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ARNOLDI TYPE ALGORITHMS FOR LARGE UNSYMMETRICMULTIPLE EIGENVALUE PROBLEMS�1)Zhong-xiao Jia(Department of Applied Mathematis, Dalian University of Tehnology, Dalian 116024, China)AbstratAs is well known, solving matrix multiple eigenvalue problems is a very diÆulttopi. In this paper, Arnoldi type algorithms are proposed for large unsymmetrimultiple eigenvalue problems when the matrix A involved is diagonalizable. Thetheoretial bakground is established, in whih lower and upper error bounds foreigenvetors are new for both Arnoldi's method and a general perturbation prob-lem, and furthermore these bounds are shown to be optimal and they generalize alassial perturbation bound due to W. Kahan in 1967 for A symmetri. The algo-rithms an adaptively determine the multipliity of an eigenvalue and a basis of theassoiated eigenspae. Numerial experiments show reliability of the algorithms.Key words: Arnoldi's proess, Large unsymmetri matrix, Multiple eigenvalue,Diagonalizable, Error bounds 1. IntrodutionThe Lanzos algorithm[20℄ is a very powerful tool for extrating a few extremeeigenvalues and assoiated eigenvetors of large symmetri matries[4;5;22℄. Sine the1980's, onsiderable attention has been paid to generalizing it to large unsymmetriproblems. One of its generalizations is Arnoldi's method[1;25℄. It an be used to omputeouter part of the spetrum and orresponding eigenvetors[10;11;24;25;26;28℄. In orderto improve overall performane, Saad[27℄ suggested to use it in onjuntion with theChebyshev iteration. There are other variants available; see, e.g. [12, 13, 16, 17, 19,24, 28℄.To apply Arnoldi's algorithm and its variants to pratial problems, one must a-ount for the following diÆulty[2;3;6;8℄:DiÆulty� Multiple eigenvalues are a ommon ourrene.In the symmetri ase, Parlett and Sott[21℄ used the Lanzos algorithm with se-letive orthogonalization to solve DiÆulty�. Their algorithm maintains the semi-orthogonality among the Lanzos vetors so as to avoid the ourrene of spurious� Reeived April 27, 1995.1) Supported by the China State Major Key Projet for Basi Researhes, the National NaturalSiene Foundation of China, the Dotoral Program of the China State Eduational Commission, theFoundation for Exellent Young Sholars of the Ministry of Eduation, the Foundation of ReturnedSholars of China and the Natural Siene Foundation of Liaoning Provine.



258 Z.X. JIAeigenvalues and determines the multipliities of the required eigenvalues and the as-soiated eigenspaes by restarting. The key idea is that, before restarting, a newinitial vetor is orthogonalized with respet to all the onverged eigenvetors until theeigenspae assoiated with a multiple eigenvalue is found.In the unsymmetri ase, the situation beomes muh more ompliated. The strat-egy of restarting[21℄ annot solve DiÆulty� sine the eigenvetors of unsymmetri ma-tries are, in general, not mutually orthogonal just as those of symmetri matriesare. The mutual orthogonality of eigenvetors forms the basis of the algorithm in [12℄.Theoretially speaking, a simple simulation of the idea used in [21℄ suggests that be-fore restarting we use Arnoldi's method with a new initial vetor orthogonal to all theleft eigenvetors of the matrix A assoiated with all the onverged right eigenvetors.Proeeding in suh a way, we an �nd the multipliities of the required eigenvaluesand determine the assoiated eigenspaes. However, an easy analysis[23℄ shows thatArnoldi's method is ineÆient for omputing the left eigenvetors of A. Of ourse,one an apply Arnoldi's method to AH , the onjugate transpose of A, to get the lefteigenvetors of A, while this doubles the amount of omputation.In order to deal with DiÆulty�, generalized blok Lanzos methods are studied in[10, 14℄. They an be used to ompute outer part of the spetrum and orrespondingeigenvetors, up to a multipliity equal to blok size when A is diagonalizable. However,if the multipliities of the required eigenvalues are bigger than blok size, the blokalgorithms themselves are not able to determine the multipliity of an eigenvalue andthe assoiated eigenspae. Therefore, to be able to detet the multipliity, the blokalgorithms have to ombine with other tehniques in pratie.In this paper, we design Arnoldi type algorithms for solving DiÆulty� when A isdiagonalizable. As is seen from [10, 14℄, the proposed idea is important not only inits own right but also indispensable for the blok Arnoldi method when blok size issmaller than or equal to the multipliities of the required eigenvalues.In Setion 2, we introdue the notation used and go through the underlying Arnoldialgorithm; in Setion 3, assuming that A is diagonalizable, we present the theoretialbakground of the Arnoldi type algorithms to be proposed in Setion 4. Some ofthe results, i.e. theoretial error bounds for eigenvetors, are new for both Arnoldi'smethod and a general perturbation problem; in Setion 4 we present two Arnoldi typealgorithms to solve DiÆulty�; in Setion 5, we disuss some implementations of thealgorithms; in Setion 6, we report three numerial examples to show reliability of thealgorithms, followed by some onluding remarks in Setion 7.2. The Underlying Arnoldi Algorithm2.1. NotationThroughout the paper, assume that A is an N � N real diagonalizable matrix,N � 1 and it has M distint eigenvalues �i, where the multipliities of �i are di, i =1; 2; � � � ;M . Under this assumption let Pi be the di-dimensional eigenspae assoiatedwith �i and the olumns of �idi = ('i1; 'i2; � � � ; 'idi) form a basis of Pi, where k'ijk = 1



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 259and k � k denotes the 2-norm. Let 	idi = ( i1;  i2; � � � ;  idi), where  ij are the lefteigenvetors assoiated with �i suh that  Hik'ij = Ækj, k; j = 1; 2; � � � ; di. Here thesupersript H denotes the onjugate transpose of a matrix, a vetor and a salar andÆkj the Kroneker delta. We want to ompute a few, say r, speial eigenvalues, e.g. those�i with largest (smallest) real parts or largest moduli, and determine the orrespondingmultipliities di and bases of Pi, i = 1; 2; � � � ; r.We denote by Km(v;A) the Krylov subspae spanned by v;Av; � � � ; Am�1v, by �m(v)the orthogonal projetor onto Km(v;A) and by �(x; y) the aute angle between twononzero vetors x and y. Let Pi = diXj=1'ij Hij be the eigenprojetors assoiated with �i,i = 1; 2; � � � ;M .2.2. The Underlying Arnoldi AlgorithmA basi Arnoldi proess an be desribed as follows.Algorithm 1. Arnoldi's proess1. Start: Choose a real initial vetor v1, kv1k = 1, and the steps m of Arnoldi'sproess.2. Iterate: For l = 1; 2; � � � ;m do2.1. w = Avl.2.2. For j = 1; 2; � � � ; l dohjl = vHj Avl,w = w � hjlvj .2.3. hl+1l = kwk.2.4. vl+1 = w=hl+1l.This algorithm generates an orthonormal basis fvlgm1 of Km(v1; A). De�ne thematrix Vm = (v1; v2; � � � ; vm). In the basis fvlgm1 , the restrition of A to Km(v1; A)is represented by an upper Hessenberg matrix Hm = V Hm AVm with the entries hjlomputed by Algorithm 1. The m eigenvalues �(m)i , alled the Ritz values of A inKm(v1; A), of Hm are used to approximate m eigenvalues of A, and the orrespondingapproximate eigenvetors '(m)i , alled the Ritz vetors of A in Km(v1; A), are omputedby '(m)i = Vmy(m)i ; (1)where y(m)i are eigenvetors of Hm assoiated with �(m)i .How good some approximations are an be measured in terms of an a-posterioribound kr(m)i k = k(A� �(m)i I)'(m)i k = hm+1m j eHmy(m)i j; (2)in whih em = (0; 0; � � � ; 0; 1)H . (2) an be used as a stopping riterion whih heksheaply the size of the residual without omputing '(m)i by (1).In terms of the a-priori theoretial analysis[11;12;14;25;26℄, kr(m)i k has been proved toonverge to zero as m inreases if the behavior of Ritz pairs �(m)i ; '(m)i , i = 1; 2; � � � ;m is



260 Z.X. JIAnot too bad[17℄, and it usually tends to zero �rst for the right-most and left-most eigen-values and the orresponding eigenvetors. If the eigenproblem of A is ill onditioned,m might be quite large in order to make Algorithm onverge.Sine Algorithm 1 has to save all the vetors vl generated previously and its amountof omputation inreases quadratially with steps, the above Arnoldi algorithm usuallyhas to be used iteratively in pratie. In order to improve eÆieny, an iterative Arnoldialgorithm an be aelerated by the Chebyshev iteration[9;27℄. The purpose of using theChebyshev iteration is to amplify the omponents of an initial vetor in the diretionsof the required eigenvetors. The resulting algorithm is alled the Arnoldi-Chebyshevalgorithm. 3. Theoretial BakgroundWe now establish the theoretial bakground of Arnoldi type algorithms for solvingDiÆulty� when A is diagonalizable.Let us hoose a set of vetors v(1)1 ; v(2)1 ; � � � ; v(k)1 . Then eah v(j)1 ; 1 � j � k, an beexpanded in the eigenspaes Pi, i = 1; 2; � � � ;M asv(j)1 =bj1'i1 + bj2'i2 + � � � + bjdi'idi + u(j)i ; (3)u(j)i 2P1 � � � � � Pi�1 �Pi+1 � � � � � PM ; 1 � j � k; (4)where � denotes the diret sum.Let Bk = 0BBB� b11 b12 � � � b1dib21 b22 � � � b2di... ... � � � ...bk1 bk2 � � � bkdi 1CCCA (5)Assume that the matrix Bk is row full rank for k � di. Obviously, Bk is row rankde�ient when k > di. We rewrite the above v(j)1 asv(j)1 = �j ~'ij + u(j)i ; u(j)i 2 P1 � � � � � Pi�1 �Pi+1 � � � � � PM ; (6)where ~'ij , j = 1; 2; � � � ; k are also unit norm eigenvetors assoiated with �i and �jnormalizing fators. Under the assumption on Bk, just as f'ijgdij=1, f ~'ijgdij=1 is also abasis of Pi, and for k > di, ~'ij , j = di + 1; � � � ; k belong to the span of f ~'ijgdij=1.De�ne ~�ik = ( ~'i1; ~'i2; � � � ; ~'ik) and ~	ik = ( ~ i1; ~ i2; � � � ; ~ ik), where ~ ij are the lefteigenvetors assoiated with �i suh that ~ Hik ~'ij = Ækj.Following a result of [25℄, we have the following a-priori residual bound.Theorem 1. Let fm(v(j)1 ) = k�m(v(j)1 )A(I � �m(v(j)1 ))k:Then for the eigenpairs �i, ~'ij, 1 � i �M , 1 � j � k, we havek(Am(v(j)1 )� �iI) ~'ijk � q2m(v(j)1 )+ j �i j2k(I � �m(v(j)1 )) ~'ijk; (7)



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 261where Am(v(j)1 ) = �m(v(j)1 )A�m(v(j)1 ).Therefore, whether some of the eigenpairs �(m)ij ; ~'(m)ij , i = 1; 2; � � � ;m, j = 1; 2; � � � ; kof Am(v(j)1 ) are good approximations to �i; ~'ij or not heavily depends on the behaviorof k(I ��m(v(j)1 )) ~'ijk. It is shown[10;14;25;26℄ that the right-hand side of (7) approaheszero as m inreases, usually �rst for outer part of the spetrum. Furthermore, it isshown[10;14;17℄ that some Ritz pairs obtained by Arnoldi's method starting with v(j)1 ,1 � j � k onverge to outer part of the spetrum and orresponding eigenvetorsprovided the eigenproblem of Am(v(j)1 ) is not too ill onditioned and the right-handside of (7) tends to zero. Aording to the previous statement, we an �nd a basis ofPi approximately provided di initial vetors v(j)1 are hosen suh that the assumptionon Bk of (5) is satis�ed. For k > di, ~'(m)ij , j = di + 1; � � � ; k will approximately belongto the span of f ~'(m)ij gdij=1.More onisely, we an determine the multipliity di and a basis of Pi based onthe following strategy: First, hoose an initial vetor v(1)1 , and use Arnoldi's method toompute a onverged eigenpair �(m)i1 ; ~'(m)i1 to �i; ~'i1. Then, start with a seond initialvetor v(2)1 , and use Arnoldi's method to ompute a onverged eigenpair �(m)i2 ; ~'(m)i2 to�i; ~'i2. Having ~'(m)i1 ; ~'(m)i2 , we deide whether or not the matrix ~�(m)i2 = ( ~'(m)i1 ; ~'(m)i2 )is olumn rank approximately de�ient. If not, this shows that di � 2, and we takethe olumns of ~�(m)i2 as a basis of Pi; otherwise, di = 1 and ~'(m)i1 is a basis of Pi. Westop, else ontinue restarting with a new initial vetor v(3)1 . Proeeding this way untilat some (k + 1)th restarting, we have that the matrix ~�(m)ik = ( ~'(m)i1 ; ~'(m)i2 ; � � � ; ~'(m)ik )is olumn full rank, but ~�(m)ik+1 = ( ~'(m)i1 ; ~'(m)i2 ; � � � ; ~'(m)ik+1) is approximately olumn rankde�ient. This means that di = k and the olumns of ~�(m)ik are an approximate basisof Pi.To give a quantitative analysis for the above assertion, we have to study error boundsfor the approximate eigenpairs �(m)ij ; ~'(m)ij , i = 1; 2; � � � ; r, j = 1; 2; � � � ; k, in terms ofthe a-posteriori omputable residual norms k~r(m)ij k = k(A � �(m)ij I) ~'(m)ij k. They an berewritten as (A� ~r(m)ij ~'(m)Hij ) ~'(m)ij = �(m)ij ~'(m)ij :Thus, the approximate eigenpairs �(m)ij ; ~'(m)ij ; i = 1; 2; � � � ; r, j = 1; 2; � � � ; k are theexat eigenpairs of the matries (A � ~r(m)ij ~'(m)Hij ), in whih the perturbation matriesare ~r(m)ij ~'(m)Hij . We then have the following result [30, p.69℄.Theorem 2. Assume k~r(m)ij k, 1 � i � r, 1 � j � k, to be small enough. Thenj�i � �(m)ij j � k ~ ijk � k~r(m)ij k+O(k~r(m)ij k2): (8)From Theorem 2, we see that if �i is not very ill onditioned, i.e. k ~ ijk is not verylarge, then �(m)ij is a good approximation to �i provided that k~r(m)ij k is small, so that�(m)ij obtained by di�erent v(j)1 are numerially equal for the same i.



262 Z.X. JIABefore deriving error bounds for approximate eigenvetors ~'(m)ij , we need the fol-lowing lemma[10;11℄.Lemma 1. Let x1; x2; � � � ; xs be s vetors and �1; �2; � � � ; �s be s salars, and de�nethe matrix X = (x1; x2; � � � ; xs). Then sXj=1�jxj � 1infD diag. �(XD) min1�j�s j �j j  sXj=1xj ; (9)where D's are s � s nonsingular diagonal matries and �(XD) denotes the onditionnumber of XD, whih equals the ratio of the largest and smallest singular values ofXD.Theorem 3. Let �(m)ij ; ~'(m)ij be a Ritz pair of A in Km(v(j)1 ; A) and g(j)i;m = minl 6=ij �l � �(m)ij j. De�ne the matrixX(m)ij = (P1 ~'(m)ij ; � � � ; Pi�1 ~'(m)ij ; Pi+1 ~'(m)ij ; � � � ; PM ~'(m)ij ):Then sin �( ~'ij; ~'(m)ij ) � k(I � Pi) ~'(m)ij k � infDdiag:�(X(m)ij D)(1 + kPik)g(j)i;m k~r(m)ij k: (10)If A is symmetri, thensin �( ~'ij ; ~'(m)ij ) = k(I � Pi) ~'(m)ij k � k~r(m)ij kg(j)i;m : (11)Proof. It is well known that PlPi = ÆilPl; (12)MXl=1 Pl = I: (13)Hene we have(A� �(m)ij I) ~'(m)ij = (A� �(m)ij I) MXl=1 Pl ~'(m)ij = MXl=1(�l � �(m)ij )Pl ~'(m)ij :Premultiplying the two hand sides of the above relation by I � Pi, we obtain(I � Pi)(A� �(m)ij I) ~'(m)ij =Xl 6=i(�l � �(m)ij )Pl ~'(m)ij :From Lemma 1, we havek(I � Pi)(A� �(m)ij I) ~'(m)ij k � g(j)i;minfD diag.�(X(m)ij D) Xl 6=i Pl ~'(m)ij  :



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 263On the other hand,k(I � Pi)(A� �(m)ij I) ~'(m)ij k � kI � Pikk(A� �(m)ij I) ~'(m)ij k � (1 + kPik)k~r(m)ij k:By (13), we obtain k(I � Pi) ~'(m)ij k = Xl 6=i Pl ~'(m)ij  :Therefore, ombining the above three relations givesk(I � Pi) ~'(m)ij k � infD diag.�(X(m)ij D)(1 + kPik)g(j)i;m k~r(m)ij k:Aording to the de�nition of �(x; y), we havesin �( ~'ij ; ~'(m)ij ) = min� k ~'(m)ij � � ~'ijk � k ~'(m)ij � Pi ~'(m)ij k = k(I � Pi) ~'(m)ij k:Thus, (10) holds.If A is symmetri, its eigenvetors are mutually orthogonal. In this ase, kI�Pik =1, infD diag.�(X(m)ij D) = 1 and sin �( ~'ij; ~'(m)ij ) = k(I � Pi) ~'(m)ij k. Thus, (11) holds. 2We omment that (11) is a well known result; see [22, Ch.11, p.222℄ and [29, Ch.5,p.250℄ for more general formulations. We have now generalized it to (10) for the un-symmetri ase.From Theorem 3, the sensitivity of ~'ij depends on the sensitivity of the eigenvalueproblem of A, the gap k~r(m)ij k and k~r(m)ij k. If k~r(m)ij k is small, ~'(m)ij is a good approxima-tion to ~'ij provided the eigenvalue problem of A is not too ill onditioned and g(j)i;m is notsmall, while if A is symmetri, the sensitivity of ~'ij depends mainly on g(j)i;m and k~r(m)ij k.For example, if k~r(m)ij k = 10�8, k~r(m)ij k = 1 and infD diag.�(X(m)ij D)(1 + kPik) = 1000,then sin �( ~'ij ; ~'(m)ij ) is no more than 10�5. Suh a ~'(m)ij ) an be onsidered to be agood approximation to ~'ij .Now we deviate from the topi of Arnoldi's method for a while and study a generaleigenvalue problem that will be posed immediately. To this end we temporarily hangethe notation used. The problem is stated as follows:Assume that A is an N�N diagonalizable matrix and it hasM distint eigenvalues�j , j = 1; 2; � � � ;M , and assume that a perturbed matrixA+E is also diagonalizable andhas the eigenpairs ~�i; ~'i, i = 1; 2; � � � ; N with k ~'ik = 1, where E is a small perturbationmatrix. Suppose that ~�i, i = 1; 2; � � � ; N are divided intoM groups, in whih eah groupapproximates one eigenvalue of A. Then if ~�i is used to approximate �j, how well does~�i approximate some eigenvetor assoiated with �j?As was pointed out by Stewart and Sun [29, Ch.5, p.229℄ the problem of assessingthe auray of an approximate eigenvetor in terms of a residual is very losely related



264 Z.X. JIAto the usual perturbation problem, and the latter an be formulated easily and derivedtrivially from the former. So Theorem 3 an be diretly exploited to establish thefollowing result.Theorem 4. Under the above assumptions and notations, letdi;j = mink 6=j j ~�i � �k j; i = 1; 2; � � � ; N(mathematially speaking, by a ontinuity argument, di;j 6= 0 an be guaranteed one Eis suÆiently small), and de�ne the matrix Xj to be the matrix whose olumns onsistof the eigenvetors assoiated with those �k 6= �j. Then there exists a unit normeigenvetor, for brevity, say 'j, assoiated with �j suh thatsin �('j ; ~'i) � k(I � Pj) ~'ik � infD diag.�(XjD)(1 + kPjk)di;j kEk: (14)If A is symmetri, then sin �('j ; ~'i) = k(I � Pj) ~'ik � kEkdi;j : (15)From the proof of Lemma 1, it is seen that (9) annot be improved, so the boundsin Theorems 3{4 are optimal. Although it is not easy to onstrut suh a onreteexample to show that these upper bounds are attainable, we are indeed able to presentan example to illustrate that the upper bound of (15) are almost so, that is, there areA and E suh that the ratio of the right-hand side and the left-hand side of (15)kEkdi;jsin �('j; ~'i) = 1 +O(kEk); (16)as shown below:Construt the following symmetri matrix A and perturbation matrix EA = � a 00 b � ; E = � 0 �� 0� ;where a; b are real numbers with a > b, � is a positive number and � � a � b.Clearly, kEk = �, and for the eigenvalue a and the orresponding eigenvetor e1of A, its perturbed eigenvalue and the orresponding unnormalized eigenvetor are�a+ b+p(a� b)2 + 4�2� =2 and �1;�2�= �a� b+p(a� b)2 + 4�2��H , respetively.It is easily veri�ed that the left-hand side and the right-hand side of (15) are2�r�a� b+p(a� b)2 + 4�2�2 + 4�2 ; 2�a� b+p(a� b)2 + 4�2 ;



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 265respetively. Then it is readily justi�ed that for this example the left-hand side of (16)is bigger than one and less than 1 + �=(a� b) = 1 + kEk=(a � b) = 1 +O(kEk).Besides, we point out that the optimal lower bounds for sin � in Theorems 3{4 arezero, namely, there are A and a nonzero perturbation matrix E suh that sin � = 0always holds in Theorems 3{4. For example, assume that A = X�X�1 is the eigen-deomposition of a diagonalizable matrix A, and onstrut a perturbation matrixE = XÆ�X�1, where � is a diagonal matrix with the diagonal entries �i and Æ�is a nonzero diagonal matrix with the diagonal entries Æ�i, i = 1; 2; � � � ; N . Obviously,A+E = X(� + Æ�)X�1 is the eigendeomposition of A+E, whose eigenvalues ~�i are�i+Æ�i, i = 1; 2; � � � ; N . Therefore, �i and ~�i have the same eigenvetors no matter howÆ� hanges, namely, sin � = 0 always holds in Theorem 4 no matter how Æ� hanges.From now on we restore the original notation used.Theorem 5. Let �min(~�(m)ik ) and �min(~�ik) be the smallest singular values of thematries ~�(m)ik , ~�ik, respetively. Then�min(~�(m)ik ) � �min(~�ik) +pk max1�j�k k ~'ij � ~'(m)ij k: (17)In partiular, if k > di, then�min(~�(m)ik ) �pk max1�j�k k ~'ij � ~'(m)ij k (18)�pk � Cikgi;m max1�j�k k~r(m)ij k for small k~r(m)ij k (19)where Cik = max1�j�k infD diag. �(X(m)ij D)(1 + kPik); gi;m = min1�j�k g(j)i;m;and Cik = 1 when A is symmetri.Proof. Let us deompose ~�(m)ik = ~�ik + ~�(m)ik � ~�ik:Then in terms of [30, p. 101{102℄, we have�min(~�(m)ik ) ��min(~�ik) + k~�(m)ik � ~�ikk��min(~�ik) +pk max1�j�k k ~'ij � ~'(m)ij k:If k > di, �min(~�ik) = 0. Note from Theorem 3 that for small k~r(m)ij kk ~'ij � ~'(m)ij k = 2 sin �( ~'ij; ~'(m)ij )2 � sin �( ~'ij; ~'(m)ij ):Then we get (18) and (19). 2



266 Z.X. JIABased on this theorem, we an deide if ~�(m)ik , i = 1; 2; � � � ; r, are approximatelyolumn rank de�ient in the sense of (19) and thus detet the multipliities di andompute approximate bases of Pi.4. Two Arnoldi Type AlgorithmsBased on the previous analysis, we an present Arnoldi type algorithms for deter-mining �i; di and bases of Pi, i = 1; 2; � � � ; r when A is diagonalizable.Algorithm 21. Set k = 1, de�ne the set S = f1; 2; � � � ; rg and give a tolerane tol.2. Start: Choose a real initial vetor v(k)1 of norm one and m > r, where m is thesteps of Arnoldi's proess.3. Perform m steps of Arnoldi's proess starting with v(k)1 and ompute the m eigen-values of the resulting Hessenberg matrix H(k)m . Then selet ertain �(m)1k ; � � � ; �(m)rkas approximations to the required �1; � � � ; �r.4. Test onvergene of r approximating eigenpairs �(m)ik , ~'(m)ik using (2). If they alldrop below tol, then go to Step 5, else go to Step 6.5. For all i 2 S, set ~�(m)ik = ( ~'(m)i1 ; � � � ; ~'(m)ik ). For k > 1, deide if ~�(m)ik for all i 2 Sare olumn rank de�ient in the sense of (19) (how to use it sees later disussionsin Setion 5). If yes, set di = k � 1 and update S = S � fig. If S = �, stop;otherwise, assign k = k + 1 and go to Step 2.6. Construt a new initial vetor v(k)1 from ~'(m)ik , i = 1; 2; � � � ; r obtained from Step4 by (1), then go to Step 3.As was stated in Setion 2, to enhane the eÆieny of Algorithm 2, we suggest touse it in onjuntion with the Chebyshev iteration, and the resulting Arnoldi-Chebyshevalgorithm works for the right-most eigenpairs of A.Algorithm 31. Set k = 1, de�ne the set S = f1; 2; � � � ; rg and give a tolerane tol.2. Start: Choose a real initial vetor v(k)1 of norm one, the steps m of Arnoldi'sproess and the steps n of the Chebyshev iteration.3. Perform m steps of Arnoldi's proess starting with v(k)1 and ompute the m eigen-values of the resulting Hessenberg matrixH(k)m . Of them selet �(m)1k ; � � � ; �(m)rk withlargest real parts as approximations to �1; � � � ; �r, and set R(m)r;k = f�(m)r+1k; � � � ; �(m)mk g.4. Test onvergene of r approximating eigenpairs �(m)ik ; ~'(m)ik using (2). If they areall below tol, then go to Step 8, else go to Step 5.



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 2675. From R(m)r;k , identify an ellipse ontaining R(m)r;k but �(m)1k ; � � � ; �(m)rk .6. Generate an initial vetor for the Chebyshev iteration from ~'(m)ik ; i = 1; 2; � � � ; robtained from Step 4 by (1).7. Perform n steps of the Chebyshev iteration to obtain a vetor zn, take v(k)1 =zn=kznk, and return to Step 3.8. For all i 2 S, set ~�(m)ik = ( ~'(m)i1 ; � � � ; ~'(m)ik ). For k > 1, deide if ~�(m)ik for all i 2 Sare olumn rank de�ient in the sense of (19). If yes, set di = k � 1 and updateS = S � fig. If S = �, stop; otherwise, assign k = k + 1 and go to Step 2.We refer to [9, 27℄ for details on Steps 5{7.We point out that if A is symmetri then Algorithms 2{3 naturally work by redu-ing to the orresponding symmetri Lanzos and Lanzos-Chebyshev algorithms withonsiderable savings in generating an orthonormal basis of a given Krylov subspaebeause of the three term reurion formulas.5. ImplementationsAlgorithms 2{3 are good in exat arithmeti. In �nite preision, however, the om-putation of w in Algorithm 1 an undergo a severe anellation, so that the resultingsystem fv1; v2; � � � ; vmg might be far from orthonormal. To maintain the mutually or-thogonality of fvlgm1 , Saad[25℄ suggested to use the Gram-Shmidt method with iterativere�nement developed in [7℄ as an e�etive remedy for loss of orthogonality. It performsreorthogonalization only when a anellation ours, and arries on reorthogonalizationas long as anellation persists. By adopting the strategy of reorthogonalization, weavoid the ourrene of spurious eigenvalues in Algorithms 2{3.In implementations, Algorithm 1 is subjet to breakdowns, that is, at some lth step,l < m, we have hl+1l = 0. In fat, if some initial vetor v1 lies exatly in an invariantsubspae of dimension l and not in any invariant subspae of smaller dimension, suha phenomenon will our. However, it is shown [27℄ that in this ase Kl(v1; A) willbe invariant, whih implies, in partiular, that the l Ritz pairs �(l)i ; '(l)i , i = 1; 2; � � � ; lare exat. Therefore, suh breakdowns are luky. In �nite preision, exat breakdownsare rare, but near breakdowns are possible. At this time, the right-hand sides of (2)are very small. This suggests that we stop Arnoldi's proess before the mth step onesuh a ase ours. If l < r, we ontinue Arnoldi's proess and seek more eigenvalues,keeping those l ones that are already obtained.For v(k)1 ; k = 1; 2; � � � in Step 2 of Algorithms 2{3, we hoose them randomly in auniform distribution. In suh a way the assumption on Bk of (5) is satis�ed in pratie.For Step 6 in Algorithms 2{3, we refer to [9, 25, 27℄.Another important point is how to implement Step 5 of Algorithm 2 and Step 8 ofAlgorithm 3.



268 Z.X. JIAFrom Theorem 5, when ~�(m)ik is approximately olumn rank de�ient, �min(~�(m)ik )will be some small number depending on k~r(m)ij k, 1 � j � k. Note that Cik and gi;m areunknown a-priori in pratie. But aording to Theorem 5, we may adopt the followingriterion:If restarting proeeds until the inequality�min(~�(m)ik ) � pk � C 0ikg0i;m max1�j�k k~r(m)ij k (20)holds, then �i is (k � 1) multiple. Here C 0ik is a moderate fator, say, no bigger than1000, whih means that the eigenvalue problem of A is not too ill onditioned, andg0i;m = minl 6=i j �(m)l1 � �(m)i1 j. Note that if A is symmetri, we then take C 0ik = 1,g0i;m = min(�(m)i�11 � �(m)i1 ; �(m)i1 � �(m)i+11).Finally, we point out that if �i+1 = ��i then ~�(m)ik and ~�(m)i+1k have the same rankas A is assumed to be real. In this ase, it is only neessary to determine the rank of~�(m)ik . 6. Numerial ExperimentsWe report three numerial examples to show reliability of the algorithms. They areperformed usingMatlab4.0 on an Intel Pentium 100MHZ with 40 MegaBytes primarymemory and double preision eps � 2:22 � 10�16. The eÆieny of the algorithms isdominated by the number of matrix-vetor multipliations, indiated by m:v.Example 1. Consider the Chuk matries from [2, 6℄. The matries have severaldouble multiple eigenvalues. The objetive is to ompute a few dominant eigenvalueswith magnitudes greater than one and bases of orresponding eigenspaes. In theexperiments to be reported below, we test the matrix CK656 whih has largest order 656among this family of matries, and we want to ompute the four dominant eigenvaluesof A and determine their multipliities. The dominant eigenvalues of A are equal tothose right-most ones, so Algorithm 3 also works. We run Algorithms 2{3 for CK656,and they stop as soon as all atual residual norms drop below tol = 10�8 and k satis�esondition (20), where we take all Cik = 1000. Tables 1{2 show the results and proessesof determining �i, di, i = 1; 2; 3; 4 obtained by Algorithms 2{3, respetively, where \it"denotes the number of iterations and svd(X) the set of all singular values of a matrixX. The onverged four eigenvalues are, e.g. for m = 15,�1 � 5:50237837887538; �2 � 1:59397169682838;�3 � 1:41904261708523; �4 � 1:41195129689298:It an be seen from Tables 1{2 that the algorithms solve the problem eÆientlyand reliably. For this problem, the Chebyshev tehnique does not gain muh sineAlgorithm 2 itself is really fast already.



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 269Example 2. We onstrut a 1000 � 1000 matrix A = X�X�1, where� =diag�� 1:9 0:5�2 1:9 � ; � 1:9 0:5�2 1:9 � ; � 1:9 0:5�2 1:9 � ; 1:8; 1:6; 1:4; 1 � (j � 1)=1000 �j = 10; 11; � � � ; 1000;and X is generated randomly in a uniform distribution, �(X) � 148607. Therefore, theeigenvalue problem of A is quite ill onditioned. The matrix A has two three multipleeigenvalues �1 = 1:9 + i; �2 = 1:9� i and the rest eigenvalues are simple.Table 1. The proess of determining the multipliitiesof the four dominant eigenvalues of Example 1 by Algorithm 2.m it m:v Residual norms1 2 3 415 8 120 1:7D � 15 2:8D � 10 1:1D � 9 2:4D � 920 3 60 1:4D � 9 1:5D � 11 4:7D � 9 8:2D � 1125 3 75 3:7D � 12 9:7D � 11 9:3D � 10 4:7D � 9m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k )15 1 1 1 1 120 2 1.41316204 1.34519400 1.41325908 1.408319090.05452577 0.43640932 0.05194975 0.1289858525 3 1.70722567 1.48993911 1.72952700 1.658974860.29219943 0.88322220 0.09346846 0.497797551:8D � 10 1:7D � 10 6:5D � 9 7:2D � 8�1 �2 �3 �4Multipliity 2 2 2 2Table 2. The proess of determining the multipliitiesof the four dominant eigenvalues of Example 1 by Algorithm 3m n it m:v Residual norms1 2 3 415 10 3 65 3:1D � 15 1:3D � 11 8:3D � 11 1:5D � 1020 10 2 50 eps 4:3D � 10 4:2D � 9 5:4D � 925 10 2 50 eps 2:7D � 15 1:1D � 13 1:5D � 13m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k )15 1 1 1 1 120 2 1.40437873 1.06366280 1.00067142 1.017302410.16649437 0.93199863 0.99932814 0.9823929025 3 1.71678759 1.42597502 1.41421484 1.415072680.22943490 0.98315575 0.99999820 0.998783918:6D � 16 1:6D � 8 1:9D � 8 5:8D � 9�1 �2 �3 �4Multipliity 2 2 2 2Both algorithms are run for A. We want to �nd the �ve right-most eigenvalues anddetermine their multipliities. The stopping riterion is as in Example 1. Tables 3{4



270 Z.X. JIAshow the results and proesses of determining the required �i; di obtained by Algorithms2{3, respetively. The omputed eigenvalues are, e.g. for m = 20,Table 3. The proess of determining the multipliitiesof the �ve right-most eigenvalues of Example 2 by Algorithm 2.m it m:v Residual norms1 2 3 4 515 3 45 1:7D � 13 1:7D � 13 9:5D � 11 4:D � 10 2:6D � 1020 2 40 1:4D � 12 1:4D � 12 9:5D � 11 3:5D � 11 1:2D � 1130 2 60 2:4D � 13 2:4D � 13 5:3D � 11 3:7D � 11 8:9D � 1140 1 40 1:5D � 13 1:5D � 13 3:6D � 11 7:6D � 13 9:1D � 13m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k ) svd(~�(m)5k )15 1 1 1 1 1 120 2 1.29495985 1.29495985 1.41421356 1.41421356 1.414213560.56840036 0.56840036 6:8D � 11 3:3D � 10 3:D � 1030 3 1.50060992 1.500609920.76550906 0.765509060.40269809 0.4026980940 4 1.52352794 1.523527941.20323886 1.203238860.48070664 0.480706642:6D � 10 2:6D � 10�1 �2 �3 �4 �5Multipliity 3 3 1 1 1Table 4 The proess of determining the multipliitiesof the �ve right-most eigenvalues of Example 2 by Algorithm 3m n it m:v Residual norms1 2 3 4 515 20 2 50 2:D � 14 2:D � 14 2:2D � 9 2:2D � 9 7:1D � 1020 15 2 55 1:D � 11 1:D � 11 2:8D � 10 5:3D � 10 2:3D � 1010 20 6 110 6:1D � 11 6:1D � 11 2:3D � 9 4:5D � 9 1:9D � 925 20 2 70 6:5D � 13 6:5D � 13 5:4D � 13 3:7D � 12 7:6D � 12m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k ) svd(~�(m)5k )15 1 1 1 1 1 120 2 1.30118434 1.30118434 1.41421356 1.41421356 1.414213560.55400299 0.55400299 2:2D � 10 1:4D � 9 1:D � 910 3 1.51934966 1.519349660.77946537 0.779465370.28984632 0.2898463225 4 1.71536589 1.715365890.97752801 0.977528010.31930995 0.319309951:6D � 11 1:6D � 11�1 �2 �3 �4 �5Multipliity 3 3 1 1 1



Arnoldi Type Algorithms for Large Unsymmetri Multiple Eigenvalue Problems 271�1;2 � 1:90000000000006 � 0:99999999999969i; �3 � 1:79999999999678;�4 � 1:59999999999615; �5 � 1:40000000000096:We see from Tables 3{4 that Algorithms 2{3 have found �i, di; i = 1; 2; 3; 4; 5eÆiently and reliably. Again, for this example, the Chebyshev tehnique gains little.Example 3. We onstrut a 1000 � 1000 matrix A = X�X�1, where� =diag(1:66; 1:66; 1:62; 1:62; 1:3; 1;�j);j = 7; 8; � � � ; 1000;X is generated randomly in a uniform distribution and �(X) � 162636. Therefore, theeigenvalue problem of A is quite ill onditioned. The matrix A has two double multipleeigenvalues �1 = 1:66; �2 = 1:62 whih are quite lustered, and the rest eigenvalues aresimple.Algorithms 2{3 are run for this matrix. We want to �nd the four right-most eigenval-ues and detet their multipliities. The stopping riterion is as Examples 1{2. Tables5{6 list the results obtained. The omputed eigenvalues are, e.g. for m = 70 andn = 60, �1 � 1:66000000028226; �2 � 1:61999999883579;�3 � 1:30000000011923; �4 � 1:00000000003169:Table 5. The proess of determining the multipliitiesof the four right-most eigenvalues of Example 3 by Algorithm 2m it m:v Residual norms1 2 3 4100 14 1400 4:8D � 10 1:6D � 9 8:5D � 10 3:7D � 10110 10 1100 1:1D � 10 4:9D � 10 1:4D � 9 2:5D � 10120 6 720 3:6D � 11 9:3D � 11 5:8D � 12 2:9D � 10m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k )100 1 1 1 1 1110 2 1.12394010 1.41395284 1.41421356 1.414213560.85834646 0.02715461 2:2D � 10 8:7D � 11120 3 1.31793692 1.730978501.12385154 0.060937956:5D � 10 1:6D � 9�1 �2 �3 �4Multipliity 2 2 1 1As in Examples 1{2, the algorithms solved this multiple eigenvalue problem reli-ably. However, Algorithm 2 onverged quite slowly and it used many matrix-vetormultipliations to ahieve the desired auray. This is not surprising beause the re-quired �1 and �2 are not well separated and the eigenvalue problem of A is quite illonditioned, while Arnoldi's method is less eÆient in this ase; see [10, 11, 14, 25, 26,



272 Z.X. JIA27℄ for a theoretial analysis. In ontrast, Algorithm 3 was muh better than Algorithm2. This shows that the Chebyshev iteration may have a strong e�et on the eÆienyof Arnoldi's method.A number of other experiments have been run, and they have shown reliability ofthe algorithms provided Arnoldi's method and the Arnoldi-Chebyshev method workwell. Table 6. The proess of determining the multipliitiesof the four right-most eigenvalues of Example 3 by Algorithm 3m n it m:v Residual norms1 2 3 460 40 12 1160 2:9D � 9 3:5D � 9 9:4D � 10 3:D � 1070 60 4 460 6:6D � 9 8:1D � 9 2:2D � 9 7:5D � 1080 60 4 500 2:2D � 12 2:7D � 12 7:6D � 13 2:6D � 13m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k60 1 1 1 1 170 2 1.29817559 1.41359726 1.41421356 1.414213560.56101705 0.04174660 8:1D � 10 2:1D � 1080 3 1.48380523 1.730890080.89348869 0.063399665:D � 9 1:3D � 9�1 �2 �3 �4Multipliity 2 2 1 17. Conluding RemarksWe have proposed Arnoldi type algorithms for solving large unsymmetri multipleeigenvalue problems when the matrix is diagonalizable, supported by the theoretialbakground. Some of the results are new for Arnoldi's method and the perturbationanalysis of a general eigenvalue problem. Numerial experiments have shown reliabilityof the proposed algorithms.The idea used an be easily generalized to some other methods, e.g. the biorthogo-nalization Lanzos method[20℄, other variants of Arnoldi's method, e.g. [13, 24, 28℄ andthe power method[30℄. At the same time, we point out that this idea is essential for theblok Arnoldi methods when blok size is smaller than or equal to the multipliities ofthe required eigenvalues[10;14℄, and it should work in other blok methods, e.g.[15℄.Aknowledgements A preliminary version of this paper was [18℄ that is part of[10℄. I thank my superviser Professor L. Elsner for his onstant guidane. I am gratefulto Professor F. Chatelin for useful omments on it. Meanwhile, thanks go to Dr. S.Godet-Thobie for his making the Fortran ode of �nding the optimal ellipse developedby Dr. D. Ho available. Referenes[1℄ W.E. Arnoldi, The priniple of minimized iteration in the solution of the matrix eigenvalue
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