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MULTI-ALGORITHMIC METHODS FOR

COUPLED HYPERBOLIC-PARABOLIC PROBLEMS
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(Communicated by Peter Minev)

Abstract. We study computational methods for linear, degenerate advection-

diffusion equations leading to coupled hyperbolic-parabolic problems. A multi-

algorithmic approach is proposed in which a different approximation method is

used locally depending on the mathematical nature of the problem. Our anal-

ysis focuses on stability and a priori error estimates of coupled continuous and

discontinuous Galerkin methods, achieving a global h
p+ 1

2 estimate. Both the

mathematical analysis and the numerical results demonstrate that careful con-

sideration is necessary when defining appropriate interface conditions between

the hyperbolic and parabolic regions.

Key Words. discontinuous Galerkin, NIPG, interface conditions, porous me-

dia, coupled hyperbolic/parabolic PDE’s.

1. Introduction

This work is motivated by the study of flow and transport phenomena in highly
heterogeneous porous media, an important application in the petroleum and envi-
ronmental industries. An appealing technique for handling such phenomena is the
use of a multi-algorithmic strategy based on the decomposition of the spatial domain
into multiple non-overlapping subdomains according to the geological, physical and
chemical properties of the medium. This promotes the use of a different scheme
within each subdomain in order to reduce computational expenses while preserv-
ing accuracy. The resulting numerical models are consistent with the underlying
equations on the subdomains and physically meaningful conditions are imposed
on interfaces between the subdomains. Examples of such domain decomposition
approaches include the mortar finite element method employing Lagrange multipli-
ers to weakly impose flux-matching across interfaces [1, 2] and related multi-block
multi-physics techniques [3, 4].

We consider the specific case of advective-diffusive transport of a chemical species
within strongly contrasting geological layers where the resulting diffusion coefficient
varies spatially. As a model problem, we investigate advection-diffusion equations
where diffusion is locally degenerate within the computational domain, leading to
a coupled hyperbolic-parabolic problem. This situation lends itself to the use of
domain-decomposition type coupled continuous Galerkin (CG) and discontinuous
Galerkin (DG) methods where the strengths of each method are exploited within
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the appropriate subdomain. DG methods possess several characteristics which ren-
der them useful in many applications. Some well known versions include the lo-
cal discontinuous Galerkin method of Cockburn and Shu [5], the OBB method of
Oden, Babuška and Baumann [6], and the non-symmetric interior penalty Galerkin
(NIPG) method of Rivière, Wheeler and Girault [7]. DG methods can efficiently
handle advection-dominated flows since they generally exhibit less numerical dif-
fusion than traditional CG methods, which efficiently handle diffusion-dominated
flows. Furthermore the flexibility of DG methods allows for varying polynomial
degree approximation and general non-conforming meshes. However, DG methods
are more computationally expensive than CG methods since the degrees of freedom
are associated with the elements rather than with the nodes. Thus, the use of a DG
method on the hyperbolic subdomain coupled to a CG method on the parabolic
region seems a natural choice.

When dealing with coupled hyperbolic-parabolic problems, special consideration
must be paid to the interface conditions between parabolic and hyperbolic regions.
For linear hyperbolic-parabolic problems such as those considered in this work, the
interface conditions are relatively well understood. Gastaldi and Quarteroni [8] use
a vanishing viscosity singular perturbation analysis to derive interface conditions
for coupled hyperbolic-parabolic problems, which we employ henceforth. While the
normal component of the total advective-diffusive flux is always continuous across
the interface to ensure mass conservation, this is not the case for the solution itself.
The latter is indeed continuous only at the subset of the interface where the flow
leaves the parabolic subdomain and enters the hyperbolic region. On the other
part of the interface, the solution is in general discontinuous. Recently, Croisille
et al. [9] have used these interface conditions in the framework of the evolution
linear semi-groups theory to establish a well-posedness result for one-dimensional,
periodic, degenerate advection-diffusion equations.

In the case of a non-degenerate spatially-dependent diffusion coefficient yielding
both advection-dominated and diffusion-dominated subdomains, it may be more
useful to employ a DG method everywhere in the domain. A cost-effective strat-
egy is to use, for instance, an NIPG method in the diffusion-dominated subdomain
and a DG method in the advection-dominated subdomain. However, it remains
important to be aware of the theoretical interface conditions when the Peclet num-
ber is sufficiently small to locally impose hyperbolic-type behavior in the solution.
To pinpoint the main mathematical issues in this situation, we analyze a coupled
NIPG/DG method for hyperbolic/parabolic problems.

This paper is organized as follows. The subsequent section defines the hyper-
bolic-parabolic problem and interface conditions under consideration. Section three
analyzes a coupled CG/DG method and presents some convergence results as well as
numerical results obtained with the coupled scheme on a model problem. Motivated
by this approach and the careful treatment of terms in the resulting discretizations
arising on the interface, section four then considers a scheme coupling the NIPG
method in the parabolic subdomain with the DG method in the hyperbolic sub-
domain. The coupled NIPG/DG scheme is analyzed and convergence results are
presented. In particular, we emphasize the fact that special consideration should
be devoted to the design of interface conditions. The numerical results demonstrate
that this difficulty must be tackled even in fully parabolic problems at the interface
of those subdomains where the diffusion is dominated by the advection term, a dif-
ficult problem reflective of the small Peclet number associated with the equation.
Conclusions are drawn in section five.
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Figure 1. Domain decomposition setting for the coupled
hyperbolic-parabolic problem; Ω is a rectangle, ΩH is shown in
gray, and ΩP is the complement of ΩH. In this example, the flow
lines are horizontal.

2. The setting

This section describes the model problem and presents some notation and anal-
ysis tools.

2.1. Problem definition. Consider the degenerate advection-diffusion equation

∂tu+ ∇ · (αu− ν∇u) = 0, x ∈ ΩP, t ≥ 0,(1)

∂tu+ ∇ · (αu) = 0, x ∈ ΩH, t ≥ 0,(2)

defined on two distinct subdomains of bounded polygonal domain Ω in R
d, d =

1, 2, 3, divided into parabolic region ΩP and hyperbolic region ΩH with internal
interface Γ = ∂ΩP ∩ ∂ΩH. We assume that the diffusion tensor ν is symmetric
positive definite and bounded in ΩP uniformly from above and below by a positive
constant. We also assume that the velocity field α is time-independent and that
it is in W 1

∞(Ω) and satisfies the continuity equation ∇ · α = 0. Let n∂Ω be the
unit outward normal to domain boundary ∂Ω. Define inflow region ∂Ωin = {x ∈
∂Ω : α · n∂Ω < 0}, non-slip region ∂Ω0 = {x ∈ ∂Ω : α · n∂Ω = 0}, and outflow
region ∂Ωout = {x ∈ ∂Ω : α · n∂Ω > 0}. We assume for simplicity that the inflow
and outflow portions exist on the parabolic domain only, i.e., that ∂ΩH ∩ ∂Ωin =
∂ΩH∩∂Ωout = ∅. Conventionally set the unit normal nΓ on Γ to face outward from
ΩP and inward to ΩH. Define the following subsets of interface Γ: ΓPH = {x ∈
Γ : α · nΓ > 0} and ΓHP = {x ∈ Γ : α · nΓ < 0}, i.e., the flow crosses ΓPH from
the parabolic to the hyperbolic subdomain and vice versa across ΓHP. The domain
decomposition setting is illustrated in Figure 1.

Equations (1)-(2) are supplemented with initial and boundary conditions of the
form

u(x, t) = u0(x), x ∈ Ω, t = 0,(3)

(αu(x, t) − ν∇u(x, t)) · n∂Ω = αĝ(x) · n∂Ω, x ∈ ∂Ωin, t ≥ 0,(4)

−ν∇u(x, t) · n∂Ω = 0, x ∈ ∂Ωout ∪ ∂Ω0, t ≥ 0,(5)

with u0 ∈ L2(Ω) and ĝ ∈ L2(∂Ωin). To complete the framework, interface con-
ditions must be specified between the hyperbolic and parabolic subdomains. For
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coupled hyperbolic-parabolic problems, careful consideration of valid interface con-
ditions at the interface is crucial to deriving a well-posed problem; see Gastaldi
and Quarteroni [8] and Croisille et al. [9]. Let uP and uH be the restriction of
the solution to each respective subdomain. Then for parabolic to hyperbolic flow
across ΓPH, two interface conditions hold:

(αuP − ν∇uP) · nΓ = αuH · nΓ on ΓPH,(6)

αuP · nΓ = αuH · nΓ on ΓPH,(7)

while for hyperbolic to parabolic flow across ΓHP, only one interface condition holds:

(8) (αuP − ν∇uP) · nΓ = αuH · nΓ on ΓHP.

Note that (6)-(8) imply that the normal component of the total advective-diffusive
flux is continuous throughout the domain. This is important to ensure mass con-
servation when the unknown u mimics a concentration. The degeneracy of the
diffusion coefficient leads to discontinuous behavior in the solution or in its deriva-
tive. In particular, at the interface from parabolic to hyperbolic flow, the solution u
is C0 but exhibits a discontinuity in the normal derivative; in the reverse situation
from hyperbolic to parabolic flow, the solution u exhibits a discontinuity. We also
observe that conditions (3)–(4) are equivalent to imposing the continuity of the
solution across ΓPH and the usual homogeneous Neumann outflow condition on uP.

In what follows we assume that the model problem (1)-(8) admits a strong so-
lution u in the sense that u is continuous on Ω \ ΓHP and that the PDE’s (1)-(2),
the initial and boundary conditions (3)-(5) and the interface conditions (6)-(8) are
satisfied a.e. in time and space.

2.2. Notational preliminaries. Let {Th}h>0 denote a shape-regular family of
finite element subdivisions of domain Ω partitioned into open disjoint elements Ωe.
Assume that the meshes Th are compatible with the partitioning of Ω into ΩP

and ΩH. Let Th(ΩP) and Th(ΩH) denote the set of mesh elements in ΩP and ΩH,
respectively. Let Fh be the set of faces belonging to elements Ωe ∈ Th and partition
Fh into distinct sets F i ∪F ∂

in ∪F
∂
0 ∪F ∂

out, where F i denotes the set of interior faces,
F ∂

in the set of faces located on ∂Ωin, F ∂
0 the set of faces located on ∂Ω0, and F ∂

out

the set of faces located on ∂Ωout. Let the set of interior faces be further divided
into distinct sets F i = F i

P ∪ F i
H ∪ F i

Γ, where F i
P denotes the set of interior faces

restricted to subdomain ΩP, F i
H the set of interior faces restricted to subdomain

ΩH, and F i
Γ the set of interior faces on interface Γ. We assume that the mesh is

compatible with the partitioning of the boundary ∂Ω and that of interface Γ; in
particular, we assume that a face F ∈ F i

Γ is entirely located either in ΓPH, or in
ΓHP, or in neither of these two sets. For an interior face F ∈ F i shared by elements
Ωe1 and Ωe2 with respective unit outward normals n1 and n2 and for a function
v with restrictions v1 = v|Ωe1

and v2 = v|Ωe2
that are smooth enough, define the

average and (vector-valued) jump of v as

(9) {v}F = 1
2 (v1 + v2) and [v]F = v1n1 + v2n2,

respectively. Assuming that α · n1 6= 0, define the upwind value

(10) v
↑
F = v11{α·n1≥0} + v21{α·n2>0}.

When no confusion may arise, the subscript F is dropped in (9)-(10). Finally,
letting nF = ±n1, |α · nF | denotes the absolute value of the normal component of
α across F .
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Let Hs(Ω) denote the standard Sobolev space equipped with the usual norm
‖ · ‖Hs(Ω). Let Hs(Th) denote the space of functions whose restriction to the ele-

ments Ωe ∈ Th is in Hs(Ωe). For a time-space function u, the notation u ∈ L2
t (H

s
x)

(resp. u ∈ Ck
t (Hs

x)) means that the function (0, T ) ∋ t 7→ u(t, ·) ∈ H2(Ω) is in
L2(0, T ) (resp. Ck(0, T )) where T is a fixed time. We will use the standard L2 in-
ner product notation (·, ·)R for domains R ⊂ R

d, and the notation 〈·, ·〉F to denote
integration over a face F of the mesh.

2.3. Analysis Tools. In our analysis, we use the following well-known trace in-
equality [10]: Suppose that element Ωe has a Lipschitz boundary. Then, there is a
constant Ct

e such that

(11) ‖v‖L2(∂Ωe) ≤ Ct
e‖v‖

1
2

L2(Ωe) ‖v‖
1
2

H1(Ωe) ∀v ∈ H1(Ωe).

Define the trace constant Ct = maxΩe∈Th
Ct

e and assume that {Th}h>0 is such that
Ct can be bounded by a finite constant uniformly in h.

For a positive integer p and a mesh element Ωe ∈ Th, define P
p(Ωe) to be the set

of polynomials of degree less than or equal to p on Ωe. We will have occasion to
use a standard inverse inequality, valid for piecewise polynomials on shape-regular
families of triangulations [10, 11]: There exists a constant Ci independent of Ωe

such that

(12) ‖v‖H1(Ωe) ≤ Cih
−1
e ‖v‖Ωe

∀v ∈ P
p(Ωe),

where he = diam(Ωe). Recall the standard h approximation properties: For L2-
orthogonal projection Π0v of v ∈ Hk(Ωe) onto P

p(Ωe), there exists a constant Ca

independent of he such that

(13) ‖v − Π0v‖Hq(Ωe) ≤ Cah
µ−q
e ‖v‖Hk(Ωe), 0 ≤ k ≤ p+ 1,

where µ = min(p+ 1, k) and 0 ≤ q ≤ µ.
We will have occasion to use the following form of Gronwall’s lemma [10]: Let

g and ρ be piecewise continuous non-negative functions defined on an interval a ≤

t ≤ b, ρ being also non-decreasing. If for t ∈ [0, b], g(t) + h(t) ≤ ρ(t) +
∫ t

a
g(s)ds,

then g(t)+h(t) ≤ Cρ(t) with C = exp(t−a). Additionally, Young’s inequality will
prove useful in our analysis: For real numbers a, b and for δ > 0, 2ab ≤ δa2 +δ−1b2.

3. Coupled CG/DG formulation

In this section we formulate the coupling of the CG method discretizing the
parabolic equation (1) on ΩP with the DG method discretizing the hyperbolic
equation (2) on ΩH. Then, we analyze the consistency, stability, and convergence
properties of the resulting scheme. Finally, we present some numerical results.

3.1. The scheme. Let pCG and pDG be two positive integers and define the finite
element spaces

V CG
h = {v ∈ C0(ΩP) : ∀Ωe ∈ Th(ΩP), v|Ωe

∈ P
pCG(Ωe)},(14)

V DG
h = {v ∈ L2(ΩH) : ∀Ωe ∈ Th(ΩH), v|Ωe

∈ P
pDG(Ωe)}.(15)
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For a smooth enough function ψ, set ψP = ψ|ΩP
and ψH = ψ|ΩH

. For test functions
wh ∈ V CG

h and vh ∈ V DG
h , define the bilinear forms

aCG(ψ,wh) = (∂tψ
P, wh)ΩP

− (αψP − ν∇ψP,∇wh)ΩP

+
∑

F∈F i
Γ

〈αψ↑ · nΓ, wh〉F +
∑

F∈F ∂
out

〈αψP · n∂Ω, wh〉F ,(16)

aDG(ψ, vh) = (∂tψ
H, vh)ΩH

−
∑

Ωe∈Th(ΩH)

(αψH,∇vh)Ωe

−
∑

F∈F i
Γ

〈αψ↑ · nΓ, vh〉F +
∑

F∈F i
H

〈α(ψH)↑, [vh]〉F ,(17)

and the linear form

(18) lCG(wh) = −
∑

F∈F ∂
in

〈αĝ · n∂Ω, wh〉F .

In (16)-(17), the left argument of aCG and aDG is ψ and not ψP or ψH, respectively,
owing to the presence of the upwind term at the interface Γ.

To approximate the solution of (1)-(8), consider the following coupled continuous-
discontinuous discrete formulation: Seek uh = (uP

h , u
H
h ) ∈ C1([0, T ];V CG

h × V DG
h )

such that, for all t > 0,

(19) aCG(uh, wh) + aDG(uh, vh) = lCG(wh) ∀(wh, vh) ∈ V CG
h × V DG

h ,

and at t = 0 define uh(0) = (uP
h (0), uH

h (0)) ∈ V CG
h × V DG

h to be the L2-orthogonal
projection of u0 onto V CG

h × V DG
h ,

(20) (uP
h (0) − u0, vh)ΩP

+ (uH
h (0) − u0, wh)ΩH

= 0 ∀(vh, wh) ∈ V CG
h × V DG

h .

3.2. Analysis. To prove the convergence of uh, the solution of (19)-(20), to the so-
lution of (1)-(8), we establish consistency, stability, and approximability properties
for the coupled continuous/discontinuous formulation (19).

Lemma 3.1 (consistency). Assume that u is a strong solution of (1)-(8). Then,

(21) aCG(u,wh) + aDG(u, vh) = lCG(wh) ∀(wh, vh) ∈ V CG
h × V DG

h .

Proof. The key point consists of verifying that the upwind terms in (16) and (17)
yield the correct advective-diffusive flux on faces F ∈ F i

Γ. Let F ⊂ ΓPH. Then,
u↑ = uP, and using (6)-(7) yields

(22) αu↑ · nΓ = αuP · nΓ = αuH · nΓ = (αuP − ν∇uP) · nΓ.

In the case F ⊂ ΓHP, u↑ = uH, yielding

(23) αu↑ · nΓ = αuH · nΓ = (αuP − ν∇uP) · nΓ.

Hence, in both cases, αu↑ · nΓ equals the value of the advective-diffusive flux on
Γ. To verify equation (21), integrate by parts the terms involving test function
gradients in (16)-(17). The conclusion follows easily. �
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Define the norm

|||ψ|||2 ≡ 1
2‖ψ(T )‖2

Ω +

∫ T

0

‖ν
1
2∇ψP‖2

ΩP

+ 1
2

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (ψ
P)2〉F + 1

2

∫ T

0

∑

F∈F ∂
in

〈|α · n∂Ω|, (ψ
P)2〉F

+ 1
2

∫ T

0

∑

F∈F i
H

〈|α · nF |, [ψ
H]2〉F + 1

2

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, [ψ]2〉F .(24)

Lemma 3.2 (stability). The following identity holds: For all vh = (vP
h , v

H
h ) ∈

V CG
h × V DG

h ,

(25)

∫ T

0

aCG(vh, v
P
h ) +

∫ T

0

aDG(vh, v
H
h ) = |||vh|||

2 − 1
2‖vh(0)‖2

Ω.

Proof. Let vh ∈ V CG
h × V DG

h . The following terms are easily rewritten as

(26)

∫ T

0

(∂tv
P
h , v

P
h )ΩP

+

∫ T

0

(∂tv
H
h , v

H
h )ΩH

= 1
2‖vh(T )‖2

Ω − 1
2‖vh(0)‖2

Ω,

and

(27)

∫ T

0

(ν∇vP
h ,∇v

P
h )ΩP

=

∫ T

0

‖ν
1
2∇vP

h ‖
2
ΩP
.

Furthermore,

−

∫ T

0

(αvP
h ,∇v

P
h )ΩP

= − 1
2

∫ T

0

(α,∇(vP
h )2)ΩP

= − 1
2

∫ T

0

∑

F∈F ∂
out

〈α · n∂Ω, (v
P
h )2〉F − 1

2

∫ T

0

∑

F∈F ∂
in

〈α · n∂Ω, (v
P
h )2〉F

− 1
2

∫ T

0

∑

F∈F i
Γ

〈α · nΓ, (v
P
h )2〉F ,(28)

as well as

(29) −

∫ T

0

∑

Ωe∈Th(ΩH)

(αvH
h ,∇v

H
h )Ωe

= − 1
2

∫ T

0

∑

Ωe∈Th(ΩH)

(α,∇(vH
h )2)Ωe

= − 1
2

∫ T

0

∑

F∈F i
H

〈α, [(vH
h )2]〉F + 1

2

∫ T

0

∑

F∈F i
Γ

〈α · nΓ, (v
H
h )2〉F .

Using the definition of ∂Ωin and ∂Ωout, the combined boundary terms can be written

(30) 1
2

∫ T

0

∑

F∈F ∂
out

〈α · n∂Ω, (v
P
h )2〉F − 1

2

∫ T

0

∑

F∈F ∂
in

〈α · n∂Ω, (v
P
h )2〉F

= 1
2

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (v
P
h )2〉F + 1

2

∫ T

0

∑

F∈F ∂
in

〈|α · n∂Ω|, (v
P
h )2〉F .

Let F ∈ F i
H be shared by elements Ωe1 and Ωe2 with respective unit outward

normals n1 and n2. Set v1 = vH
h |Ωe1

and v1 = vH
h |Ωe2

. Assume α ·n1 > 0. Then, by



MULTI-ALGORITHMIC METHODS 101

the definition of the upwind and jump values of a function,

− 1
2α · [vH

h

2
] + α(vH

h )↑ · [vH
h ] = − 1

2α · (v2
1n1 + v2

2n2) + αv1 · (v1n1 + v2n2)

= α · n1(
1
2v

2
1 + 1

2v
2
2 − v1v2)

= 1
2 |α · nF |[v

H
h ]2.(31)

The result also holds if α · n1 < 0 and (trivially) if α · n1 = 0. Hence,

(32) − 1
2

∫ T

0

∑

F∈F i
H

〈α, [(vH
h )2]〉F +

∫ T

0

∑

F∈F i
H

〈α(vH
h )↑, [vH

h ]〉F

= 1
2

∫ T

0

∑

F∈F i
H

〈|α · nF |, [v
H
h ]2〉F .

Let now F ∈ F i
Γ and use a similar notation as above with (for instance) Ωe1 located

in ΩP and Ωe2 in ΩH so that nΓ = n1 = −n2. Assume α · n1 > 0. Then,

− 1
2α(vP

h )2 · nΓ + 1
2α(vH

h )2 · nΓ + αv
↑
h · [vh]

= − 1
2α · n1v

2
1 + 1

2α · n1v
2
2 + αv1(v1n1 + v2n2)

= α · n1(
1
2v

2
1 + 1

2v
2
2 − v1v2)

= 1
2 |α · nF |[vh]2,(33)

and the result also holds if α · n1 ≤ 0. Hence,

(34) − 1
2

∫ T

0

∑

F∈F i
Γ

〈α · nΓ, (v
P
h )2〉F + 1

2

∫ T

0

∑

F∈F i
Γ

〈α · nΓ, (v
H
h )2〉F

+

∫ T

0

∑

F∈F i
Γ

〈αv↑h, [vh]〉F = 1
2

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, [vh]2〉F .

Combining each of the above results yields the lemma. �

Corollary 3.3. The scheme (19)-(20) satisfies the stability result

(35) |||uh|||
2 ≤ ‖u0‖

2
Ω + 2

∫ T

0

∑

F∈F ∂
in

〈|α · n∂Ω|, ĝ
2〉F .

Proof. Take w = uP
h and v = uH

h in (19) and integrate in time from 0 to T to obtain

(36)

∫ T

0

aCG(uh, u
P
h ) +

∫ T

0

aDG(uh, u
H
h ) =

∫ T

0

lCG(uP
h ).

Use Lemma 3.2 to infer

(37) |||uh|||
2 = 1

2‖uh(0)‖2
Ω +

∫ T

0

lCG(uP
h ).

To bound the terms on the right-hand side with the given data, apply Young’s
inequality with δ = 2 to obtain

(38) −〈αĝ · n∂Ω, u
P
h 〉F ≤ 1

4 〈|α · n∂Ω|, (u
P
h )2〉F + 〈|α · n∂Ω|, ĝ

2〉F ,

and hide the former term in the left hand side of equation (37). Finally, owing to
(20), ‖uh(0)‖Ω ≤ ‖u0‖Ω; the conclusion is straightforward. �
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Define the parabolic projection ΠPuP(·, t) ∈ V CG
h such that

(39) ∂t(Π
PuP − uP, w)ΩP

+ (ν∇(ΠPuP − uP),∇w)ΩP
= 0 ∀w ∈ V CG

h ,

with ΠPuP(·, 0) = uP
h (0). Let ΠHuH(·, t) ∈ V DG

h be the L2 projection of uH onto
V DG

h . Recall the following approximation result:

Lemma 3.4 (approximability). Assume that the following constant is finite:

(40) C∗ = ‖u0‖
2
Ω +

∫ T

0

‖uP‖2
HpCG+1(ΩP) +

∫ T

0

‖uH‖2
HpDG+1(ΩH).

Set θP = ΠPu − uP and θH = ΠHu − uH. Let hP and hH be the maximum ele-
ment diameter defined on ΩP and ΩH, respectively. Then, there is a constant C∗,a,
independent of hP, hH but dependent on C∗, Ca, such that

∫ T

0

‖θP‖2
ΩP

+ h2
P

∫ T

0

‖θP‖2
H1(ΩP) ≤ C∗,ah

2pCG+2
P ,(41)

∫ T

0

‖θH‖2
ΩH

+ h2
H

∫ T

0

∑

Ωe∈Th(ΩH)

‖θH‖2
H1(Ωe) ≤ C∗,ah

2pDG+2
H .(42)

Collecting the results of Lemmas 3.1, 3.2, and 3.4 yields the following:

Theorem 3.5 (convergence). Under the above assumptions, the scheme (19)-(20)
satisfies the a priori error estimate

(43) |||u− uh||| ≤ Cα,ν,t,i,∗,a

(

h
2pCG+1
P + h

2pDG+1
H

)
1
2

,

where C is a constant independent of hP, hH but dependent on α, ν, Ct, Ci, C∗ and
Ca.

Proof. Define ηP = uP
h − ΠPuP and ηH = uH

h − ΠHuH. Set η = (ηP, ηH) and
θ = (θP, θH). Owing to Lemma 3.1, it is readily inferred that

(44)

∫ T

0

aCG(η, ηP) +

∫ T

0

aDG(η, ηH) =

∫ T

0

aCG(θ, ηP) +

∫ T

0

aDG(θ, ηH).

From Lemma 3.2, the left hand side of the above equation can be written

(45)

∫ T

0

aCG(η, ηP) +

∫ T

0

aDG(η, ηH) = |||η|||2,

since η(0) = 0. Therefore, equation (44) becomes

|||η|||2 = −

∫ T

0

(αθP,∇ηP)ΩP

−

∫ T

0

∑

Ωe∈Th(ΩH)

(αθH,∇ηH)Ωe
+

∫ T

0

∑

F∈F i
H

〈α(θH)↑, [ηH]〉F

−

∫ T

0

∑

F∈F i
Γ

〈αθ↑ · nΓ, η
P〉F +

∫ T

0

∑

F∈F i
Γ

〈α θ↑ · nΓ, η
H〉F

+

∫ T

0

∑

F∈F ∂
out

〈αθP · n∂Ω, η
P〉F

≡ T1 − T6.(46)
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We now bound each of the terms on the right hand side of this equation using
Lemma 3.4. Using Cauchy-Schwartz and Young’s inequality followed by approxi-
mation results, term one is bounded as

−

∫ T

0

(αθP,∇ηP)ΩP
≤ Cα,ν

∫ T

0

‖θP‖ΩP
‖ν

1
2∇ηP‖ΩP

≤ Cα,ν,δ

∫ T

0

‖θP‖2
ΩP

+ δ

∫ T

0

‖ν
1
2∇ηP‖2

ΩP

≤ Cα,ν,δ,∗,a h
2pCG+2
P + δ

∫ T

0

‖ν
1
2∇ηP‖2

ΩP
.(47)

To control term two, let Π0α be the L2-orthogonal projection of α onto element-
wise constants in Th(ΩH). Since α ∈ W 1

∞(Ω), ‖Π0α − α‖L∞(Ωe) ≤ CαhH for all

Ωe ∈ Th(ΩH). By definition of θH, we can incorporate Π0α and apply inverse
inequality (12) to obtain

−

∫ T

0

∑

Ωe∈Th(ΩH)

(α θH,∇ηH)Ωe
=

∫ T

0

∑

Ωe∈Th(ΩH)

((Π0α− α)θH,∇ηH)Ωe

≤ CαhH

∫ T

0

∑

Ωe∈Th(ΩH)

‖θH‖Ωe
‖ηH‖H1(Ωe)

≤ Cα,∗,ah
2pDG+2
H +

∫ T

0

‖ηH‖2
ΩH
.(48)

By inequalities (11) and (12), term three is bounded as
∫ T

0

∑

F∈F i
H

〈α(θH)↑, [ηH]〉F

≤ Cδ

∫ T

0

∑

F∈F i
H

〈|α · nF |, (θ
H↑

)2〉F + δ

∫ T

0

∑

F∈F i
H

〈|α · nF |, [η
H]2〉F

≤ Cα,t,δ

∫ T

0

∑

Ωe∈Th(ΩH)

‖θH‖Ωe
‖θH‖H1(Ωe) + δ

∫ T

0

∑

F∈F i
H

〈|α · nF |, [η
H]2〉F

≤ Cα,δ,t,i,∗,ah
2pDG+1
H + δ

∫ T

0

∑

F∈F i
H

〈|α · nF |, [η
H]2〉F .(49)

Similarly, terms four and five can be combined as

−

∫ T

0

∑

F∈F i
Γ

〈αθ↑ · nΓ, η
P〉F +

∫ T

0

∑

F∈F i
Γ

〈αθ↑ · nΓ, η
H〉F

≤ Cδ

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, (θ
↑)2〉F + δ

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, (η
H − ηP)2〉F

≤ Cα,t,δ

∫ T

0

∑

Ωe∈Th

‖θ‖Ωe
‖θ‖H1(Ωe) + δ

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, (η
H − ηP)2〉F

≤ Cα,δ,t,i,∗,a

(

h
2pDG+1
H + h

2pCG+1
P

)

+ δ

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, (η
H − ηP)2〉F ,(50)
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and term six as
∫ T

0

∑

F∈F ∂
out

〈αθP · n∂Ω, η
P〉F

≤ Cα,t,δ

∫ T

0

‖θP‖ΩP
‖θP‖H1(ΩP) + δ

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (η
P)2〉F

≤ Cα,δ,t,i,∗,a h
2pCG+1
P + δ

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (η
P)2〉F .(51)

Incorporate each of these bounds into equation (46) to obtain

|||η|||2 ≤ Cα,ν,δ,t,i,∗,a

(

h
2pDG+1
H + h

2pCG+1
P

)

+

∫ T

0

‖ηH‖2
ΩH

+ δ

∫ T

0

‖ν
1
2∇ηP‖2

ΩP
+ δ

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, (η
H − ηP)2〉F

+ δ

∫ T

0

∑

F∈F i
H

〈|α · nF |, [η
H]2〉F + δ

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (η
P)2〉F .(52)

Take δ sufficiently small to hide the corresponding terms in the right hand side,
and apply Gronwall’s Lemma. Application of the triangle inequality then yields
the theorem. �

Remark 3.6. The polynomial degree p may vary element by element in the DG
region; thus, in the a priori error estimate of Theorem 3.5, pDG represents the
lowest degree polynomial over all elements Ωe ∈ ΩH.

3.3. Numerical Results. In this section we discuss numerical results for dis-
cretizations of the model hyperbolic-parabolic problem (1)-(8) by the coupled CG/DG
method.

3.3.1. Test Case 1. To validate the convergence rates of our coupled formulation,
we consider a one-dimensional test case with analytical solution. The domain Ω =
]0, 2[ is split into three distinct subdomains Ω = ΩP1 ∪ΩH ∪ΩP2 with ΩP1 = ]0, 1[,
ΩH = ]1, 1.5[, and ΩP2 = ]1.5, 2[. The diffusion coefficient is set to 1 on ΩP1 ∪ ΩP2

and vanishes on ΩH. The advection velocity is set to 1 throughout the domain Ω.
Hence, ΓPH = {1} and ΓHP = {1.5}.

A non-zero right hand side f is added to equations (1)–(2). The data f , together
with the initial condition u0 and the inflow data ĝ, are chosen in such a way that
the following function

u(x, t) = − sin(x− 1) + exp(x− 1) + (x− 1)2t on ΩP1,(53)

u(x, t) = (x− 1)2(1 + t) + 1 on ΩH,(54)

u(x, t) = 1 + (x− 1.5)(x2 + a(t)x+ b(t))t on ΩP2,(55)

satisfies (1)–(4) for all t ≥ 0. Moreover, this function matches the interface con-
ditions (6)–(7) at the parabolic to hyperbolic interface ΓPH. The time-dependent
functions a and b are chosen so that on the one hand, the interface condition (8)
is satisfied at the hyperbolic to parabolic interface ΓHP and on the other hand,
the outflow condition (5) holds at ∂Ωout = {2}. This yields a(t) = t

4 − 7
2 and
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 1.5
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 3

 0  0.5  1  1.5  2

t=0.0
t=0.5
t=1.0
t=1.5
t=2.0

Figure 2. Test case 1: exact solution profiles at times t = 0.0,
0.5, 1.0, 1.5 and 2.0.

ΩP1 ΩH ΩP2 Ω
h L2 error rate L2 error rate L2 error rate L2 error rate
1/8 0.005451 0.00827 0.001826 0.01555
1/16 0.001363 2.00 0.00207 2.00 0.000458 1.99 0.00390 2.00
1/32 0.000341 2.00 0.00052 2.00 0.000110 2.05 0.00097 2.00
1/64 0.000085 2.00 0.00013 2.00 0.000028 1.98 0.00024 2.00

Table 1. Test case 1: convergence rates in each subdomain.

b(t) = 11
4 − 5t

8 . Figure 2 displays the time evolution of the exact solution profile at
times t = 0.0, 0.5, 1.0, 1.5 and 2.0.

We consider a CG discretization on ΩP1∪ΩP2 coupled to a DG discretization on
ΩH. The bilinear form is defined by equations (16)-(17) and the discrete problem
consists of solving equation (19) with a trivial modification resulting from the non-
zero source term f . We consider a sequence of nested uniform grids. Linear basis
functions are utilized in space and a simple Euler method in time without slope
limiting. Table 1 lists the L2 error and convergence rates for each subdomain and
for the entire domain Ω. The convergence achieved numerically is one-half order
higher than our theory predicts. These types of convergence results are similarly
reflected in current research on DG methods in general.

3.3.2. Test Case 2. We consider the rectangular domain ]0, 2[ × ]0, 1[ with a
triangular mesh consisting of 800 elements. In Figure 3 we display the hyperbolic
subdomain

(56) ΩH = ].4, .6[ × ].2, 1.0[
⋃

]1.4, 1.6[ × ].2, 1.0[,

and the parabolic subdomain ΩP = Ω \ΩH in which we set ν = 1.0. The advection
velocity is chosen to be α = (1.0, 0.0)T so that

ΓPH = {0.4} × ].2, 1.0[
⋃

{1.4} × ].2, 1.0[,(57)

ΓHP = {0.6} × ].2, 1.0[
⋃

{1.6} × ].2, 1.0[.(58)
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Figure 3. Test case 2: Mesh and domain partition of hyperbolic
subdomain ΩH (dark) and parabolic subdomain ΩP (light).

We impose no-flow boundaries on the top and bottom, inflow on the left (with
ĝ = 1 at all times) and outflow on the right boundaries of Ω. The initial solution
consists of u = 0 everywhere in the domain. Thus, the model problem mimics the
propagation of a wave from the left to the right boundary as it progresses through
parabolic and diffusion-degenerate subdomains.

We employ a DG discretization in the hyperbolic domain and a CG method in
the parabolic domain as defined in equations (16)-(17). The time discretization is
accomplished via a simple explicit Euler method without slope limiting. The time
step limitation is the usual one for this kind of problems, namely δt ≤ ch2 where
h is the mesh size. The contour lines of the discrete solution at times t = .5, 1.0,
1.5 and 2.0 are displayed in Figure 4. The same gray-color scale spanning values
between 0 and 1 is used for the four plots. The discontinuities of the solution across
ΓHP are clearly visible. We also observe that the contour lines in ΩP tend to be
perpendicular to ΓPH, indicating that the homogeneous Neumann outflow condition
approximately holds on ΓPH as predicted by the theory.

Figure 5 displays the time evolution of the solution profile along the line y = 0.55.
The propagation of the wave from the left to the right is clearly illustrated. Note
that at the parabolic to hyperbolic interface ΓPH the solution is continuous though
not C1 in agreement with theoretical results [8, 9]. Furthermore, the solution is
discontinuous on the hyperbolic to parabolic interface ΓHP.

4. Coupled NIPG/DG formulation

In this section we formulate the coupling of the NIPG method discretizing the
parabolic equation (1) on ΩP with the DG method discretizing the hyperbolic
equation (2) on ΩH. Then, we analyze the coupled discrete scheme and present some
numerical results. We emphasize the importance of imposing interface conditions
on Γ that are consistent with (6)-(8).

4.1. The scheme. Let pNIPG be a positive integer and set

(59) V NIPG
h = {v ∈ L2(ΩP) : ∀Ωe ∈ Th(ΩP), v|Ωe

∈ P
pNIPG(Ωe)}.
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(a) solution at t = 0.5

(b) solution at t = 1.0

(c) solution at t = 1.5

(d) solution at t = 2.0

Figure 4. Test case 2: coupled CG/DG method solution contour
lines at times t = .5, 1.0, 1.5 and 2.0.

For a smooth enough function ψ, set ψP = ψ|ΩP
and ψH = ψ|ΩH

. For a test function
wh ∈ V NIPG

h , define the bilinear form

aNIPG(ψ,wh) = (∂tψ
P, wh)ΩP

−
∑

Ωe∈Th(ΩP)

(αψP − ν∇ψP,∇wh)Ωe

+
∑

F∈F i
P

ςF 〈ψ
P, wh〉 +

∑

F∈F i
Γ

ιF 〈ψ,wh〉

+
∑

F∈F i
P

〈α(ψP)↑, [wh]〉F +
∑

F∈F ∂
out

〈αψP · n∂Ω, wh〉F ,(60)
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0 1 20.5 1.5

0

1

0.5

Figure 5. Test case 2: coupled CG/DG method solution profiles
along the line y = 0.55 at times t = .5, 1.0, 1.5 and 2.0.

and the linear form

(61) lNIPG(wh) = −
∑

F∈F ∂
in

〈αĝ · n∂Ω, wh〉F .

Here, ςF 〈ψ
P, wh〉 denotes the standard non-symmetric interior penalty term

(62) ςF 〈ψ
P, wh〉 = −〈{ν∇ψP}, [wh]〉F + 〈{ν∇wh}, [ψ

P]〉F + 〈σF [ψP], [wh]〉F ,

with parameter

(63) σF = ν σ0|F |
−β ,

where σ0 is a positive constant and |F | is the (d − 1)-dimensional measure of F .
Moreover,

∑

F∈F i
Γ
ιF 〈ψ,wh〉 collects the interface terms on Γ. We consider two

approaches to define those terms, namely

ι∗F 〈ψ,wh〉 = 〈αψ↑ · nΓ, wh〉F ,(64)

ι⋄F 〈ψ,wh〉 = 〈αψ↑ · nΓ, wh〉F + ςF 〈ψ,wh〉.(65)

Here, ι∗F 〈ψ,wh〉 incorporates the continuity restrictions (6)-(8) on the interface
boundary terms, while ι⋄F 〈ψ,wh〉 results from a straightforward NIPG method dis-
cretization with the standard assumption of continuity of the flux and solution on
the interface. The coupled NIPG/DG scheme is then formulated as follows: Seek
uh = (uP

h , u
H
h ) ∈ C1([0, T ];V NIPG

h × V DG
h ) such that, for all t > 0 and for all

(wh, vh) ∈ V NIPG
h × V DG

h ,

(66) aNIPG(uh, wh) + aDG(uh, vh) = lNIPG(wh),

with interface terms defined by either (64) or (65). The initial condition is the
L2-orthogonal projection of u0 onto V NIPG

h × V DG
h .
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4.2. Analysis. As for the coupled CG/DG scheme, the convergence analysis for
the coupled NIPG/DG scheme relies on consistency and stability properties. A
straightforward verification yields the following:

Lemma 4.1 (consistency). Assume that u is a strong solution of (1)-(8). Then, if
the interface terms are evaluated as in (64),

(67) aNIPG(u,wh) + aDG(u, vh) = lNIPG(wh) ∀(wh, vh) ∈ V NIPG
h × V DG

h .

If the interface terms are evaluated as in (65), the scheme suffers from a lack
of consistency. For F ∈ ΓPH, the exact solution u is continuous and {ν∇u} = 0
owing to (6)-(7); hence, ςF (u,wh) = 0 and consistency is recovered. However, for
F ∈ ΓHP, the exact solution is discontinuous implying that ςF (u,wh) 6= 0 in general.

To establish a stability estimate, modify the definition of the triple norm as
follows:

|||ψ|||2 ≡ 1
2‖ψ(T )‖2

Ω +

∫ T

0

∑

Ωe∈Th(ΩP)

‖ν
1
2∇ψP‖2

Ωe
+

∫ T

0

∑

F∈F i
P

‖σ
1
2

F [ψP]‖2
F

+ 1
2

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (ψ
P)2〉F + 1

2

∫ T

0

∑

F∈F ∂
in

〈|α · n∂Ω|, (ψ
P)2〉F

+ 1
2

∫ T

0

∑

F∈F i
P

〈|α · nF |, [ψ
P]2〉F + 1

2

∫ T

0

∑

F∈F i
H

〈|α · nF |, [ψ
H]2〉F

+ 1
2

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, [ψ]2〉F .(68)

Proceeding similarly to the proof of Lemma 3.2 and Corollary 3.3 readily yields the
following:

Lemma 4.2 (stability). For all vh = (vP
h , v

H
h ) ∈ V NIPG

h × V DG
h ,

(69)

∫ T

0

aNIPG(vh, v
P
h ) +

∫ T

0

aDG(vh, v
H
h ) = |||vh|||

2 − 1
2‖vh(0)‖2

Ω.

Corollary 4.3. The scheme (66) satisfies the stability result

(70) |||uh|||
2 ≤ ‖u0‖

2
Ω + 2

∫ T

0

∑

F∈F ∂
in

〈|α · n∂Ω|, ĝ
2〉F .

Theorem 4.4 (convergence). Assume that the following constant is finite:

(71) C∗ = ‖u0‖
2
Ω +

∫ T

0

‖uP‖2
HpNIPG+1(ΩP)

+

∫ T

0

‖∂tu
P‖2

HpNIPG+1(ΩP) +

∫ T

0

‖uH‖2
HpDG+1(ΩH).

Set f = ∂tu
P + ∇ · (αuP) and assume that for a.e. t ≥ 0, f and its time-derivative

are in L2(ΩP). Set q = α(uP − ĝ) for x ∈ ∂Ωin, q = 0 for x ∈ ∂Ωout ∪ ∂Ω0, and
q = α(uP − uH) for x ∈ Γ and assume that for a.e. t ≥ 0, q and its time-derivative
are in L2(∂ΩP). Assume that the PDE (1) holds at t = 0. Choose parameter β in
(63) such that β ≥ 3 for d = 2 and β ≥ 3

2 for d = 3. Then, the scheme (66) with
interface terms defined in (64) satisfies the a priori error estimate

(72) |||u− uh||| ≤ Cα,ν,δ,t,i,β,σ0,∗,a

(

h
2pNIPG−2+β(d−1)
P + h

2pDG+1
H

)
1
2
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where C is a constant independent of hP, hH but dependent on α, ν, σ0, β, C∗, Ct,
Ci and Ca.

Proof. The main idea is to recast our model problem (1) in the parabolic domain
into an elliptic format at a fixed time and to use the results by Rivière, Wheeler
and Girault [7] for the NIPG method applied to elliptic problems.
(i) Set f = ∂tu

P + ∇ · (αuP) and set q = α(uP − ĝ) for x ∈ ∂Ωin, q = 0 for
x ∈ ∂Ωout ∪ ∂Ω0, and q = α(uP − uH) for x ∈ Γ. Consider the elliptic problem

−∇ · (ν∇φ) = f, x ∈ ΩP,(73)

ν∇φ · n∂Ω = q · n∂Ω, x ∈ ∂ΩP.(74)

Owing to the above assumptions, its solution is φ = uP. Similarly, the above
assumptions imply that ∂tu

P is the exact solution of the elliptic problem (73)-(74)
in which f and q are replaced by their time-derivatives. Now define φh ∈ V NIPG

h to
be such that for all wh ∈ V NIPG

h ,

(75)
∑

Ωe∈Th(ΩP)

(ν∇φh,∇wh)Ωe
+

∑

F∈F i
P

ςF 〈φh, wh〉

=
∑

Ωe∈Th(ΩP)

(f, wh)Ωe
+

∑

F∈F ∂
in

〈q · n∂Ω, wh〉F +
∑

F∈F i
Γ

〈q · nΓ, wh〉F .

Under the above assumptions on the data, the scheme (75) is consistent with the
elliptic problem (73)-(74). Furthermore, if ν is sufficiently smooth such that the
solution of the elliptic dual problem belongs toH2(ΩP) with continuous dependence
on f and q, then the following results hold [7] :

(76) ‖φh − φ‖ΩP
≤ Cβh

pNIPG−
1
2+

β
2 (d−1)

P

∑

Ωe∈Th(ΩP)

‖φ‖HpNIPG+1(Ωe),

for Cβ independent of hP and φ, and

(77)
∑

Ωe∈Th(ΩP)

‖ν
1
2∇(φh − φ)‖Ωe

≤ Cβ,ν,σh
pNIPG

P

∑

Ωe∈Th(ΩP)

‖φ‖HpNIPG+1(Ωe),

for Cβ,ν,σ independent of hP and φ . As a result, setting θP = uP − φh yields

(78)

∫ T

0

‖θP‖2
ΩP

+ h2
P

∫ T

0

∑

Ωe∈Th(ΩP)

‖θP‖2
H1(Ωe) +

∫ T

0

‖∂tθ
P‖2

Hs(ΩP)

≤ C∗,β,νh
2pNIPG−1+β(d−1)
P .

(ii) Set ηP = uP
h − φh and ηH = uH

h − ΠHu for ΠHu ∈ V DG
h the L2-orthogonal

projection of uH onto V DG
h . Define η = (ηP, ηH). Let θH = uH − ΠHu and define

θ = (θP, θH) with θP defined above. Note that η(0) = 0. On ΩH, this fact directly
results from the construction of ηH(0) while on ΩP, it results from the assumption
that the PDE (1) holds initially. Owing to Lemma 4.1, it is readily inferred that

(79)

∫ T

0

aNIPG(η, ηP) +

∫ T

0

aDG(η, ηH) =

∫ T

0

aNIPG(θ, ηP) +

∫ T

0

aDG(θ, ηH).
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Using (75) yields

∫ T

0

aNIPG(θ, ηP) =

∫ T

0

(∂tθ
P, ηP)ΩP

−

∫ T

0

∑

Ωe∈Th(ΩP)

(αθP,∇ηP)Ωe

+

∫ T

0

∑

F∈F i
P

〈α(θP)↑, [ηP]〉F +

∫ T

0

∑

F∈F i
Γ

〈αθ↑ · nΓ, η
P〉F

+

∫ T

0

∑

F∈F ∂
out

〈αθP · n∂Ω, η
P〉F .(80)

From Lemma 4.2, the left hand side of equation (79) can be written

(81)

∫ T

0

aNIPG(η, ηP) +

∫ T

0

aDG(η, ηH) = |||η|||2,

since η(0) = 0. Therefore, equation (79) becomes

|||η|||2 = −

∫ T

0

∑

Ωe∈Th(ΩH)

(αθH,∇ηH)Ωe
+

∫ T

0

∑

F∈F i
H

〈α(θH)↑, [ηH]〉F

+

∫ T

0

∑

F∈F i
Γ

〈α θ↑ · nΓ, η
H〉F +

∫ T

0

(∂tθ
P, ηP)ΩP

−

∫ T

0

∑

Ωe∈Th(ΩP)

(αθP,∇ηP)Ωe
+

∫ T

0

∑

F∈F i
P

〈α(θP)↑, [ηP]〉F

−

∫ T

0

∑

F∈F i
Γ

〈αθ↑ · nΓ, η
P〉F +

∫ T

0

∑

F∈F ∂
out

〈αθP · n∂Ω, η
P〉F

≡ T1 − T8.(82)

(iii) We now bound each of the terms on the right hand side of this equation using
Lemma 3.4 and the approximability result. Term T1 is handled as in the proof of
Theorem 3.5, as is term T2 with term T6 bounded in a similar manner. Term T3 is
combined with T7 as per equation (50). The fourth term can be easily bounded as

(83)

∫ T

0

(∂tθ
P, ηP)ΩP

≤

∫ T

0

C∗,βh
2pNIPG−1+β(d−1)
P +

∫ T

0

‖ηP‖2
ΩP
.

Term T5 is bounded similar to equation (47) in Theorem 3.5, and term T8 similar
to (51) using approximation (78). Incorporating each of these results yields

|||(ηP, ηH)|||2 ≤Cα,ν,δ,t,i,β,σ0,∗h
2pNIPG−2+β(d−1)
P + Cα,ν,δ,t,i,∗,ah

2pDG+1
H

+

∫ T

0

‖ηP‖2
ΩP

+

∫ T

0

‖ηH‖2
ΩH

+ δ

∫ T

0

∑

Ωe∈Th(ΩP)

‖ν
1
2∇ηP‖2

Ωe

+ δ

∫ T

0

∑

F∈F i
Γ

〈|α · nΓ|, (η
H − ηP)2〉F + δ

∫ T

0

∑

F∈F i
P

〈|α · nF |, [η
P]2〉F

+ δ

∫ T

0

∑

F∈F i
H

〈|α · nF |, [η
H]2〉F + δ

∫ T

0

∑

F∈F ∂
out

〈|α · n∂Ω|, (η
P)2〉F .(84)
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(a) Results for correct interface assumption
(64)
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(b) Results for incorrect interface assumption
(65)

Figure 6. NIPG/DG scheme: solution profiles along the line y =
0.55 at times t = .5, 1.0, 1.5 and 2.0.

Take δ sufficient small to hide the corresponding terms in the right hand side, and
apply Gronwall’s Lemma. Application of the triangle inequality then yields the
theorem. �

Remark 4.5. A natural choice for parameter β in (63) is to choose β = 3
d−1 in

which case the convergence result of Theorem 4.4 matches the order of approxima-
tion proved in the CG/DG result.

4.3. Numerical Results. In this section we discuss numerical results for two-
dimensional discretizations of the model hyperbolic-parabolic problem (1)-(8) by
the coupled NIPG/DG method. The model problem considered here is the same
as that of Section 3.3.2. We emphasize the importance of imposing the appropriate
interface conditions in the definition of the method; in particular, we show that the
DG scheme discretized without attention to the lack of regularity in the solution
from the hyperbolic to parabolic subdomain results in the formation of a bound-
ary layer at the interface. Recall that the “correct” coupled NIPG/DG scheme
uses interface continuity restrictions (64), while the “incorrect” coupled NIPG/DG
scheme naively incorporates faulty interface assumptions (65).

Figure 6 displays the solution profiles for both the correct and the incorrect
NIPG/DG discretizations at times t = .5, 1.0, 1.5 and 2.0. Note the presence of
spurious oscillations at the interface between hyperbolic and parabolic regions ΓHP

in the latter scheme indicating an under-resolved boundary layer. The enforcement
in the correct scheme of the appropriate interface restrictions results in solution
profiles that are similar to those obtained with the coupled CG/DG scheme. This
is in stark contrast to an approach that does not utilize the theoretical results and
erroneously assumes continuity of both the solution and the flux in the discretiza-
tion.

We also demonstrate that the enforcement of the theoretical interface condi-
tions can be important even in the case of a non-degenerate diffusion coefficient if
the local Peclet number in an advection-dominated subdomain is sufficiently high
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(a) Results for correct interface assumption,
ν = .001 in ΩH
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(b) Results for incorrect interface assumption,

ν = .001 in ΩH

Figure 7. NIPG/DG scheme: solution profiles along the line y =
0.55 at times t = .5, 1.0, 1.5 and 2.0.

to impose hyperbolic-type behavior in the solution. Suppose the problem is par-
abolic everywhere on the domain with a spatially dependent diffusion coefficient
ν = ν(x). Let ν = 1.0 in subdomain ΩP and ν = .001 in subdomain ΩH with
an NIPG discretization of the parabolic equation (1) everywhere on Ω. Figure 7
displays the solution profiles for both a “correct” discretization incorporating inter-
face restrictions (6)-(8) at the boundary where ν jumps in value, and an “incorrect”
discretization.

5. Conclusions

Two coupled Galerkin methods applied to a model hyperbolic-parabolic problem
were presented in this paper: a coupled CG/DG method and a coupled NIPG/DG

method. Stability and a priori error estimates of order hp+ 1
2 were derived. Nu-

merical results demonstrate the importance of utilizing correct conditions at the
interface, even for the case of a purely parabolic variable diffusion problem at high
Peclet numbers. The multi-algorithmic approach presented herein should be partic-
ularly useful for the treatment of spatially varying or degenerate diffusion equations
in which an adaptive computational scheme can be proposed. In such a scenario, the
behavior of the exact solution as well as that of the approximate solution needs to
be carefully considered when defining interface conditions between the algorithmic
subdomains.
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