Journal of Computational Mathematics, Vol.19, No.3, 2001, 241-258.

CURVILINEAR PATHS AND TRUST REGION METHODS WITH
NONMONOTONIC BACK TRACKING TECHNIQUE FOR
UNCONSTRAINED OPTIMIZATION*!

De-tong Zhu
(Department of Mathematics, Shanghai Normal University, Shanghai 200234, China)

Abstract

In this paper we modify type approximate trust region methods via two curvilinear
paths for unconstrained optimization. A mixed strategy using both trust region and line
search techniques is adopted which switches to back tracking steps when a trial step pro-
duced by the trust region subproblem is unacceptable. We give a series of properties of
both optimal path and modified gradient path. The global convergence and fast local
convergence rate of the proposed algorithms are established under some reasonable con-
ditions. A nonmonotonic criterion is used to speed up the convergence progress in some
ill-conditioned cases.
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1. Introduction

Trust region method is a well-accepted technique in nonlinear optimization to assure global
convergence. One of the advantages of the model is that it does not require the objective
function to be convex. Many different versions have been suggested in using trust region
technique. For each iteration, suppose a current iterate point, a local quadratic model of the
function and a trust region with center at the point and a certain radius are given. A point that
minimizes the model function within the trust region is solved as a trial point. If the actual
reduction achieved on the function f at this point is satisfactory comparing with the reduction
predicted by the quadratic model, the point is accepted as a new iterate, then the trust region
radius is adjusted and the procedure is repeated. Otherwise, the trust region radius should be
reduced and a new trial point needs to be determined. Recently Bulteau and Vial proposed
in [1] curvilinear paths with trust region method for unconstrained optimization and a main
feature of which is instead of minimizing a quadratic function within the whole trust region
which is a hyperball, it only minimizes the function over a simple curvilinear path inside the
trust region. In other words, their method is an approximate trust region method via curvilinear
paths.

It is also noticed that Nocedal and Yuan [9] suggested a combination of the trust region
and line search method. The motivation is intuitive. As we know, in traditional trust region
method, after solving a subproblem we need to use some criterion to check if the trial step is
acceptable. If not, the subproblem must be resolved with a reduced trust region radius. It is
possible that the trust region subproblem needs to be resolved many times before obtaining
an acceptable solution, and hence the total computation for completing one iteration might be
expensive. A plausible remedy is that at an unsuccessful trial step we switch to the line search
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technique by employing the back tracking steps. Of course the prerequisite for being able to
making this shift is that although the trial step is unacceptable as next iterative point, it should
provide a direction of sufficient descent.

Another valuable idea is to abandon the traditional monotonic decreasing requirement for
the sequence {f(z)} of the objective values (see [3] and [7]), because monotonicity may cause
a series of very small steps if the contours of objective function f are a family of curves with
large curvature.

The main purpose of this paper is to modify and improve the curvilinear path type ap-
proximate trust region method by adopting the above ideas: back tracking and nonmonotonic
search. In particular, we shall show that the trial step generated by their subproblem produces
a sufficiently descent direction. We shall focus on unconstrained optimization

min f(z).
Both theoretical analysis and numerical experiment will be undertaken for the improved algo-
rithms.

The paper is organized as follows. In section 2, we give expressions to the curvilinear path
model trust region steps and propose the characterizations and properties of the curvilinear
paths quadratic subproblem. In Section 3, we describe the algorithm which combines the
techniques of trust region, back tracking and nonmonotonic search. In section 4, weak global
convergence of the proposed algorithm is established. Some further convergence properties
such as strong global convergence and superlinear convergence rate are discussed in section 5.
Finally, the results of numerical experiments are reported in section 6.

2. Curvilinear Paths

In trust region algorithms, an important portion of the unconstrained minimization proce-
dure will be concerned with the solution of a subproblem of the form

1
min  qe(6) 2 fi + (6" 75 + 50" Bid (2.1)
st [l < A
where fi = f(x1), g* = Vf(x1), § = x — z,, By is either V2 f(xy,) or its approximation, g, ()
is the local quadratic approximation of f and Ay is the trust region radius and || - || throughout
is 2-norm. Let & be the solution of the subproblem. Then set next step
Tpt1 = T + Og. (2.2)

Based on solving the about trust region subproblem, we given the following Lemmas which
are due to Sorensen paper in [13].

Lemma 2.1. s is a solution to the subproblem (2.1) in which zy, is given by x if and only
if s is a solution to the following equations of the forms

(B+ul)s = —gla) (2.3)
p(llsl* — A% 0, p>0.
and B + pl is positive semidefinite.
Lemma 2.1 establishes the necessary and sufficient conditions concerning the pair p, s when

s solves (2.1). The next results are immediate consequences of lemma 2.1.
Lemma 2.2. Let p € R, s € R™ be a solution to the following equations of the forms

(B+pul) s =—g(x) (2.5)
and B + pl is positive semidefinite. Then we have that

(1) if £ =0 and ||d]] < A then s solves the subproblem (2.1);
(2) if ||I0]] = A then s solves

min ¢, (4) subject to ||J]| = 4;
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(3) if £ >0 and ||d]] = A then s solves the subproblem (2.1).
Further, if, in fact, B + pl is positive definite. then s is unique in each of the cases (1), (2)
and (3).

Now, we form the two paths as Bulteau and Vial (see [1]), i.e., optimal path and modified
gradient path, respectively.

When the trust region radius Ay of problem (2.1) varies in the interval [0, +00), the solution
points form the scaled paths and emanate from the origin. In order to definte those arcs in a
closed form, we shall use the eigensystem decomposition of B. Since B is sysmetric matrix, its

eigenvalues ¢1, ¢2, - -+, ¢, are real number and these are corresponding orthonormal eigenvectors
ul, w?,---,u”. Without lost of generality, let ¢1 < ¢ < --- < ¢, be eigenvalues of B and
ul, u?,-- -, u™ be corresponding orthonormal eigenvectors. We partition the set {1,...,n} into

Z%, I~ and N according to ¢; > 0, ¢; < 0 and ¢; =0 for i € {1,...,n}, respectively. We now
give two curvilinear paths.
2.1. Optimal path

The optimal path I'(7) can be expressed as

L(r) =T1(ti(7)) + T2(t2(7)) (2.6)
where
_ ti(7) ki - i
D) = - gyt + e L)
Dy(ta(r)) = to(r)u',
and
T, if <&,
0, if <&,
tZ(T):{ T—%, if TZ;,

T=A{il¢i#0,i=1--n}, N={i|¢i=0,i=1--,n}, g¢ = ("N i=
L-n, gf=3" gFul, T = max{0,—¢1} and 1/T is defined as +oo if T = 0. It should be
noted that I'y(t2(7)) is defined only when B is indefinite and g¥ = 0 for all i € {1,---,n} with
¢; = ¢1 < 0 which is referred to hard case (see [8]) for unconstrained optimization and that
for other cases, I'() is defined only for 0 < 7 < %, that is, ['(1) = 'y (t:(7)).
2.2. Modified gradient path

The modified gradient path can be given in the following closed form which can refer to see
[1]:

[(7) = Lu(t1(7) + Ta(ta(7)), 7 € [0, +00) (2.7)

where if gF # 0 for some i € Z=JN, the term ['s(¢2(7)) is not relevant, that is, if g&¥ # 0
for some i € Z~ [JN, then ['y(¢2(7)) = 0. For the path I'(7), the definitions of I'; (¢1(7)) and
[y (t2(7)) are as follows

D) = 3 SR =iy ) 3 b,

i€T Pi iEN

with )
o tour, if ¢ <0,
L (t2) ‘{ 0, if ¢ >0,
s i T <]
fa(7) _{ Yoo, if T>1,
and

t2(7) = max{r — 1,0}.
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2.3. Properties of the curvilinear paths

It is well known from solving the trust region algorithms in order to the global convergence
of the proposed algorithm, it is a sufficient condition to show that at k-th iteration the predicted
reduction defined by

Pred(6x) = fr — qr (k)

which is obtained by the step §; from the curvilinear paths in trust region, satisfies the following
sufficient descent condition

Pred(6;) > ©|g"|| min{ Ay, ||||§ |||| (2.8)
for all g¥, By, and Ay, where @ > 0 is a constant independent k. We can obtain this result
in each of the above two paths given by Bulteau and Vial (see [1]). In order to discuss the
properties in detail, we will summarize as follows.

Lemma 2.3. Let the step &y in trust region be obtained from the optimal path. Then we
have that the norm function of the path is monotonically increasing for T € (0,4+00), and there
exist " such that the point I'(7*) on the path with

IT(T) = A
satisfies the following system
(Br + meI)D(*) = —g", (2.9)
where pg > 0 given as follows and
e = 1/t1(t*) as 7 < 1/T (2.10)
1 1
e = tQ(T*):T*—T as ™ > 1/T (2.11)

where T = max{0, —¢1}. Futhermore, the predicted reduction Pred(dy) satisfies the sufficient
descent condition (2.8).
Proof. Let the step d; be obtained from the optimal path. It is obvious that I'(7) is a

continuous path, since u', u?,---,u™ are orthonormal eigenvectors.
From the definition of the path and using the orthonormality of vectors u’, we have
: ry(7)]? if 7<%
T(r 2 _ { || 1 K . . )
IEOF = i Gl + s, it 7> £

Let

$(r) = s ()] = Z(¢ —)* () + 7 Y (6’

ieN
Then using the fact (¢;7 + 1) > 0 for all ¢ € Z when 7 < %, we have

L 2r
W'(r) = Z(@TH (9%) +2T§/g@

Thus, ||Ty(7)|| is monotonically increasing for 0 < 7 < +. Since |[T2(t2(7))||* = (r — F)?,

IT2(¢2(7))|| is certainly increasing for 7 > 4. As above we have that the norm function of the
path is monotonically increasing for 7 € (0, +00).

This monotonically increasing property ensures that for any given Ay € (0,4+00), when
[I0(7)]| > Ay there is a unique point on the path I'(7), I'(7*) say, such that

() = A (2.12)
and 7* can be uniquely determined by the equation
IO = A (2.13)

If By, is positive definite or positive semi-definite, then the path is finite and I'(7*) = T'y (¢, (7))
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and 7* € (0, +00) as T' = 0. Since
(Br + pie )Ty (t1.(77))
- i T ty (T*) k. i * ki
- Z(¢i + e )u'u’ [Z —— g u' + () Z g; u']
i1 o o) +1 iEN
t1 (T*)
Git1(7*) + 1

= > (¢ + )
i€z
it is clear that system

giu' + ity (7%) D gl (2.14)
1EN

(Bi + pe L (%) = —¢"
is satisfied with pu, = 1/t1(7*). If By is indefinite, then the path is infinite. If 7* < 1/T, then
['(7*) = T1(t1(7*)) and it follows from (2.14) that system

(B + T (7") = —¢"
is also satisfied with u, = 1/¢1(7*). Note that in this case By + pu is positive definite, since

pi > T = —¢1. If 7* > 1/T then I'(7*) = [(F) + T(t2(7*)).
The above property ensure that,

(Br +me)L(T*) = —g¢" (2.15)
which means that ||I'(7*)|| = Ax and (2.9) hold. py is given by
Loif r<t

By Lemma 2.1 establishing the necessary and sufficient conditions solving subproblem (2.1)
and Powell in [10] establishing along the predicted reduction which is the sufficient descent
direction, we have that the conclusion of the theorem holds.

Lemma 2.4. Let the step 0y in trust region be obtained from the modified gradient path.
Then we have that the norm function of the path is monotonically increasing for T € (0, +00),
and the predicted reduction Pred(dy) satisfies the sufficient descent condition (2.8).

Proof. From the definition of the path and using the orthonormality of vectors u?, we have

o _ [ ITu(DIP, if T<1,
0 = { oD« s, i 751
Let

‘ exp{—¢;ti(7)} —1.. ‘ ‘ .
() = I = SRR = Dy o 2 5 g2
ieT ¢ ieN
Then using the fact 1 — 7 > 0, we have

vi(r) = 3 2Rt A= el gz o Sty >0,
i€l ¢ ieN
Thus, ||T'1(7)|| is monotonically increasing for 7 < 1. Since ||T2(t2(7))]|? = (1 —1)2, ||T2(t2(7))]|
is certainly increasing for 7 > 1. As above we have that the norm function of the modified
gradient path is monotonically increasing for 7 € (0, +00).

By lemma 6.1 of Buliteau and Vial in [1], we have that the predicted reduction satisfies the
sufficient descent condition (2.8).

The following lemmas show the relation between the gradient g¥ of the objective function
and the step §; generated from the two paths, i.e., optimal path and modified gradient path,
respectively. We can see from the lemmas that the direction of the trial step generated in the
two paths is a sufficiently descent direction.

Lemma 2.5. At the k-th iteration, let 6y be generated from the optimal path in trust region
subproblem then

k
(6575 < —willg]| min{ Ag, H } (2.17)
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where wy > 0 4s a constant.
Proof. Since 6y, is generated from the optimal path, it ensures that,

(Bk + D)o = —g". (2.18)
From
pdx = —g* — Bidy,

we take norm in the above equation and obtain

w1651 < (g™ 11 + | Bl 1| 0%]- (2.19)
And note [|0x[| = [|T(7%)]| = Ak,
llg*ll llg" ||
0 < < +[|Bill £ =— + | Bkl (2.20)
110x1l A

From (2.10) and 0 < 7, < &, we have that from (2.11),
o) = (¢")Tu(r)

t(r) ko k, i
= =@ =g+ gkl ] (2:21)
i ¢t +1 ieN
= -> a (gF)? =7 Z(gk;
€T QSiT +1 iEN l
Then we have that R
dip(7) 1 k\2 k2
== ——@)—) (g)" <0 (2.22)
L >

which means that 12(7) is monotonically discreasing for 0 < 7 < % Thus using the fact

¢iTi + 1> 0 for all i € 7 when 0 < 73, < 7, we have that
| Bl +1 > ¢imi + 1.
So, as uy = %
Tk Tk 1
Gire + 1 [Bale + 1 Bl + i
From (2.21), we have that from (2.20),
(9*)" %
1 ke L k\2
_HBk” T ieZI(gi) - Z(gi)

Fk 1EN
lg*[1?

S [ L L L
| Br|| + ek

~ igtiP (2.23)
k .
20|Bell + !

~ 9"
2 max{|| By||, 11}

IN

lo*]
< gl min{pE A,

In hard case, i.e., 7 > 1/T then I'(;) = I'(3) + [(¢2(7%)). Since g¥ = 0 for all i with ¢; = ¢,
we have that

M) = Ty +T(em)

:_ZTIT Zg

1€L,i#£l zeN i#£1
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From py, = %, we have that for all
1 1
> .
$i + 1 = |IBll +

Hence, we can obtain that

1 1 1 gt
MYTs, — (6MVTT(Z) = ("I (=) < —Z]|gF Ap). 2.24
(@7 = T = ) < et I A 2
From (2.22) and (2.23), and taking w; = 1 we have that (2.16) holds.

Lemma 2.6. At the k-th iteration, let &y be generated from the modified gradient path in
trust region subproblem then the condition (2.17) is also satisfied, i.e.,

k
(6760 < —wrllg*| min{ Ay, 11
1B

where wy > 0 4s a constant.
Proof. We difine the value of
~ def 1
@k (1) = (g") 1o + 56{Bk6k,

qr along the modified gradient path is given by

B(Ti(t(r) = 3 SRA2OMOI = by ) 3 gk, (2.25)

€T 2¢i iEN

for

s i T <
tl(T)_{ Yoo, if T>1.

By theorem 4.2 in [1], we have that there exists w > 0 such that

k
(T (12(1))) = ~Pred (T (1 (7)) < —wllg* min{ Ay, {21, (2.26)
It is clear to see that if ¢¥ (i =1,...,n) is the eigenvalues of the By, then %(ﬁf (i=1,...,n)
is the eigenvalues of the %Bk. Therefore, by the definition of the modified gradient path and
taking the 1By in (2.25), we have that

(g*) " ox
= (¢") Ti(ta(r))
k
_ Z exp{—¢} t; (M} -1 (g5)? — t1(7) Z(gff (2.27)
el i 1EN
< —wllgHlimin{ay, 21y

If 7 > 1 then t; () = +oo, that is, g¥ =0, Vi € Z~|JN, the term I's(t2(7)) is relevant. In
the case, by

po xp{=gty =1 1

=—— if ¢¥ >0,
t—o0 (bf (bf v
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we get that

1
= =) =@+ (r - g}
iez+ &
Lokye
= =Y —=h (2.28)
ieTt Tt
< : (9:)*
- max{(ls‘l;,] E +} '€I+ '
llg* 11
| Bl

By (2.27)—(2.28), taking wy = min{1, 2w}, we have that (2.17) holds.

3. Algorithm

In this section we describe a method which combines line search technique with an approx-
imate trust region algorithm that uses curvilinear paths instead of a minimization in the whole
trust region.

Initialization step
Choose parameters 8 € (0,1), w € (0,1), 0<m <12 <1, 0<7 <7 <1<7, €>0and
positive integer M.

Let m(0) = 0. Choose a symmetric matrix By. Select an initial trust region radius Ay >0
and a maximal trust region radius Ana.x > Ao, give a starting point zo € R™. Set k = 0, go
to the main step.

Main Step

1. Evaluate fy = f(zx), g% = V£ (zk).
2. If ||g*|| < € or fr — frr1 < emax{1,|fx|}, stop with the approximate solution .
3. Form various scaled paths I'y, the optimal path or modified gradient path.
4. Solve subproblem
min (8) ¥ (¢5)T6 + %5TBk5

(Sk)
s.t. ||(5|| < Ak, 0 €Ty
Denote by dj, the solution of the subproblem (Sj).

5. Choose

_ 2
e =1, w, w9, ---

until the following inequality is satisfied
Fl@r + M) < fl@iwy) + MeB(g") T 0k, (3.1)

where

f(ﬂfz(k)) = max ){f(xkfj)}-

0<j<m(k
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6. Set
he = Milg, (3.2)
Thy1 = Tk + hg. (3.3)
Calculate
Pred(hy) = —¢r(hi),
Aved(hy) = flzyw) — flaw + ),
Ar
P = %EZ:; (3.6)
and take
11k, Y2Ak], if pr. <m,
Appr = (2Ak, Agl, if m < pi < o,

(Aka min{’)/gAk, Amax}]: lf ﬁk Z 772 .

Calculate f(zg41) and gFTt.

7. Take
m(k + 1) = min{m(k) + 1, M},
and update By to obtain Byy;. Then set k < k + 1 and go to step 2.

Remark 1. As shown below, the curvilinear paths can be generated by employing general
symmetric matrices which may be indefinite. Thus the matrix By at step 7 can be produced
from evaluating the exact Hessian matrix By = V2 f(x}), or using an approximate Hessian.

Remark 2. In the subproblem (Si), ¥ (d) is a local quadratic model of the objective
function f around zj. A candidate iterative direction d is generated by minimizing 14 (J) along
the curve paths [';, within the ball centered at z; with radius Aj. As being proved in [1],
moving along these I'y with z; as the starting point, the distance to zy is increasing, but the
value of ¢y (9) is decreasing. Therefore, problem (Sg) can be solved with great ease.

Remark 3. Note that in each iteration the algorithm solves only one trust region subprob-
lem. If the solution d;, fails to meet the acceptance criterion (3.1) (take A\, = 1), then we turn
to line search, i.e., retreat from z + hy until the criterion is satisfied.

Remark 4. Comparing usual monotone technique with nonmonotonic technique, when
M > 1, the accepted step hy, only guarantees that f(xy +hy) is smaller than f(z;(r)). Therefore,
generally f(zy) is no longer monotonically decreasing. Furthermore, it is easy to see that
the proposed algorithm becomes the usual monotone algorithm when M = 0. So, the usual
monotone algorithm can be viewed as a special case of the proposed algorithm.

4. Convergence Analysis

Throughout this section we assume that f : % — R! is twice continuously differentiable
and bounded from below. Given zp € R", the algorithm generates a sequence {zx} C R". In
our analysis, we denote the level set of f by

L(zo) = {z € R"|f(2) < f(zo)}.
The following assumptions are commonly used in convergence analysis of most methods for

unconstrained optimization.
Assumption Al. By is bounded, i.e.,

|Bk|l < b, VE,

and R
||V2f(x)|| <b, Yz € L(z0)-
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Lemma 4.1. Assume that assumption A1 holds. If there exists € > 0 such that

lg"[| > (4.1)
for all k, then there is & > 0 such that
Ay > a, Vk (4.2)
where
a = min{aje(1 — 772/\) U%, @671(_1 — ﬁ)},
b+b b
w =min{l,w;,0} and b= max{b,?)\}.
Proof. We first prove that if
p< A0 (43)
then \; = 1 must satisfy the condition (3.1) in step 5, i.e.,
flar +6k) < flawy) + Bg")T 6. (4.4)
If the above formula is not true, we have
flae +0k) > flaury) + B(g") 6k > fzr) + B(g")" 6 (4.5)

Because f(z) is twice continuously differentiable, we have

1
flwr +6k) — far) = (g") 70 + 551{V2f($k + &0k )0k
where ¢ € [0, 1]. Hence, (4.5) implies that
1 .
(1=8)(g") o + 55kTvzf(ﬂfk + &0k)or > 0,
from which we obtain R ‘
(1= B)(g")"6r + bllok|1* > 0.

By (4.1) and (4.3),

—2e(1 — B) min{Ay, g} +DAZ > 0. (4.6)
Since
se(1- )

A < A <

)

S

we have R
[—we(l — B) + bAL]A, > 0.
This means that, by Ay > 0, R ~
(4_)6(]. - ﬂ) < bA, < bA,.

which contradicts (4.3).

From the above we see that if (4.3) holds, then the step size A\ = 1, i.e., hy = 0 and hence

Tp41 = Tg + Ok.

We now assume, without loss of generality, that
wyo(l—n) w(l jﬁ)vl} (w7)

€ < min{l, = ,
< ming b+b b

We know that
|f(zr +0k) — far) — Vi (0k)]
SN2 (i + €6¢) — Bl

IN

IN

L. =~ .
5(b +b)AZ, (4.8)
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where ¢ € [0,1].
We now assume that there exists a k& such that
Ay < minf L= mlon wenl=F5), (4.9)
b+b b
from which we shall derive a contradiction.
Let t be the first iteration number such that the above inequality holds. As

A < & < M,
" b
(4.3) holds for k =t — 1, and hence \;—; =1, i.e., 6q0—1 = hy—1. As
~ ~ A
bA—1 < (b+D)Ay_1 < (b+ b)7t < we(l =)o < e, (4.10)
1
and by (2.8), we obtain that
Pred(he—1) = —thi—1 (8r_1) > Demin{A,_1, %} > Gely_. (4.11)
> Flax) = o+ hy)
Tr) — STk + N
= 4.12
Pk Pred(hk) ) ( )

then, by (4.8) and (4.11), we have
|[f(we 1+ he 1) — f(2¢-1) + Pred(h 1)]

-1 <
R Pred(h;_1)
B 1(b+D)AZ
- 2 wel;_;
1 +h)A
) we
< 1—1p. (4.13)

This implies that p;_1 > n2. Therefore,
Pt—1 2> pt—1 > 1.
By the updating rule for the trust region radius Ay, in the step 6, we have
Ay > A,
which implies that
e(l —n. B 1-
we( 77/2\)0—71 7 wen1 (_ 6) } (414)
b+b b

This contradicts the assumption that ¢ is the first index with (4.9) holding.

Hence, (4.9) never holds for any k, i.e., the conclusion of the lemma is true.

We are now ready to state one of our main results.

Theorem 4.2. Assume that assumption A1 holds. Let {x1} € R" be a sequence generated
by the algorithm. Then

Ai1 <Ay <min{

lim inf ||g*|| = 0. (4.15)
k—o0
Proof. According to the acceptance rule in step 5, we have
Fl@iry) — Fl@e + Aedi) > —AeB(g") 76 (4.16)
Taking into account that m(k + 1) < m(k) + 1, and f(zgs1) < f(wys)), we have

f(ﬂfz(k+1)) = Osjglﬁé)+l){f(xk+lij)}
< )
S Osjgnrgé)ﬂ{f(mkﬂ i}

= max{f(zymx)), f(Trs1)}
= f(ﬂfz(k))-
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This means that the sequence {f (7))} is nonincreasing for all k, and therefore {f(zx))} is

convergent.
By (3.1) and (2.17), for all k > M,

f(fCl(lc))
= f@imy—1 + Mgy —101(k)—1)
< Ogjgrggfk)il){f(ﬂ?z(k)—jq)} + Ny -18(g" D) Sy (4.17)
max  {f(@iry—j—1)} = N(ry—1Bwi[lg"® 7| min{ Ay 1 M :
0<j<m(l(k)—1) (k)=s— (k)= W= By 1l

If the conclusion of the theorem is not true, then there exists some € > 0 such that

9"l > € k=1,2,---. (4.18)
Therefore, we have that
. €
F(@iry) < F@iamy-1)) — Migry—1 Bwremin{ Ay _q, 5}- (4.19)
As {f(wyx))} is convergent, we obtain from (4.19) that
li A =0. 4.2
Jm Aik)—1 Agry—1 =0 (4.20)
This, by ||0x]] < Ag, implies that
khj& ANik)—1 101yl = 0. (4.21)
(4.20) means that either
lim inf Ay _; = 0, (4.22)
k—o0
or
lim inf Ay _; = 0. (4.23)
k— o0

For k > M, we have
k—M <k—m(k) <IU(k) <k,

and hence

0<k—I(k) <M.

By the updating formula of Ay, for all j,
YAE < Agyj < BA,
so that
W A ry—1 < Ak <1 T Ay -1
If (4.23) holds, then
liminf Ay =0,
k— o0
which contradicts (4.2) in Lemma 4.1.
If (4.22) holds, by (4.21), following the way used in [7], we can prove by induction that

li il = 4.24

i {|8e) 5l =0, (4.24)
and

i fzyy-) = lim f(ziw)
for any positive integer j. Furthermore, as k > [(k) > k — M, from
Tyky = Th—M—1 + hg—p—1 + -+ hyey 1
and (4.24), it can be derived that
lim f(zx)) = lim f(zg). (4.25)
k—o00 k—o00
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By the rule for accepting the step hyg,

f@esr) = fl@y) < Be(g") 6w
k
< Al llgH|min{a,, 121
|| Bl
g—dwmamMAh;. (4.26)
By Lemma 4.1, (4.25) and (4.26) mean that
lim A =0.
The acceptance rule (3.1) means that, for large enough &,
A A A
Fan+ Z200) = fo) > fan+ Z00) = flogw) > B9 . (4.27)
Since \ \ \
k k( k\NT k
A5y — = 25 (M5 + o(2E 10
Flar + 0k) = flar) = (9%)7 0k + o(—|I0k[]),
we have N \
(1= 8)Z(g") " 6 + o Z-10%]) > . (4.28)
Dividing (4.28) by 2&||6,|| and noting that 1 — 3 > 0 and (g*)76; < 0, we obtain
(g")" ok
= 4.29
T (429
From
ENT [T ||gk|| . €
(9")" 0k < —wi||g”|| min{Ag, B H} < —wiemin{Ayg, [—)} (4.30)
k
and ||0k|| € Amax, we have that
Ag
lim —~ =0, 4.31
% Tl 3y

which contradicts Ay > ||0x|| and hence the conclusion of the theorem is true.

5. Further Convergence Properties

Theorem 4.2 indicates that at least one limit point of {z} is a stationary point. In this
section we shall first extend this theorem to a stronger result, but it requires more assumptions.
Assumption A2. There exists 7 > 0 such that

1611 < 7llg" |- (5.1)
Assumption A3.
lim w =0, (5.2)
k—o00 ||6Ic||

where Hy = V2 f(z1).
Theorem 5.1. Assume that assumptions A2 and A3 hold. Let {x1} be a sequence generated
by the algorithm. Then
lim ||g¥|] = 0. (5.3)
k—o00

Proof. Assume that there are an €; € (0,1) and a subsequence {g™} of {g¥} such that for
allm;, 1 =1,2,---
llg™ (| > . (5.4)
Theorem 4.2 guarantees the existence of another subsequence {g'¢} such that
lg* |l > €2, form; <k <1;, (5.5)
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and
g1l < e
for an e, € (0,€1).
By (5.1), we get
E\NT . TN ||9k||
(97) 0k < —willg”||min{Ag, -}
[ Bkl
w . 0
< o mingo, 1260
= —@uloxl?,

where 0; = % min{1, %} (4.17) and (5.7) mean that
F@iry) < F@am-1)) = Meky—1801 160y I
Similar to the proof of the theorem 4.2, we can obtain (4.25), i.e.,
li = li .
i f(zy) = lim f(z)
By the accepting rule of the step dy,
f@re1) = flim) < BAe(g") 0k < =X B01 |6k I

(5.9) and (5.10) imply that
khm )\Ic ||(5k||2 =0.
—00

Assume that there exists a subsequence K C {k} such that
li J 0.
m 6] >

k—o0,k€E
Then (5.11) means
lim A = 0.
k—o00,k€EX
Similar to (4.29), we can prove that
k\T
im0
k—o0,keK ||(5k||
From (5.7), we have that
lim ||6Ic|| = 0,
k—o00,k€EX
which contradicts (5.12). Therefore, we know that
lim [|6]] = 0.
k—o00

For large enough ¢ and m; < k < [;, we have
flae+6k) = flae) + (") 0k + o|I6k )

< flmy) + B85 6k + (1= B)(g") 6k + ol||6k]])-

Note that

llg"|
| Bl
From (5.16) and (5.18), for large enough i and m; < k < [;, we have

(1= B)(g") hi + o(]|0x]]) < 0.

(g") 70k < —wilg¥|| min{Ay,

. €
}S—m@mmﬂ%mf}

D.T. ZHU

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

Hence (5.17) means that the step size Ay = 1, i.e., hy = 0y for large enough 7 and m; < k < ;.

By (5.2), we know that
|f(zr + 0k) — f(2r) — i (0r)]

1 . 1
= |((¢") "o + §5kTHIc5k +o(lI6xI1?)) — ((¢*) " or + 551{31«51«”

ol[|%1%)-

(5.19)
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From (2.8) and (5.1), for large enough i, m; <k <1,

k
Pred(dy) > Ollg"llmin{ay, ZIy

b
Bys s olldl
> |6 )
> 20l ming 0]}, T2
> Gallo, (5.20)

where &y = % min{1, >‘Z—b} As §j, = hy, for large i,m; < k < [;, we obtain that
T T

Jr— [z + hg)

> =
Pl = Pr Pred(hy)
I [ f(@g + 0k) + i (dr)
Pred(hy)
_o([19x1)
GATAE (5:21)
> 2.

This means that for large i, m; < k <l;,

fr — f(xp + hy) > n2Pred(hy) > 17202 ||he ||
Therefore, we can deduce that, for large i,

||wmi _xlin
l;—1
< Y0 ok —
k:mi
l;—1
= > [Iol? (5.22)
k=m;
1 l;—1
< — xr) — flzg + R
S k;:“[f( k) — f(xy + hy)]
1
= —(fm: — fu)-
T2W2

(5.22) and (5.9) mean that for large i, we have

€1
||$mi — &Ly | < i:

where L is the Lipschitz constant of g(x) in £(zo). We then use the triangle inequality to show
g™ < llg™ —g"[l + llg" |l
< Lmez — Ty, || + €2. (523)
We choose e; = &, then (5.23) contradicts (5.4). This implies that (5.4) is not true, and hence
the conclusion of the theorem holds.
We now discuss the convergence rate for the algorithm when By, is positive definite.

Theorem 5.2. If By, is eventually positive definite and the assumptions A2 and A3 hold,
then {z1} converges to x* superlinearly, that is,

x —z*

lim Joea =l
k—o0 ||$k — .7,'*”

Proof. At the k-th iteration, let d; be generated from the optimal path in trust region

subproblem. When By, is positive definite, we have that from (2.18),
(9°)" 0k + 0% Brdr = —pul|ox]* < 0.
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Let the step dy in trust region be obtained from the modified gradient path, Since By, is positive
definite, which means that Z= UN = ¢, we have that from (2.25) and (2.27),

(") 6 + 0L Bro
1
= 2[(g") 7o, + —5TBk5k] — (g") "6k

23" exp{— 2¢zt1 T)} - 1( Y eXP{—ﬁﬁz’;%(T)} -1 (g")?
i€T i€l ¢
< o

Because f(z) is twice continuously differentiable, we have that, noting (5.2) and from above,

Pt = flo) + (6o + 307 Hide + olI6u)
< flawy) +B(g") e + (% — B)(g") he + %[(Qk)%k + 65 By]

1 .
+§5ICT(HIC — By)dk + o(]10k*) (5.24)

IN

F@iw) + Bg") ok — (% — B)@210x1” + o([l0k]*)

< o) + B(g*)" o,
where the last two inequalities hold because of # < 1 and (5.7).
By the above inequality, we know that
Thy1 = Tp + Og,
which implies that for large enough k, the step size A\, = 1, i.e., hy = 0.
By assumption A3, we can obtain
Ared(hk) — Pred(hk)

-1
Pk Pred(hy)
_ (") + i Brhi) — ((9°)" b + 5hi Hihi + o(||he||*))
B Pred(hy)
o([[P]*)
. 5.25
[Pred(i)| 29
Assumption A2 and (2.8) deduce that
ks allg”l
Pred(hy) > @||g"|| - min{Ag, ||Bk||}
w ollhl
> =l - min{[|hell, ===}
= W2||51c||2, (5.26)
where ~
~ w . g
Wy == -min{1, %}

(5.25) and (5.26) mean that when [|6;]| = 0, pr, — 1. Hence there exists A > 0 such that when
[[0c]] < A, pr > 12, and therefore, Agiq > Ag. As hy — 0, there exists an index K’ such that
[[0k]] < A whenever k > K'. Thus

Ay > Agr, V> K.

On the other hand, as g¥ — g* = 0, the two paths satisfies the assumption A8 in [1] which
ensures
lim Ty(r) = —B;'g"

T—+00
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The step size A\, = 1 for large enough k£ means that
hy = 6 = —B,;lgk.
Therefore, the algorithm becomes the Newton method or the quasi-Newton method. As in this
case assumption A3 is a sufficient condition for superlinear convergence, the theorem is proved.

6. Numerical Experiments

Numerical experiments on the nonmonotonic back tracking optimal path method given in
this paper have been performed on an IBM 586 personal computer. In this section we present
the numerical results. We compare with different nonmonotonic parameters M = 0, M = 4
and M = 8, respectively, for the proposed algorithm. A monotonic algorithm is realized by
taking M = 0. In order to check effectiveness of the back tracking technique, we select the
same parameters as used in [5]. The selected parameter values are: 7 = 0.01,7;, = 0.001,72 =
0.75, 1 = 0.2, 72 = 0.5, 73 = 2, Apax = 10, = 0.2, and initially Ag = 1. The computation
terminates when one of the following stopping criterions is satisfied

lg"|l <1075,

or
fe = fre1 < 1078 max{1, | fi|}-

Experimental Results

Problem Initial BTPATH
M =0 M=4 M=8
Name Point NF NG | NF NG NO | NF NG NO
Rosenbrock Toa 25 21 16 14 5 13 12 4
(C=100) Tob 14 12 7 7 1 7 7 1
Rosenbrock Toa 92 60 16 16 5 16 14 5
(C=10000) Tob 30 25 8 8 1 8 8 1
Rosenbrock Toa 249 214 26 24 5 16 14 5
(C=1000000) | xop 45 35 15 15 4 15 15 4
Freudenstein Toa 6 6 6 6 0 6 6 0
Tob 12 10 11 11 1 11 11 1
Cube Toq 30 23 9 9 2 9 9 2
Tob 21 18 11 11 3 11 11 3
Box T0q 17 17 17 17 0 17 17 0
Tob 13 11 15 15 1 15 15 1
Engvall Toq 17 16 17 16 0 17 16 0
Top 20 18| 19 19 1| 19 19 1
Wood Toq 56 39 54 35 5 28 28 5
Tob 13 12| 14 14 1| 14 14 1
Powell s 16 16 16 16 0 16 16 0
Davidon o 11 11 12 12 1 12 12 1
Osborne To 13 13 13 13 0 13 13 0
Biggs T0q 40 18 51 33 5 54 38 8
Tob 67 36 181 83 32 172 63 15
Banana Toq 27 20 19 18 1 16 16 2
(n=6) Top 32 26| 24 23 3| 23 23 4
Banana T0og 34 27 21 21 2 21 21 2
(n=10) Tob 41 36 33 33 4 32 32 4
Banana Toq 45 35 45 35 0 45 35 0
(n=16) Tob 33 30 32 30 0 32 30 0

The experiments are carried out on 8 standard test problems which are quoted from [12].
Besides the recommended starting points in [12], denoted by zg,, we also test these methods
with another set of starting points zg,. The computational results for By = Hy, the real
Hessian, are presented at the following table, where BTPATH denote it variation proposed in
this paper with nonmonotonic decreasing and back tracking techniques. NF and NG stand for



258 D.T. ZHU

the numbers of function evaluations and gradient evaluations respectively. NO stands for the
number of iterations in which nonmonotonic decreasing situation occurs, that is, the number
of times

Jr — fry1 <0,

The number of iterations is not presented in the following table because it always equals NG.

The results under BTPATH (M = 0) represent mixture of trust region and line search
techniques via optimal path considered in this paper. Our curvilinear type of approximate
trust region method is very easy to resolve the subproblem (Sg) with a reduced radius via
optimal path. Indeed, the formulation of path I'y does not depend on the value of Ay, so
that when the trust region is contracted and ¢y, is outside the new region, we only need to set
the point back along the same path until reaching the new boundary. The back tracking can
outperform the traditional method when the trust region subproblem is solved accurately over
the whole hyperball.

The last three parts of the table, under the headings of M = 0, 4 and 8, respectively,
show that for most test problems the nonmonotonic technique does bring in some noticeable
improvement.
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