de�ne the disrete integration rules for all �;	 2 C0(�
),(�;	)k;GL = NXi=0 NXj=0�(�ijk )	(�ijk )!ijk ; k = �;+ ; (4.1)(�;	)GL = (�;	)�;GL + (�;	)+;GL ; (4.2)(�;	)�;G = N�1Xi=1 N�1Xj=1 �(�ij� )	(�ij� )�ij� ; (4.3)(�;	)�;GL = X�ij�2�\�N� �(�ij�)	(�ij�)� ij� (= X�ij+2�\�N+ �(�ij+)	(�ij+)� ij+ ) : (4.4)We introdue the norms assoiated to (4.1)-(4.4):k�kk;GL = (�;�) 12k;GL ; k = �;+ ; k�kGL = k�k�;GL + k�k+;GL ;k�k�;G = (�;�) 12�;G ; k�k�;GL = (�;�) 12�;GL :The following inequalities are well known (see, e.g. [1℄ p.70-76):k�k2k;GL � k�k20;
k � 9k�k2k;GL ; 8� 2 IPN (
k) ; k = �;+;k�k2�;GL � k�k20;� � 3k�k2�;GL ; 8� 2 IPN (�) ; (4.5)



388 C.J. XUk�k2�;G = k�k20;
� ; 8� 2 IPN�2(
�) :Let X�;N ;M�;N ;X+;N and M+;N to be four spaes:X�;N = fv� 2 IPN (
�)2;v�j�� = 0g ; M�;N = IPN�2(
�);X+;N = IPN (
+)2; M+;N = IPN (
+) \ L20(
+):We now state the spetral olloation approximation to the oupled problem (2.1)-(2.2)as follow: �nd (u�;N ; p�;N ) 2 X�;N �M�;N and (u+;N ; p+;N) 2 X+;N �M+;N , suhthat8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
�u�;N � �4u�;N + INrp�;N = f� at �ij� 2 �N� \ 
�;r � u�;N = 0 at �ij� 2 �N� ;u�;N = 0 at �ij� 2 �N� \ ��;�u+;N +rp+;N = f+ at �ij+ 2 �N+ \ 
+;r � u+;N = 0 at �ij+ 2 �N+ \ 
+;u+;N � n+ = !ij+� ij+ r � u+;N at �ij+ 2 �N+ \ �+;u+;N � n+ � u�;N � n+ = !ij+� ij+ r � u+;N at �ij+ 2 �N+ \ �;� �u�;N�n� � p�;Nn� � p+;Nn+ = !ij+� ij+ R at �ij� 2 �N� \ �;

(4.6)
where IN noties the interpolation operator from the (N � 1)2 Gauss points �ij� to(N + 1)2 Gauss-Lobatto points �ij� , i.e. (IN�)(�ij� ) = N�1Xl;m=1hi1;�(� l1;�)hj2;�(�m2;�)�(� lm� ).R is the residue duo to disrete integration by part, de�ned byR = �u�;N � �4u�;N + INrp�;N � f�:It is veri�ed that the olloation equations (4.6) is equivalent to the following variationalformulation:�(uN ;vN )GL + �(ru�;N ;rv�;N )�;GL � (p�;N ;r � v�;N )�;G+(rp+;N ;v+;N )+;GL � (p+;N � n+;v�;N )�;GL = (f ;vN )GL;�(r � u�;N ; q�;N )�;G + (u+;N ;rq+;N)+;GL � (u�;N � n+; q+;N )�;GL = 0;8vN 2 X�;N �X+;N ; 8qN 2M�;N �M+;N ; (4.7)therefore the well-posedness of the problem (4.6) an be proved, as in the di�erentialase, by applying the standard saddle-point theory. We refer to [11℄ for the detailedproof and error estimations to the disrete solutions (uN ; pN ).Remark 4.1: We hose the weak form of the interfae onditions in (4.6) beausethis suits better the numerial analysis. The strong form is obtained just by replaingthe right-hand-sides of these formulas with zero. The two forms are equivalent fromthe point of view of auray. We reall that the quotient !ij+� ij+ is proportional to 1N2(see for instane [1℄), hene the weak form enfores the interfae onditions up to theresidue of the equations times a onstant tending to zero as N !1.



An iteration method for inompressible visous/invisid oupled problem ... 3894.3 The disrete iteration-by-subdomain proedureWe propose an iterative proedure to solve the oupled problem (4.6). We de�ne twosequenes (um+;N ; pm+;N )m�1 and (um�;N ; pm�;N)m�1 suh that (um+;N ; pm+;N ) 2 X+;N �M+;N , (um�;N ; pm�;N ) 2 X�;N �M�;N satisfying the disrete invisid problem:8><>: �(um+;N ;vm+;N )+;GL + (rpm+;N ;vm+;N )+;GL = (f+;vm+;N )+;GL;(rqm+;N ;um+;N )+;GL = ('mN ; qm+;N )�;GL;8(vm+;N ; qm+;N ) 2 X+;N �M+;N : (4.8)and the disrete visous problem8>>><>>>: �(um�;N ;vm�;N )�;GL +�(rum�;N ;rvm�;N )�;GL � (pm�;N ;r � vm�;N)�;G= (pm+;Nn+;vm�;N )�;GL + (f�;vm�;N )�;GL;(qm�;N ;r � um�;N )�;G = 0;8(vm�;N ; qm�;N ) 2 X�;N �M�;N : (4.9)where 'mN ;m � 1 is de�ned by'mN = �um�1�;N � n+j� + (1� �)(um�1+;N � n+ � !ij+� ij+ r � um�1+;N )j� ; � 2 [0; 1℄ : (4.10)From the seventh equation of (4.6), it is immediate that'mN = �um�1�;N � n+j� + (1� �)'m�1N : (4.11)Remark 4.2: Here again, in order for (4.8) to be well posed, '1N is required tosatisfy the disrete ompatibility ondition:X�ij+2�\�N+ '1N (�ij+)� ij+ = 0 :Remark 4.3: The use of di�erent degrees of polynomial between the veloity andthe pressure in the visous part (Stokes problem) is due to the well known Babu�ska-Brezzi's inf-sup ondition. In fat, there exists many possible hoies for the disreteveloity-pressure spae pairs (see, e.g. [6, 1℄). The one we used has been referredgenerally to as IPN � IPN�2 method. The spetral approximation of the invisid partis disussed in [7℄. It was shown that the disrete spaes IPN is suitable both for theveloity funtion and for the pressure funtion.In order to prove the onvergene of the disrete iteration-by-subdomain proe-dure (4.8)-(4.10), we need the following stability results.Theorem 4.1: The disrete problem (4.8) admits one unique solution (um+;N ; pm+;N );furthermore, (um+;N ; pm+;N ) satis�eskum+;Nk+;GL + krpm+;Nk+;GL � ( 1� + 2)kf+k+;GL + 2(1 + �)k'mNk�;GL ; (4.12)



390 C.J. XUespeially if f+ = 0, thenkum+;Nk+;GL � 2k'mNk�;GL ; (4.13)krpm+;Nk+;GL � �kum+;Nk+;GL � 2�k'mNk�;GL : (4.14)Proof. The proof of the existene and the uniqueness of problem (4.8) is analo-gous to the one for the di�erential problem (theorem 3.1). We ignore the details, butgive the proof of the estimations (4.12)-(4.14).Let u� 2 X+;N to be the polynomial whih satis�es(rqm+;N ;u�)+;GL = ('mN ; qm+;N)�;GL ; 8qm+;N 2M+;N ;and ku�k+;GL � k'mNk�;GL: (4.15)(the existene of suh a polynomial is guaranteed by the inf-sup ondition[1, 7℄). Letz = um+;N � u�, then z satis�es8><>: �(z;vm+;N )+;GL + (rpm+;N ;vm+;N )+;GL = (f+;vm+;N )+;GL � �(u�;vm+;N )+;GL;(rqm+;N ; z)+;GL = 0;8(vm+;N ; qm+;N) 2 X+;N �M+;N : (4.16)From (4.16), we get �(z; z)+;GL = (f+; z)+;GL � �(u�; z)+;GL;whih gives �kzk+;GL � kf+k+;GL + �ku�k+;GL; (4.17)we derive from (4.15) and (4.17),kum+;Nk+;GL � kzk+;GL + ku�k+;GL � 1�kf+k+;GL + 2k'mNk�;GL: (4.18)Taking vm+;N = rpm+;N in the �rst equation of (4.8), we have�(um+;N ;rpm+;N)+;GL + krpm+;Nk2+;GL = (f+; pm+;N )+;GL; (4.19)Finally, (4.12)-(4.14) follow from (4.18) and (4.19). 2Theorem 4.2:[1℄ The disrete problem (4:9) admits one unique solution (um�;N ; pm�;N );furthermore, (um�;N ; pm�;N ) satis�eskum�;Nk�;GL + krum�;Nk�;GL � 0(kf�k�;GL + kpm+;Nk�;GL);kpm�;Nk�;G � �N (kf�k�;GL + kpm+;Nk�;GL);espeially if f� = 0, thenkum�;Nk�;GL + krum�;Nk�;GL � 0kpm+;Nk�;GL; (4.20)kpm�;Nk�;G � �Nkpm+;Nk�;GL:where 0 is a onstant dependent on � and �, but independent on N . �N behaves asN1=2.



An iteration method for inompressible visous/invisid oupled problem ... 3914.4 Convergene of the iteration-by-subdomain proedureWe prove now the onvergene of the disrete iteration-by-subdomain proedure (4.8)-(4.10). We begin by de�ning a disrete interfae operator LN : IPN (�) �! IPN (�),LN� = u(�)�;N � n+j� ; 8� 2 IPN (�);and then the operator LN;� : IPN (�) �! IPN (�),LN;�� = �L�+ (1� �)� ; 8� 2 IPN (�); (4.21)where u(�)�;N solves the disrete problem: (u(�)�;N ; p(�)�;N) 2 X�;N �M�;N , suh that( �(u(�)�;N ;v�)�;GL + �(ru(�)�;N ;rv�)�;GL � (p(�)�;N ;r � v�)�;G = (p(�)+;Nn+;v�)�;GL;(q�;r � u(�)�;N )�;G = 0; 8(v�; q�) 2 X�;N �M�;N ; (4.22)where p(�)+;N is the solution of the following disrete problem: (u(�)+;N ; p(�)+;N ) 2 X+;N �M+;N , suh that( �(u(�)+;N ;v+)+;GL + (rp(�)+;N ;v+)+;GL = 0;(rq+;u(�)+;N )+;GL = (�; q+)�;GL; 8(v+; q+) 2 X+;N �M+;N : (4.23)Let A+;N denote the bilinear form: 8(u+; p+);8(v+; q+) 2 X+;N �M+;N ,A+;N [(u+; p+); (v+; q+)℄ = �(u+;v+)+;GL + (rp+;v+)+;GL � (rq+;u+)+;GL;then problem (4.23) is equivalent to: �nd (u(�)+;N ; p(�)+;N ) 2 X+;N �M+;N , suh thatA+;N [(um+;N ; pm+;N ); (v+; q+)℄ = �(�; q+)�;GL; 8(v+; q+) 2 X+;N �M+;N :(4.24)We de�ne now the disrete \lifting" operator FN : 8� 2 IPN (�),FN� = (u(�)+;N ; p(�)+;N );solution of the problem (4.24). We de�ne furthermore the salar produt, and theassoiated norm:((�; �))N = A+;N [FN�; FN�℄ ; k�k2�;N = ((�; �))N : (4.25)Theorem 4.3: There exists �0 2 (0; 1℄, suh that for all � 2 (0; �0), it existsk(�) < 1 suh that kL�;N�k�;N � k(�)k�k�;N ; 8� 2 IPN (�) : (4.26)



392 C.J. XUProof. It follows from the de�nition of LN and FN that((LN�; �))N = A+;N [FN (LN�); FN�℄ = A+;N [FN (u(�)�;N � n+j�); FN�℄= �(u(�)�;N � n+; p(�)+;N )�;GL = �(p(�)+;Nn+;u(�)�;N )�;GL= ��(u(�)�;N ;u(�)�;N )�;GL � �(ru(�)�;N ;ru(�)�;N )�;GL� �1(ku(�)�;Nk2�;GL + kru(�)�;Nk2�;GL) ; (4.27)where 1 depends on �; �.By the de�nition (4.25) of k � k�;N , the estimation (4.13), and the trae's inequalities,it an be veri�ed thatkLN�k2�;N = A+;N [FN (LN�); FN (LN�)℄ � 2ku(�)�;N � n�k2�;GL� 2(ku(�)�;Nk2�;GL + kru(�)�;Nk2�;GL) : (4.28)where 2 depends on the trae's mapping onstant.From the de�nition (4.21) of L�;N , and using (4.27) and (4.28), we getkL�;N�k2�;N = �2kLN�k2�;N + 2�(1� �)((LN�; �)) + (1� �)2k�k2�;N� [2�2 � 21�(1� �)℄(ku(�)�;Nk2�;GL+kru(�)�;Nk2�;GL) + (1� �)2k�k2�;N :(4.29)But (4.20) and (4.14) implyku(�)�;Nk2�;GL + kru(�)�;Nk2�;GL� 20kp(�)+;Nk2�;GL � krp(�)+;Nk2+;GL ( using R
+ p(�)+;Ndx = 0 )� �2ku(�)+;Nk2+;GL = �k�k2�;N : (4.30)where  depends on 20 and the trae's mapping onstant.Combining (4.29) and (4.30), we obtainkL�;N�k2�;N � [ 2��2 � 21��(1� �) + (1� �)2 ℄ k�k2�;N ; (4.31)By taking �0 = min(1; 2(1 + 1�)1 + 21�+ 2�);it an be veri�ed that for all 0 < � < �0, holdsk(�) def= q2��2 � 21��(1� �) + (1� �)2 < 1:and kL�;N�k�;N � k(�)k�k�;N ; 8� 2 IPN (�) : 2



An iteration method for inompressible visous/invisid oupled problem ... 393Remark 4.4: The optimal value of � is �� = 1 + 1�1 + 21�+ 2� , whih gives aontration onstant k(��) = s 2�� (1�)21 + 21�+ 2� .We an now state the onvergene result for the disrete iteration-by- subdomainproedure (4.8)-(4.10).Corollary 4.1: Let (u+;N ; p+;N ); (u�;N ; p�;N ) to be the solution of the disreteoupled equations (4:6); Let (um+;N ; pm+;N ); (um�;N ; pm�;N ) to be the solution of the disreteiteration problems (4:8) and (4:9). Then for all � 2 (0; �0), (um+;N ; pm+;N ) onverges to(u+;N ; p+;N ) in X+ �M+ and (um�;N ; pm�;N ) onverges to (u�;N ; p�;N ) in X� �M� asm!1.Proof. The orollary is an analogy of the orollary 3.1. We begin the proof byverifying 'mN � u�;N � n+j� = L�;N('m�1N � u�;N � n+j�): (4.32)In fat, by the de�nitions of L�;N and 'mN , we haveL�;N ('m�1N � u�;N � n+j�)= �LN ('m�1N � u�;N � n+j�) + (1� �)'m�1N � (1� �)(u�;N � n+j�)= �(um�1�;N � n+j�)� �(u�;N � n+j�) + (1� �)'m�1N � u�;N � n+j� + �(u�;N � n+j�)= �(um�1�;N � n+j�) + (1� �)'m�1N � u�;N � n+j�= 'mN � u�;N � n+j� ( by (4:11)):The ontration of L�;N implies'mN ! u�;N � n+ ; as m!1 : (4.33)Combining (4.7) and (4.8) givesA+;N [(um+;N � u+;N ; pm+;N � p+;N ); (v+; q+)℄ = (u�;N � n+ � 'mN ; q+)�;8(v+; q+) 2 X+;N �M+;N : (4.34)by the estimations (4.13) and (4.14), we getkum+;N � u+;Nk+;GL + krpm+;N �rp+;Nk+;GL � 2(1 + �)k'mN � u�;N � n+k�;GL(4.35)then (4.33) and (4.5) implyum+;N ! u+;N in X+ ; pm+;N ! p+;N in M+ ; as m!1 : (4.36)and hene pm+;N ! p+;N in L2(�) ; as m!1: (4.37)



394 C.J. XUAnother part, ombining (4.7) and (4.9) gives8><>: �(um�;N � u�;N ;v�)�;GL + �(r(um�;N � u�;N);rv�)�;GL�(pm�;N � p�;N ;r � v�)�;G = ((pm+;N � p+;N)n+;v�)�;GL;(q�;r � (um�;N � u�;N ))�;G = 0; 8(v�; q�) 2 X�;N �M�;N :Applying the estimations (4.13) and (4.14), we getkum�;N � u�;Nk�;GL + krum�;N �ru�;Nk�;GL + kpm�;N � p�;Nk�;G� �Nkpm+;N � p+;Nk0;�;we derive from (4.37) thatum�;N ! u�;N in X� ; pm�;N ! p�;N in M� ; as m!1 : 25. Generalization to the oupled Navier-Stokes/Euler equationsWe generalize the oupled model (2.1) to the oupled problem between the Navier-Stokes equations and the Euler equations:8>>>>>><>>>>>>: �u��t + (u� � r)u� � �4u� +rp� = f� in Q�;�u+�t + (u+ � r)u+ +rp+ = f+ in Q+;u�(0) = u0� in 
�; u+(0) = u0+ in 
+;u�j�� = 0 ; u+ � n+j�+ = 0 (5.1)with the inompressibilityr�u = 0, where Qk = 
k�(0; T );�k = �k�(0; T ); k = �;+,and u0�;u0+ are two funtions given. The non-linear term is treated by the method ofharateristis. That is, we rewrite (5.1) under the form8>>>>>><>>>>>>: Du�Dt � �4u� +rp� = f� in Q�;Du+Dt +rp+ = f+ in Q+;u�(0) = u0� in 
�; u+(0) = u0+ in 
+;u�j�� = 0 ; u+ � n+j�+ = 0 ; (5.2)where D=Dt is the total derivative in the diretion u. We disretize (5.2) in time byan impliit sheme:8><>: �un+1� � �4un+1� +rpn+1� = fn+1� + �un�(�n(�)) in 
�;�un+1+ +rpn+1+ = fn+1+ + �un+(�n(�)) in 
+;un+1� j�� = 0 ; un+1+ � n+j�+ = 0 ;



An iteration method for inompressible visous/invisid oupled problem ... 395where � = 14t with 4t the time step, and �n(x) = �(x; (n+1)4t; n4t) is the solutionof d�d� = un(�) ; �(x; (n+ 1)t; (n+ 1)t) = x : (5.3)The time sheme is unonditionally stable, and eah time iteration requires a oupledvisous/invisid resolution plus a transport of the previous solution on the harater-istis.We note that, on the interfae �, we have u� � n� = u+ � n�. Thus (5.3) an besolved globally in all domain 
 without any additional interfae onditions on �.6. Conluding remarks1. We have presented an eÆient iteration-by-subdomain algorithm to solve numer-ially the visous/invisid oupled equations. We have given the detailed proof ofthe onvergene results. The key to the suess is the de�nitions of the interfaeiteration funtion 'mN in (4.10) and the salar produt ((�; �))N given in (4.25). Itis ruial to get from (4.27) that ((LN�; �))N is non-positive. We have also pre-sented the idea to generalize the present oupled model and numerial algorithmto the full Navier-Stokes/Euler oupling.2. It is seen, from the proof of theorem 4.3, that the ontration onstant k(�) isindependent on the hoies of the pressure disrete spae M�;N in the visouspart (see remark 4.3). This means that the onvergene rate of the iteration-by-subdomain proedure is independent on the hoies of M�;N . Hene the hoieof M�;N an be made by its proper onsiderations.3. We have obtained (see remark 4.4) the optimal value �� of the relaxation param-eter. However the exat estimations of the onstants ; 1 and 2 in (4.31) are nottrivial. In a future work, we plan to investigate numerially the dependene ofonvergene rate on �. Referenes[1℄ Bernardi C., Maday Y., Approximations spetrales de probl�emes aux limites ellip-tiques, Springer-Verlag, Paris, Berlin, Heidelberg, New-York, Londres, Tokyo, Hong-Kong,Barelone, Budapest, 1992.[2℄ Begue C., Cona C., Murat F., Pironneau O., Les �equations de Stokes et de Navier-Stokesave des onditions aux limites sur la pression, Coll�ege de Frane Seminar, IX, 1988.[3℄ Canuto C., Hussaini M.Y., Quarteroni A., Zang Z.A., Spetral methods in uid dynamis,Springer, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1987.[4℄ Gastaldi F., Quarteroni A., Sahi Landriani G., E�etive methods for the treatment ofinterfaes separating equations of di�erent harater, in Computers and experiments inuid ow, G.M.Carlomagno and C.A.Brebbia (ed.), Springer-Verlag, Berlin, Heidelberg,New-York, 1989, 65-74.
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