# A LEAP FROG FINITE DIFFERENCE SCHEME FOR A CLASS OF NONLINEAR SCHRÖDINGER EQUATIONS OF HIGH ORDER ${ }^{* 1)}$ 

Wen-ping Zeng<br>(Department of Mathematics, Overseas Chinese University, Quanzhou 362011, China)


#### Abstract

In this paper, the periodic initial value problem for the following class of nonlinear Schrödinger equation of high order $$
i \frac{\partial u}{\partial t}+(-1)^{m} \frac{\partial^{m}}{\partial x^{m}}\left(a(x) \frac{\partial^{m} u}{\partial x^{m}}\right)+\beta(x) q\left(|u|^{2}\right) u+f(x, t) u=g(x, t)
$$ is considered. A leap-frog finite difference scheme is given, and convergence and stability is proved. Finally, it is shown by a numerical example that numerical result is coincident with theoretical result.


Key words: High order nonlinear Schrödinger equation, Leap-Frog difference scheme, Convergence.

## 1. Introduction

It is well know that the nonlinear equations of Schrödinger type are of great importance to physics and can be used to describe extensive physical phenomena ${ }^{[1]}$.

In this paper, we will consider the periodic initial value problem for the following class of nonlinear Schrödinger equation of high order:

$$
\begin{cases}i \frac{\partial u}{\partial t}+(-1)^{m} \frac{\partial^{m}}{\partial x^{m}}\left(a(x) \frac{\partial^{m} u}{\partial x^{m}}\right)+\beta(x) q\left(|u|^{2}\right) u+f(x, t) u=g(x, t) & (x, t) \in R \times I  \tag{1.1}\\ \left.u\right|_{t=0}=u_{0}(x) & x \in R \\ u(x+L, t)=u(x, t) & (x, t) \in R \times I\end{cases}
$$

where $i=\sqrt{-1}, R=(-\infty,+\infty), I=[0, T], u \equiv u(x, t)$ is an unknow complex valued function of $x$ with period $L$, and $\bar{u}$ is a conjugate complex function of $u ; f(x, t), g(x, t)$, $a(x)$ and $\beta(x)$ are all real-valued function $x$ with period $L ; u_{0}(x)$ is given complex-valued function with period $L ; q(\cdot)$ is a continuous real-valued function with real variable, and compound function $z \rightarrow q^{*}(z)=q\left(|z|^{2}\right)$ exist a continuous partial derivative to Rez, Imz. Besides, suppose the following conditions are true:

$$
\left\{\begin{array}{l}
0<m^{\prime} \leq a(x) \leq M  \tag{A}\\
\max _{(x, t) \in R \times I}\{|\beta(x)|,|f(x, t)|\}=M_{1}
\end{array}\right.
$$

[^0]where $m^{\prime}, \mathrm{M}$ and $M_{1}$ are all positive constant.
In the paper [2], there have discussed initial Value problem of system such as (1.1)(1.3), introduced a difference scheme of conservation type, and researched its stability and convergence. Otherwise, it is an implicit method and its difference scheme is a nonlinear system.

In this paper, we introduce a leap-frog finite difference scheme for the periodic initial value problem (1.1)-(1.3) of a class of nonlinear Schrödinger equation of high order, its difference scheme is explicit, easily solved. Its convergence and stability can be proved.

Finally, it is shown by a numerical example that numerical result is coincident with theoretical result.

## 2. Establishment of the Difference Scheme

First we introduce some notations. Let $Q_{T}=[0 . L] \times I$ be a rectangular region, where $I=[0, T]$. We divide the domain $Q_{T}$ into small grids by the parallel lines $x=x_{j}=j h, t=t_{n}=n k(j=0,1, \cdots, J ; n=0,1, \cdots, N)$, where $J h=L, N=\left[\frac{T}{k}\right]$. Let $Q_{h}=\{(x, t) ; x=j h, t=n k, j=0,1, \cdots, J ; n=0,1, \cdots, N)$. And Let $\phi_{j}^{n}$ $(j=0,1, \cdots, J ; n=0,1, \cdots, N)$ denote the discrete function on the grid point $\left(x_{j}, t_{n}\right)$.

Define

$$
\begin{aligned}
& \Delta_{+} \phi_{j}^{n}=\phi_{j+1}^{n}-\phi_{j}^{n}, \quad \Delta_{-} \phi_{j}^{n}=\phi_{j}^{n}-\phi_{j-1}^{n} \\
& D_{t} \phi_{j}^{n}=\frac{1}{2 k}\left(\phi_{j}^{n+1}-\phi_{j}^{n-1}\right), \quad \delta^{2 m} \phi_{j}^{n}=\Delta_{+}^{m}\left(a_{j-\frac{m}{2}} \Delta_{-}^{m} \phi_{j}^{n}\right) h^{-2 m}
\end{aligned}
$$

where $a_{j-\frac{m}{2}}=a\left(\left(j-\frac{m}{2}\right) h\right), \phi_{j}^{n}$ denote the discrete function value on the grid point ( $j h, n k$ ).

We also introduce the inner product and norms appropriate to function defined on the lattice $Q_{h}$, i.e

$$
\begin{aligned}
& (v, w)=(v, w)_{h}=h \sum_{j=1}^{J} v\left(x_{j}\right) \bar{w}\left(x_{j}\right) \quad \forall v, w \in c^{J} \\
& \|v\|^{2}=\|v\|_{h}^{2}=(v, v)_{h}=(v, v)
\end{aligned}
$$

where $C^{J}$ is a J -dimensionally complex space.
Corresponding to (1.1)-(1.3), we construct following leap-frog finite difference scheme

$$
\left\{\begin{array}{c}
i D_{t} \phi_{j}^{n}+(-1)^{m} \delta^{2 m} \phi_{j}^{n}+\beta_{j} q\left(\left|\phi_{j}^{n}\right|^{2}\right) \phi_{j}^{n}+f_{j}^{n} \phi_{j}^{n}=g_{j}^{n}  \tag{2.1}\\
\quad(j=1,2, \cdots, J ; n=1,2, \cdots, N=([T / k]) \\
\quad(j=1,2, \cdots, J)
\end{array} \phi_{j}^{0}=U_{0}(j h) \quad \begin{array}{l}
j=1,2, \cdots, J ; r= \pm 1, \pm 2, \cdots \\
\phi_{r J+j}^{n}=\phi_{j}^{n}\left\{\begin{array}{l}
j=0,1, \cdots, N \\
n=0
\end{array}\right.
\end{array}\right.
$$

In difference scheme (2), if $\phi_{j}^{1}(j=1,2, \cdots, J)$ is given, it can be calculated level by level explicitly. And $\phi_{j}^{1}$ can calculate by the scheme with same convergence order of the scheme (2), example conservation type difference scheme in [2].

## 3. Convergence and Stability

For convergence of the difference scheme (2) we have following:
Theorem 1. Assume $u$ is the solution of the periodic initial value problem (1.1)(1.3), $u \in c^{3}\left(I ; C^{2(m+1)}(R)\right)$, condition ( $A$ ) is true, and

$$
\left.\left\|u^{0}-\phi^{0}\right\|+\left\|u^{1}-\phi^{1}\right\|+\max _{0 \leq r \leq[T / k]}\left\|\tilde{g}^{r}\right\|\right)=O\left(h^{\frac{1}{2}}\right)
$$

If there a constant $\sigma$ with $2^{2 m} M \lambda \leq \sigma<1$, then there exist positive constants $c_{s}(s=$ $1,2,3)$ independent of $k$ and $h$ such that

$$
\begin{align*}
\left\|u^{n}-\phi^{n}\right\| \leq & c_{3}\left(k^{2}+h^{2}+\left\|u^{0}-\phi^{0}\right\|+\left\|u^{1}-\phi^{1}\right\|\right. \\
& \left.+\max _{0 \leq r \leq T / k}\left\|{\underset{g}{ }}_{r}^{\sim}\right\|\right) \quad(n=1,2, \cdots, N=[T / k]) \tag{3.1}
\end{align*}
$$

for $k \leq c_{1}, h \leq c_{2}$. Where $\lambda=k / h^{2 m}$, $M$ defined by the condition $(A), \tilde{g}_{j}^{r}=g(j h, r k)-$ $g_{j}^{r}$.

Proof. Suppose $e^{n}=u^{n}-\phi^{n}, \tau^{n}$ is the local truncation error of the difference scheme (2.1), i.e

$$
\begin{equation*}
\tau_{j}^{n}=i D_{t} u_{j}^{n}+(-1)^{m} \delta^{2 m} u_{j}^{n}+\beta_{j} q\left(\left|u_{j}^{n}\right|^{2}\right) u_{j}^{n}+f_{j}^{n} u_{j}^{n}-g(j h, n k) \tag{3.2}
\end{equation*}
$$

then expression (3.2)-(2.1) obtain

$$
\begin{gather*}
\tau_{j}^{n}=i D_{t} e_{j}^{n}+(-1)^{m} \delta^{2 m} e_{j}^{n}+\beta_{j}\left[q\left(\left|u_{j}^{n}\right|^{2}\right) u_{j}^{n}-q\left(\left|\phi_{j}^{n}\right|^{2}\right) \phi_{j}^{n}\right]+f_{j}^{n} e_{j}^{n}-\widetilde{g_{j}^{n}} \\
(j=1,2, \cdots, J ; n=1,2, \cdots,[T / k]-1) \tag{3.3}
\end{gather*}
$$

obviously, $\tau_{j}^{n}=0\left(h^{2}+k^{2}\right)$, expression $(3.3) \times\left(\bar{e}_{j}^{n+1}+\bar{e}_{j}^{n-1}\right) h$, then Summation from 1 to $J$ for $j$ and taken imaginary part:

$$
\begin{align*}
\left(\left\|e^{n+1}\right\|^{2}-\left\|e^{n-1}\right\|^{2}\right) / 2 k & +I_{m}(-1)^{m}\left(\delta^{2 m} e^{n}, e^{n+1}+e^{n-1}\right) \\
& =I_{m}\left(\tau^{n}-f^{n} e^{n}-\beta\left[q\left(\left|u^{n}\right|^{2}\right) u^{n}-q\left(\left|\phi^{n}\right|^{2}\right) \phi^{n}\right]+\stackrel{\sim}{g}^{n}, e^{n+1}+e^{n-1}\right) \tag{3.4}
\end{align*}
$$

where $\beta, f^{n}, q\left(\left|u^{n}\right|^{2}\right), q\left(\left|\phi^{n}\right|^{2}\right)$ are all net function. Because

$$
I_{m}\left(\delta^{2 m} e^{n}, e^{n+1}+e^{n-1}\right)=I_{m}\left(\delta^{2 m} e^{n}, e^{n+1}\right)-I_{m}\left(\delta^{2 m} e^{n-1}, e^{n}\right)
$$

Let

$$
\begin{equation*}
E^{n}=\left\|e^{n-1}\right\|^{2}+\left\|e^{n}\right\|^{2}+2 k(-1)^{m} I_{m}\left(\delta^{2 m} e^{n-1}, e^{n}\right) \tag{3.5}
\end{equation*}
$$

Expression (3.4) $\times 2 k$ and substitute into it by expression (3.5), we obtain

$$
\begin{equation*}
E^{n+1}-E^{n}=2 k I_{m}\left(\tau^{n}-f^{n} e^{n}-\beta\left[q\left(\left|u^{n}\right|^{2}\right) u^{n}-q\left(\left|\phi^{n}\right|^{2}\right) \phi^{n}\right]+\tilde{g}^{n}, e^{n+1}+e^{n-1}\right) \tag{3.6}
\end{equation*}
$$

summation from 1 to $N$ on $n$ for the expression (3.6), then we obtain

$$
\begin{gather*}
E^{N+1} \leq\left|E^{1}\right|+2 k \sum_{n=1}^{N} \mid \tau^{n}-f^{n} e^{n}-\beta\left[q\left(\left|u^{n}\right|^{2}\right) u^{n}\right. \\
\left.\left.-q\left(\left|\phi^{n}\right|^{2}\right) \phi^{n}\right]+\widetilde{g}^{n}, e^{n+1}+e^{n-1}\right) \mid \tag{3.7}
\end{gather*}
$$

Suppose $q^{*}, \partial q^{*} / \partial(\operatorname{Im} Z), \partial q^{*} / \partial(\operatorname{Re} Z)$ are bounded provisionally, where $q^{*}(Z)=$ $q\left(|Z|^{2}\right)$, and let $\max _{z \in c}\left\{\left|q^{*}(Z)\right|,\left|q *^{\prime}(Z)\right|\right\}=M_{2}$, therefore,

$$
\begin{align*}
\mid \beta\left[q\left(\left|u^{n}\right|^{2}\right) u^{n}\right. & \left.\left.\left.-q\left(\left|\phi^{n}\right|^{2}\right) \mid \phi^{n}\right], e^{n+1}+e^{n-1}\right)|\leq| \beta q^{*}\left(\phi^{n}\right) e^{n}, e^{n+1}+e^{n-1}\right) \mid \\
& +\left|\left(\beta\left[q^{*}\left(u^{n}\right)-q^{*}\left(\phi^{n}\right)\right] u^{n}, e^{n+1}+e^{n-1}\right)\right| \\
\leq & M_{4}\left(\left\|e^{n}\right\|^{2}+\left\|e^{n+1}+e^{n-1}\right\|^{2}\right) / 2 \tag{3.8}
\end{align*}
$$

where $M_{3}=\max _{(x, t) \in R \times I}|u(x, t)|, M_{4}=M_{1} M_{2}\left(1+M_{3}\right)$ are all positive constant.
Let $\lambda=k / h^{2 m}$, prove easily, when $2^{2 m} M \lambda<1$, we have

$$
\begin{align*}
0 & <\left(1-2^{2 m} M \lambda\right)\left(\left\|e^{n}\right\|^{2}+\left\|e^{n-1}\right\|^{2}\right) \leq E^{n} \\
& \leq\left(1+2^{2 m} M \lambda\right)\left(\left\|e^{n}\right\|^{2}+\left\|e^{n-1}\right\|^{2}\right) \tag{3.9}
\end{align*}
$$

by expressions (3.7), (3.8) and (3.9), we obtain

$$
\begin{aligned}
\left(1-2^{2 m} M \lambda\right)\left(\left\|e^{N+1}\right\|^{2}\right. & \left.+\left\|e^{N}\right\|^{2}\right) \leq E^{1} \\
& +2 k \sum_{n=1}^{N}\left[\left(\left\|\tau^{n}\right\|+M_{1}\left\|e^{n}\right\|+\left\|\tilde{g}^{n}\right\|\right)\left\|e^{n+1}+e^{n-1}\right\|\right. \\
& \left.+\frac{1}{4} M_{4}\left(\left\|e^{n}\right\|^{2}+\left\|e^{n+1}+e^{n-1}\right\|^{2}\right)\right] \\
\leq & E^{1}+k \sum_{n=1}^{N}\left(\left\|\tau^{n}\right\|^{2}+\left\|\tilde{g}^{n}\right\|^{2}\right)+k \sum_{n=1}^{N}\left(M_{1}+\frac{M_{4}}{2}\right)\left\|e^{n}\right\|^{2} \\
& +k \sum_{n=1}^{N}\left(2 M_{1}+4+M_{4}\right)\left(\left\|e^{n+1}\right\|^{2}+\left\|e^{n-1}\right\|^{2}\right) \\
\leq & M_{5}\left[\left\|e^{0}\right\|^{2}+\left\|e^{1}\right\|^{2}+\max _{0 \leq n \leq[T / k]}\left(\left\|\tau^{n}\right\|^{2}+\left\|\tilde{g}^{n}\right\|^{2}\right]\right. \\
& +k \sum_{n=1}^{N} \frac{M_{6}}{1-\sigma}(1-\sigma)\left(\left\|e^{n}\right\|^{2}+\left\|e^{n+1}\right\|^{2}\right)
\end{aligned}
$$

where $M_{5}=\max (1+\sigma, T), M_{6}=\max \left\{2 M_{1}+M_{4}, 4 M_{1}+8+2 M_{4}\right\}$ are all positive constant.

We can obtain by Gronwall inequality
$(1-\sigma)\left(\left\|e^{N+1}\right\|^{2}+\left\|e^{N}\right\|^{2}\right) \leq e^{M_{6} T /(1-\sigma)} M_{5}\left[\left\|e^{0}\right\|^{2}+\left\|e^{1}\right\|^{2}+\max _{0 \leq n \leq[T / k]}\left(\left\|\tau^{n}\right\|^{2}+\left\|\tilde{g}^{2}\right\|^{2}\right)\right]$

So

$$
\left\|e^{N+1}\right\|^{2} \leq M_{7}\left[\left\|e^{0}\right\|^{2}+\left\|e^{1}\right\|^{2}+\max _{0 \leq n \leq[T / k]}\left(\left\|\tau^{n}\right\|^{2}+\left\|\tilde{g^{n}}\right\|^{2}\right)\right]
$$

where $M_{7}=\left(M_{5} e^{M_{6} T /(1-\sigma)}\right)(1-\sigma)$ is a positive constant, therefore, expression (3.1) is true.

Finally, we point out the supposed of boundary of $q^{*}, \partial q^{*} / \partial(\operatorname{Im} Z), \partial q^{*} / \partial(\operatorname{Re} Z)$ can be offset ${ }^{[4]}$. The proof is over.

Corollary 1. Under the suppose of Theorem $1, c_{s}^{\prime}(s=1,2,3)$ is existent and they are a positive constant, when $h \leq c_{1}^{\prime}, k \leq c_{2}^{\prime}$, we have

$$
\left\|\phi^{n}\right\|_{\infty} \leq c_{3}^{\prime} \quad n=1,2, \cdots,[T / k] .
$$

With the proof of theorem 1, we can get the following stability theorem:
Theorem 2. If condition $(A)$ is true, and $2^{2 m} M \lambda \leq \sigma$ is true for any positive constant $\sigma<1$, and $\left\|\phi^{1}-\tilde{\phi}^{1}\right\| \leq c_{4}\left\|u_{0}-\tilde{u}_{0}\right\|$ is true, then difference scheme (2.1)(2.3) is stable on square norm for the initial value and right term, i.e $C_{5}$ is existent and it is independent of $h$ and $k$,

$$
\begin{equation*}
\left\|\phi^{n}-\tilde{\phi}^{n}\right\| \leq c_{5}\left\|u_{0}-\tilde{u_{0}}\right\|+\max _{0 \leq r \leq[T / k]}\left\|g_{r}-\widetilde{g}^{r}\right\| \tag{3.10}
\end{equation*}
$$

where $\tilde{\phi}$ is the solution of corresponding difference problem (2.1)-(2.3), under the condition that initial value and right side term of problem (1) have disturbance $u_{0}-\tilde{u_{0}}$ and $g-\widetilde{\tilde{g}}$ correspondly.

Note. Difference scheme (2.1)-(2.3) is conditional convergence, we must select h and k approx satisfy $2^{2 m} M \lambda \leq \sigma \leq 1$ to guarantee difference scheme (2) convergence and stability.

## 4. Numerical Example

Consider the following problem

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x x x}+6|u|^{2} u-150\left(\sin ^{2} x\right) u=0  \tag{4.1}\\
u(x, 0)=\frac{5}{2} \sqrt{2}(1+i) \sin x \\
u(x+2 \pi, t)=u(x, t)
\end{array}\right.
$$

It has a classical solution $u=u(x, t)=5 \exp \left(i\left(t+\frac{\pi}{4}\right)\right) \sin x$. Let $h=\pi / 10, k=$ $1 / 2 \times 10^{-3}$ then $\lambda=k / h^{4}=\left(5 / \pi^{4}\right)<(1 / 16), u^{1}$ is calculated by the accurate value, when it is calculated until $N=2000$ (i.e, $T=1$ ) by the scheme is this paper, $\||u|^{2}-$ $\left|u^{N}\right|^{2} \|_{\infty} \leq 10^{-4}$. The accuracy is the same with that of conservation scheme in [2],see table 1) when choose $h=\pi / 10, k=10^{-3}$, and $(1 / 16)<\lambda<(1 / 8)$ then overflow at $N=25$. It is shown that numerical result is coincident with theoretical result.

Tabel 1. Result at $t=1$, when $h=\pi / 10, k=1 / 2 \times 10^{-3}, N=2000$

|  | classical solu $\|u\|^{2}$ | Num. solu $\left\|u_{h}^{N}\right\|^{2}$ | Error $\|u\|^{2}-\left\|u_{h}^{N}\right\|^{2}$ |
| :---: | :---: | :---: | :---: |
| $\pi / 10$ | 2.38728757 | 2.38728432 | 0.00000324 |
| $2 \pi / 10$ | 8.63728755 | 8.63727872 | 0.00000883 |
| $3 \pi / 10$ | 16.36271240 | 16.36270065 | 0.00001176 |
| $4 \pi / 10$ | 22.61271241 | 22.61270032 | 0.00001209 |
| $5 \pi / 10$ | 25.0000000 | 24.99998816 | 0.00001184 |
| $6 \pi / 10$ | 22.61271246 | 22.61270035 | 0.00001211 |
| $7 \pi / 10$ | 16.36271249 | 16.36270041 | 0.00001208 |
| $8 \pi / 10$ | 8.63728764 | 8.63727810 | 0.00000953 |
| $9 \pi / 10$ | 2.38728762 | 2.38728378 | 0.00000384 |
| $\pi$ | 0 | 0 | 0 |
| $11 \pi / 10$ | 2.38728751 | 2.38728487 | 0.00000264 |
| $12 \pi / 10$ | 8.63728747 | 8.63727932 | 0.00000815 |
| $13 \pi / 10$ | 16.36271232 | 16.36270106 | 0.00001126 |
| $14 \pi / 10$ | 22.61271236 | 22.61270062 | 0.00001173 |
| $15 \pi / 10$ | 25.00000000 | 24.99998837 | 0.00001163 |
| $16 \pi / 10$ | 22.61271251 | 22.61270072 | 0.00001179 |
| $17 \pi / 10$ | 16.36271257 | 16.36270095 | 0.00001163 |
| $18 \pi / 10$ | 8.63728772 | 8.63727887 | 0.00000885 |
| $19 \pi / 10$ | 2.38728767 | 2.38728440 | 0.00000327 |
| $2 \pi$ | 0 | 0 | 0 |

## References

[1] B.L. Gou, Proceedings of the 1980 Beijing symposium on Differential Geometry \& Differential Equation, 3 1227-1246.
[2] H.Y. Chao, J. Comp. Math., $5: 3$ (1987), 272-280.
[3] D.N. Arnold, J. Douglas, Jr., V. Thomee, Math. Comp., $36: 153$ (1981), 53-63.
[4] B. N. Lu, Math. Num. Sinica, 11 : 2 (1989), 119-127.


[^0]:    * Received August 2, 1994.
    ${ }^{1)}$ Supported by Fujian Natural Science Foundation.

