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NUMERICAL INVESTIGATION OF KRYLOV SUBSPACE
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LINEAR EQUATIONS WITH DOMINANT SKEW-SYMMETRIC
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Abstract. Numerical investigation of BiCG and GMRES methods for solving

non-symmetric linear equation systems with dominant skew-symmetric part

has been presented. Numerical experiments were carried out for the linear

system arising from a 5-point central difference approximation of the two di-

mensional convection-diffusion problem with different velocity coefficients and

small parameter at the higher derivative. Behavior of BiCG and GMRES(10)

has been compared for such kind of systems.
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1. Introduction

The convection-diffusion equation is of much importance for modelling flow prob-
lems in computational fluid dynamics. While studying the property of a model
convection-diffusion problem we can make some assumptions about the behavior of
practical problems.

Let us consider the steady convection-diffusion problem:

(1)





−Pe−1∆u + 1
2{v1ux + v2uy + (v1u)x + (v2u)y} = f,

u(x, y)|∂Ω = 0, div (v̄) = 0, v̄ = {v1, v2},
(x, y) ∈ Ω = [0, 1]× [0, 1], f = f(x, y), u = u(x, y)

where Pe is Peclet number, v̄ = {v1, v2} is velocity vector. The first term in
(1) describes the diffusion process while other terms correspond to the convective
process. The magnitude of dimensionless parameter Pe determines the ratio of the
convection process to the diffusion one. When Pe is greater than a certain constant
and boundary conditions are in disagreement with the right-hand side there arise
singular perturbation problems with boundary and interior layers [2].

The choice of discretization method for problem (1) and appropriate iterative
method for the corresponding linear system is very important. There are various
ways to discretize (1). In the context of finite difference, the most widespread
schemes are the central difference (second-order scheme) and the upwind (fires-
order scheme). It is well known [2] that in general, linear system with M-matrix
[12] can be obtained by applying the upwind schemes while positive real matrix
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Figure 1. The eigenvalue distributions of the original matrix
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can be obtained by using the central FD schemes [4] for first order derivatives. The
upwind scheme yields M-matrix, and classical iterative methods converge in this
case. We have used central difference approximation. In this case classical iterative
methods for solution the resulted linear system may not converge when the Peclet
number is greater than a certain constant.

To discretize the domain a mesh with meshsize h in both x and y direction was
used.

When using natural ordering of unknowns, we have obtained system of linear
equations with non-symmetric positive real matrix:

(2) Au = f

where A is (N − 1) × (N − 1) matrix, u is the vector of unknown, f is the
right-hand side.

In Figure 1 we depict the eigenvalue distribution of the matrix A obtained from
approximation of equation (1) with various velocity coefficients (see Table 1) in
order to compare it with the spectra of preconditioned matrices. We can see that
the spectra of the matrices obtained from problems 1 and 3 have the same structure.
All four spectrums are symmetric with respect to the point (4, 0).

In this paper we present results of a preconditioned iterative solver based on
BiCG for (2). First of all we compare GMRES(10) and BiCG. Further we com-
pare the preconditioned BiCG with unpreconditioned BiCG. For completeness, we
compared preconditioners proposed by us with popular SSOR precontitioner. The
numerical tests were carried out on the grids 32 × 32, 64 × 64, 128 × 128 for all
four problems (see Table 1). These test problems were borrowed from [1, 3]. The
right-hand side function f(x, y) was prescribed to satisfy the given exact solution
u(x, y) = exy sin(πx) sin(πy). Pe was altered between 10 and 106. According to the
conventional classification [3] when Pe ≤ 103 we get a moderately non-symmetric
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problem, otherwise when Pe > 103, we call it a strongly non-symmetric problem
one (this boundary is vague). The initial guess was set to be a zero vector and the
iterations were performed until ‖rk‖2/‖r0‖2 < 10−6, where rk, r0 are k-th and the
initial residuals.

Table 1. Velocity coefficient for test problems

problem No 1 2 3 4
v1(x, y) 1 1− 2x x + y sin(πx)
v2(x, y) −1 2y − 1 x− y −πy cos(πx)

2. Krylov Subspace Methods

Recent methods for solving the discretized convection-diffusion equation are di-
rect methods, generally the Gaussian elimination of some kind. However, for a
large sparse linear systems iterative methods are more effective than the direct
methods because iterative methods are usually the only means to find a solution
with reasonable computational cost.

The best known iterative methods for solving partial differential equations are
the relaxation-type methods. Typical examples are the Jacobi, Gauss-Seidel, and
SOR methods. Their performance is highly dependent on the diagonal dominance
of the coefficient matrices, the meshsize and the boundary conditions. For the SOR
method, the estimate of the optimal over-relaxation parameter for general prob-
lems is still an open question. Besides many iterative methods are of convergence
difficulty when they are used to solve discretized convection-diffusion equation with
large Pe. For these and other reasons, recent focus on iterative methods has been
shifted to favor the so-called parameter-free methods, such as Krylov subspace
methods.

In this paper, we primarily resort to biconjugate gradient method (BiCG) [10,
11]. It belongs to Krylov subspace methods.

We solve linear systems with different Pe and h using BiCG and GMRES(10) [9].
To estimate the efficiency of the method the number of iterations has been used.
(see Table 2). By the results obtained we can make the following conclusions.

Behavior of GMRES(10) and BiCG is quite different for various types of problems
and is closely connected with the type of velocity coefficients. The most difficult
problem for BiCG is problem 3 and for GMRES(10) is problem 4.

BiCG method solves system (2) well enough including the cases when the matrix
loses diagonal dominance. However it has irregular convergence (see Figure 2).

The numerical experiments show that the number of iterations of unprecondi-
tioned GMRES(10) depends on Rh = Pe∗h/2. GMRES(10) works fast for problem
1 (constant velocity) and problem 2 (weakly changing velocity). It was established
that when Rh is greater than a certain constant it’s magnitude does not affect the
BiCG convergence rate. On the other hand BiCG method is sensitive to grid size.
The greater the grid size we use the more iterations are necessary for BiCG method
to converge. The worst convergence BiCG method has for problem 3 while it works
fast for problem 2.

As has been mentioned above that the number of iterations of BiCG method
depends on the size of the linear system, while GMRES(10) method is not sensitive
to it.
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Table 2. The number of BiCG and GMRES(10) iterations

32× 32 64× 64
Pe Rh = Pe ∗ h/2 BiCG GMRES(10) Rh = Pe ∗ h/2 BiCG GMRES(10)

Problem1
10 0.151515 4 1 0.076923 3 1
103 15.1515 139 23 7.6923 97 10
105 1515.15 771 1469 769.23 831 934
107 151515 979 > 50000 76923 2307 45478

Problem2
10 0.151515 4 1 0.076923 3 1
103 15.1515 99 16 7.6923 69 8
105 1515.15 207 1133 769.23 831 855
107 151515 331 > 50000 76923 1019 40274

Problem3
10 0.151515 4 1 0.076923 3 1
103 15.1515 188 21 7.6923 96 10
105 1515.15 2492 1570 769.23 8001 992
107 151515 3468 > 50000 76923 15918 > 50000

Problem4
10 0.151515 7 1 0.076923 5 1
103 15.1515 470 59 7.6923 311 33
105 1515.15 1666 4433 769.23 6000 2845
107 151515 1732 > 50000 76923 6172 > 50000

3. Preconditioners for non-symmetric linear systems

In order to improve the convergence of iterative methods the matrix is trans-
formed to another one by a suitable linear transformation. This process is known
as preconditioning. Instead of (2) we solve the preconditioned linear system

B−1Ax = B−1b.

Figure 2. BiCG for problems 3 and 4
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We have introduced left-side preconditioning. One may also use right-side precon-
ditioning, i.e. formally solve

AB−1z = b

and get x from x = B−1z or even use both right-side and left-side techniques. The
paper presents left-side preconditioning.

Table 3. Triangular and product triangular preconditioners

Method operatorB

DTKM B = BC + 2KU BC = αiE

PTKM B = (BC + 2KL)BC
−1(BC + 2KU ) BC = E

It must be pointed out that the main requirements of a good preconditioner are
the following [8]: the product B−1A must be close to the identity, B should be easily
inverted (for instance, B is a diagonal or triangular matrix), the preconditioned
system is solved easily and faster than the original system.

The basic idea of construction the triangular and product triangular precon-
ditioners proposed by us was put forward in [5, 6, 7]. We have used the skew-
symmetric part of the matrix A from system (2) (each non-symmetric matrix can
be represented as a sum of symmetric and skew-symmetric part) and, it is required
the matrix to be positive real.

Consider the ways to choose operator B (see Table 3). Here KU is an upper and
KL is lower triangular part of skew-symmetric part of matrix A. BC is a symmetric
matrix which is constructed in a special way; the parameter αi > 0 are chosen in
compliance with the formula:

αi =
n∑

j=1

|mij | i = 0, ..., n, αiE =




α1

. . .
αn




here M is a symmetric matrix, which is constructed by the formula M = A0 +
KL −KU .

Figure 3. BiCG+preconditioner for problems 3 and 4
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The numerical results for preconditioned BiCG are listed in Tables 4 and 5 for
the optimal parameter τ̃ . It provides the number of preconditioned BiCG iterations
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Figure 4. Eigenvalue distribution of B−1A, B = DTKM(A)
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Figure 5. Eigenvalues distribution histogram of B−1A, B = DTKM(A)
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Figure 6. Eigenvalue distribution of B−1A, B = PTKM(A)
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Figure 7. Eigenvalues distribution histogram of B−1A, B = PTKM(A)
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(N). According to these results the most effective preconditioner for BiCG method is
PTKM for problem 3 and DTKM for problem 4 In Figure 3 we consider a behavior
of the residual for this problems.

So, we can recommend to use BiCG without preconditioners for simple problems
(problems 1 and 2) and with preconditioners (DTKM or PTKM) for hard ones
(problems 3 and 4).

In Figure 4 and 6 we depict spectrum of B−1A. We see that the spectrum of
the preconditioned matrix is enclosed to an ellipse centered in (0.5, 0), when B =
DTKM(A) (B is the DTKM preconditioner for matrix A). When B = PTKM(A)
(B is the PTKM preconditioner for matrix A) the spectrum is enclosed to a semi-
ellipse centered in (c, 0), where c is depends on the problem number. Also note the
change of a scale and spectral radii of the preconditioned matrix. In figure 5 and 7
we can see that the eigenvalues of the preconditioned matrices B−1A are clustered
at zero.

Table 4. The number of BiCG iterations with and without preconditioners

64× 64
Pe BiCG BiCG + DTKM BiCG + PTKM BiCG + SSOR

Problem1
102 50 9 5 6
103 470 96 40 38
104 1618 372 407 263
105 1666 1362 763 689
106 1702 1567 1329 1377

Problem2
102 7 11 5 6
103 69 55 24 21
104 557 244 207 216
105 831 615 837 893
106 929 712 939 985

Problem3
102 9 10 5 6
103 96 97 25 32
104 1052 579 260 238
105 8001 3748 2263 2401
106 11769 6076 6270 7608

Problem4
102 26 32 9 10
103 311 148 69 72
104 2679 828 721 668
105 6000 2096 2546 2737
106 6054 2212 2983 3327
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Table 5. The number of BiCG iterations with and without preconditioners

128× 128
Pe BiCG BiCG + DTKM BiCG + PTKM BiCG + SSOR

Problem1
102 5 5 3 5
103 39 39 15 13
104 379 361 379 246
105 815 783 811 755
106 1287 1565 1283 1289

Problem2
102 4 8 4 4
103 34 37 12 12
104 439 439 228 161
105 2243 896 3560 2317
106 2751 1669 2717 2785

Problem3
102 5 7 4 5
103 43 42 11 15
104 562 319 178 181
105 5472 2354 1653 1623
106 40380 15889 11250 11818

Problem4
102 12 15 5 7
103 150 128 54 39
104 1779 529 721 505
105 11360 3098 5137 4144
106 16898 5439 11350 8213
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