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hp–VERSION INTERIOR PENALTY
DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS

ON ANISOTROPIC MESHES

EMMANUIL H. GEORGOULIS

Abstract. We consider the hp-version interior penalty discontinuous Galerkin

finite element method (hp-DGFEM) for linear second-order elliptic reaction-

diffusion-advection equations with mixed Dirichlet and Neumann boundary

conditions. Our main concern is the extension of the error analysis of the hp-

DGFEM to the case when anisotropic (shape-irregular) elements and anisotropic

polynomial degrees are used. For this purpose, extensions of well known ap-

proximation theory results are derived. In particular, new error bounds for the

approximation error of the L2- and H1-projection operators are presented, as

well as generalizations of existing inverse inequalities to the anisotropic setting.

Equipped with these theoretical developments, we derive general error bounds

for the hp-DGFEM on anisotropic meshes, and anisotropic polynomial degrees.

Moreover, an improved choice for the (user-defined) discontinuity-penalisation

parameter of the method is proposed, which takes into account the anisotropy

of the mesh. These results collapse to previously known ones when applied to

problems on shape-regular elements. The theoretical findings are justified by

numerical experiments, indicating that the use of anisotropic elements, together

with our newly suggested choice of the discontinuity-penalisation parameter,

improves the stability, the accuracy and the efficiency of the method.

Key Words. discontinuous Galerkin, finite element methods, anisotropic

meshes, equations with non-negative characteristic form.

1. Introduction

In recent years, there has been an increasing interest in a class of non-con-
forming finite element approximations of elliptic boundary-value problems, usually
referred to as discontinuous Galerkin finite element methods. Justifications for the
renewed interest in these methods, which date back to the 1970s and the early
1980s [23, 29, 2], can be found in the attractive properties they exhibit, such as
increased flexibility in mesh design (irregular grids are admissible), the freedom of
choosing the elemental polynomial degrees without the need to enforce any con-
formity requirements, good local conservation properties of the state variable, and
good stability properties near boundary/interior layers or even discontinuities [6].
The first two reasons mentioned above make discontinuous Galerkin methods very
suitable contenders for hp-adaptivity, whereas the last two render these methods
attractive when convection is the dominant feature of the problem. New error
analyses for various DGFEMs have been presented in the literature during the last
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decade: see [7] for the developments until 1999 and [3] for the contemporary unified
approach; see also [5].

In this work we analyze the use of anisotropic finite elements for the numeri-
cal approximation of second-order equations with non-negative characteristic form
[24]. On isotropic meshes, discontinuous Galerkin finite element methods for such
equations were considered in [18]. In many practical examples of boundary value
problems for partial differential equations with non-negative characteristic form,
diffusion can be small, degenerate, or even identically equal to zero in subregions
of the computational domain. Hence, computationally demanding features may
appear in their analytical solutions; these include boundary/interior layers or dis-
continuities in subregions where the problem becomes of first-order hyperbolic type.
When structures such as layers or discontinuities are present in the solution, the
use of anisotropic elements aims to provide the necessary resolution in the direc-
tions along these structures in order to reduce the number of degrees of freedom
required to accurately capture them. Therefore, the combination of discontinuous
Galerkin finite element methods, that produce stable approximations in the unre-
solved regimes, and of the use of anisotropic elements and elemental bases with
anisotropic polynomial degree, that aim to provide the desired resolution only in
the space directions required, is an appealing technique for the numerical solu-
tion of these problems. This work extends the arguments presented in [18] to the
anisotropic setting; much of our discussion is inspired by that paper.

Anisotropic bounds for various types of FEMs have been presented in the litera-
ture, addressing mainly the question of designing structured meshes for the robust
approximation of solutions to singularly perturbed boundary-value problems that
admit boundary or interior layers (see, e.g., [1, 21, 26] and the references therein).
Analogous results for certain DGFEMs can be found in [30, 20]. Our approach
focuses on the development of general approximation-theory-tools for anisotropic
elements and their subsequent application to the error analysis of the DGFEM.
Potentially, the anisotropic approximation theory developed here can also be used
in other applications.

The paper is structured as follows. We begin by introducing the model prob-
lem (Section 2) and the functional analytic framework used in this work (Section
3). Along with standard Sobolev spaces, we shall make use of augmented Sobolev
spaces (see [12, 13] for details), as they appear to be suitable for proving hp-optimal
error bounds for interior penalty versions of discontinuous Galerkin finite element
methods. After introducing the appropriate weak formulation (from which the
method will emerge) in Section 4 and the admissible finite element spaces in Sec-
tion 5, the hp-version interior penalty discontinuous Galerkin finite element method
is introduced in Section 6. Next, we present new anisotropic approximation theory
results, including bounds on the projection errors of the L2- and H1-projection
operators in various norms (Section 7). The latter will be used in the derivation
of anisotropic a-priori error bounds for the hp-DGFEM in the energy norm (Sec-
tion 8). We shall conclude with some numerical experiments indicating that the
use of anisotropic elements improves the efficiency of the method, and that the
analysis presented herein, yielding an new choice of the discontinuity-penalisation
parameter, improves the stability, the accuracy and the efficiency of the method.

2. Model Problem

Let Ω be a bounded open (curvilinear) polygonal domain in R2, and let Γ∂ signify
the union of its one-dimensional open edges, which are assumed to be sufficiently
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smooth (in a sense defined rigorously later). We consider the convection-diffusion-
reaction equation

(1) Lu ≡ −∇ · (a∇u) + b · ∇u + cu = f in Ω,

where f ∈ L2(Ω), c ∈ L∞(Ω), b = (b1, b2)T is a vector function whose entries
bi, i = 1, 2, are Lipschitz continuous real-valued functions on Ω, and a = {aij}2i,j=1

is a symmetric matrix whose entries aij are bounded, piecewise continuous real-
valued functions defined on Ω̄, with

(2) ζT a(x)ζ ≥ 0 ∀ζ ∈ R2, a.e. x ∈ Ω̄.

Under this hypothesis, (1) is termed a partial differential equation with nonnegative
characteristic form. By µ(x) = (µ1, µ2)T we denote the unit outward normal vector
to Γ∂ at x ∈ Γ∂ . On introducing the so called Fichera function b · µ (cf. [8]), we
define

Γ0 =
{
x ∈ Γ∂ : µT (x)a(x)µ(x) > 0

}
,

Γ− = {x ∈ Γ∂\Γ0 : b(x) · µ(x) < 0} , Γ+ = {x ∈ Γ∂\Γ0 : b(x) · µ(x) ≥ 0} .

The sets Γ− and Γ+ are referred to as inflow and outflow boundary, respectively.
We can also see that Γ∂ = Γ0 ∪ Γ− ∪ Γ+. If Γ0 has positive one-dimensional
Hausdorff measure, we also decompose Γ0 into two parts ΓD, ΓN and we impose
Dirichlet and Neumann boundary conditions, respectively, via

u = gD on ΓD ∪ Γ−,

(a∇u) · µ = gN on ΓN,(3)

where we adopt the (physically reasonable) hypothesis that b·µ ≥ 0 on ΓN, whenever
the latter is nonempty.

Existence and uniqueness of solutions (in the weak sense) for the corresponding
homogeneous problem were considered by Fichera [8, 9], Olĕınik & Radkevič [24]
and Houston & Süli [19], under the assumption that there exists a positive constant
γ0 such that

(4) c(x)− 1
2
∇ · b(x) ≥ γ0 for almost every x ∈ Ω.

3. Function Spaces

We shall denote by Hs(Ω) the standard Hilbertian Sobolev space of index s ≥ 0
of real-valued functions defined on Ω.

Let T be a subdivision of the polygonal domain Ω into disjoint open (curvilin-
ear) quadrilateral elements κ constructed via mappings Qκ ◦ Fκ, where Fκ : κ̂ :=
(−1, 1)2 → κ̃ is an affine mapping of the form

(5) Fκ(~x) := Aκ~x +~bκ,

with Aκ := 1
2 diag(hκ

1 , hκ
2 ), where hκ

1 and hκ
2 are the lengths of the edges of κ̃ parallel

to the x̃1- and x̃2-axes, respectively, ~bκ is a two-component real-valued vector, and
Qκ : κ̃ → κ is a C1-diffeomorphism (cf. Figure 1).

Heuristically, we can say that the affine mapping Fκ defines the size of the
element κ and the diffeomorphism Qκ defines the “shape”. For this reason, we
shall be working with diffeomorphisms that are close to the identity in the following
sense: the Jacobian JQκ of Qκ satisfies

C−1
1 ≤ detJQκ ≤ C1, ‖(JQκ)ij‖L∞(κ) ≤ C2, i, j = 1, 2 for all κ ∈ T ,

uniformly throughout the mesh for some positive constants C1, C2.
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Figure 1. Construction of elements via composition of affine
maps and diffeomorphisms.

The above maps are assumed to be constructed so as to ensure that the union
of the closures of the disjoint open elements κ ∈ T forms a covering of the closure
of Ω, i.e., Ω̄ = ∪κ∈T κ̄.

We shall also make use of augmented Sobolev spaces, introduced in [13].

Definition 3.1. Let s be a nonnegative integer and κ an open (curvilinear) quadri-
lateral domain constructed as the image of an axiparallel rectangle κ̃ through a
Cs+1-diffeomorphism Qκ, as indicated above. We define the augmented Sobolev
space of order s on κ by

(6) H̃s(κ) := {(u ◦Qκ) ∈ Hs(κ̃) : for (α, β) ∈ IA, ∂α
1 ∂β

2 (u ◦Qκ) ∈ L2(κ̃)},
where

IA := {(α, β) ∈ N2
0 : α + β = s + 1, excluding (s + 1, 0) and (0, s + 1)},

with associated norm ‖ · ‖H̃s(κ) and seminorms | · |H̃s(κ),i :

‖u‖H̃s(κ) :=
(
‖u ◦Qκ‖2Hs(κ̃) +

∑

(α,β)∈IA

‖∂α
1 ∂β

2 (u ◦Qκ)‖2κ̃
) 1

2

,

|u|H̃s(κ),i :=
(
‖∂s

i (u ◦Qκ)‖2κ̃ + h2
κ‖∂s

i ∂j(u ◦Qκ)‖2κ̃ + h2
κ‖∂s−1

i ∂2
j (u ◦Qκ)‖2κ̃

) 1
2

,

for i, j = 1, 2, with i 6= j, and hκ := diam(κ).

Augmented Sobolev spaces were introduced in [13] to provide sufficient regularity
assumptions for the first fully hp-optimal error analysis of the hp-DGFEM for the
boundary-value problem (1), (3) in the special case when a is strictly positive
definite and b ≡ ~0.

Since the hp-DGFEM is a non-conforming method, it is necessary to introduce
the notion of a broken Sobolev space.

Definition 3.2. We define the broken Sobolev space of composite order s on an
open set Ω, subject to a subdivision T of Ω, as

Hs(Ω, T ) = {u ∈ L2(Ω) : u|κ ∈ Hsκ(κ) ∀κ ∈ T },

with Hsκ(κ) ∈ {Hsκ(κ), H̃sκ(κ)}, sκ being the local Sobolev index on the element
κ, and s := (sκ : κ ∈ T ); when sκ = s for all κ ∈ T , we shall write Hs(Ω, T ).
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4. Weak Formulation

Let us first introduce some notation. Let T be a subdivision of Ω into elements
κ, as described in the previous section. By E we denote the set of all open one-
dimensional element faces associated with the subdivision T , and we define Γ :=
∪e∈Ee. We also assume that E is decomposed into two subsets, namely Eint and E∂ ,
which contain the set of all elements of E that are not subsets of ∂Ω and the set
of all elements of E that are subsets of ∂Ω, respectively. E∂ is further decomposed
into ED and EN, such that ΓD := ∪e∈EDe, ΓN := ∪e∈ENe and Γint := ∪e∈Einte, all
with the obvious meanings. Thus, introducing an element numbering, and given
an interface e ∈ Eint, there exist indices i and j such that i > j and the elements
κ := κi and κ′ := κj share the edge e. Then we define the jump of a function
u ∈ H1(Ω, T ) across e and the mean value of u on e by

[u]e := u|∂κ∩e − u|∂κ′∩e and 〈u〉e :=
1
2
(u|∂κ∩e + u|∂κ′∩e),

respectively, where ∂κ denotes the union of all open edges of the element κ. With
each edge we associate the unit normal vector ν pointing from element κi to κj

when i > j; we choose ν to be the unit outward normal µ when e ∈ E∂ .
Also, we divide the union of all open edges ∂κ of every element κ into two subsets

∂−κ := {x ∈ ∂κ : b(x) · µ(x) < 0}, ∂+κ := {x ∈ ∂κ : b(x) · µ(x) > 0},
where µ(·) denotes the unit outward normal vector function associated with the
element κ; we call these the inflow and outflow parts of ∂κ respectively. Then, for
every element κ ∈ T , we denote by u+

κ the trace of u on ∂κ taken from within the
element κ (interior trace). We also define the exterior trace u−κ of u ∈ H1(Ω, T )
for almost all x ∈ ∂−κ\Γ to be the interior trace u+

κ′ of u on the element(s) κ′ that
share the edges contained in ∂−κ\Γ of the boundary of element κ. Then, the jump
of u across ∂−κ\Γ is defined by

bucκ := u+
κ − u−κ .

We note that this definition of jump is not the same as the one define above;
here the sign of the jump depends on the direction of the flow, whereas [·] depends
only on the element-numbering. We note that the subscripts in these definitions
will be suppressed when no confusion is likely to occur.

The broken weak formulation of the problem (1), (3), from which the interior
penalty DGFEM will emerge, reads

(7) find u ∈ A such that B(u, v) = l(v) ∀v ∈ H2(Ω, T ),

where

A := {u ∈ H2(Ω, T ) : u, (a∇u) · ν are continuous across all e ∈ Eint},

B(u, v) :=
∑

κ∈T

∫

κ

a∇u · ∇v dx +
∑

κ∈T

∫

κ

(b · ∇u + cu)v dx

−
∑

κ∈T

∫

∂−κ∩(Γ−∪ΓD)

(b · µ)u+v+ds−
∑

κ∈T

∫

∂−κ\Γ∂

(b · µ)bucv+ds

+
∫

ΓD

{θ((a∇v) · µ)u− ((a∇u) · µ)v}ds +
∫

ΓD

σuv ds

+
∫

Γint

{θ〈(a∇v) · ν〉[u]− 〈(a∇u) · ν〉[v]}ds +
∫

Γint

σ[u][v] ds,
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and

l(v) : =
∑

κ∈T

∫

κ

fv dx−
∑

κ∈T

∫

∂−κ∩(Γ−∪ΓD)

(b · µ)gDv+ds

+
∫

ΓD

θ((a∇v) · µ)gD ds +
∫

ΓN

gNv ds +
∫

ΓD

σgDv ds,(8)

for θ ∈ {−1, 1}, with the function σ to be defined in the error analysis below.

5. Finite Element Spaces

We shall restrict ourselves to meshes that are unions of diffeomorphic images of
rectangles and to tensor-product polynomial spaces. In the case of shape-regular
triangular and rectangular elements, the error analysis has already been carried out
in [18]. For considerations on anisotropic triangles for the h-version FEM we refer
to [1, 10] and the references therein.

Let Î ≡ (−1, 1) and κ̂ ≡ Î × Î = (−1, 1)2. On the interval Î we denote the space
of polynomials of degree p or less by Pp(Î). Then, for ~p := (p1, p2), the anisotropic
tensor-product polynomial space Q~p is defined by Q~p(κ̂) := Pp1(Î)⊗Pp2(Î), where
⊗ denotes the standard functional tensor product.

Let T be a subdivision of the computational domain Ω into elements κ ∈ T and
let F = {Fκ : κ ∈ T }, Q = {Qκ : κ ∈ T }, where Fκ, Qκ are the maps defined in
Section 3.

Definition 5.1. Let ~p := (~pκ : κ ∈ T ) be the 2 × |T |-matrix containing the
polynomial degree vectors ~pκ of the elements in a given subdivision T . We define
the finite element space with respect to Ω, T , F and ~p by

S~p(Ω, T ,F,Q) := {u ∈ L2(Ω) : u|κ ◦Qκ ◦ Fκ ∈ Q~pκ
(κ̂)}.

6. Discontinuous Galerkin Finite Element Method

Using the weak formulation stated in Section 4 and the finite element spaces
from Section 5, the discontinuous Galerkin finite element method for the problem
(1), (3) is defined as follows:
(9) find uDG ∈ S~p(Ω, T ,F,Q) such that B(uDG, v) = l(v) ∀v ∈ S~p(Ω, T ,F,Q),
with the function σ contained in B(·, ·) and in l(·) to be defined in the error analysis.
We shall refer to the DGFEM with θ = −1 as the symmetric interior penalty
discontinuous Galerkin finite element method, whereas for θ = 1 the DGFEM will
be referred to as the non-symmetric interior penalty discontinuous Galerkin finite
element method. This terminology stems from the fact that when b ≡ ~0, the bilinear
form B(·, ·) is symmetric if, and only if, θ = −1.

We make some assumptions on the regularity of the solution and on the functions
in the finite element space S~p(Ω, T ,F,Q). We assume that pκ

i ≥ 1, i = 1, 2, κ ∈ T ,
whenever diffusion is present, in order to ensure that the matrix of the system of
linear algebraic equations that arises from (9) is nonsingular. When the analytical
solution u ∈ A, the following Galerkin orthogonality property holds: B(u−uDG, v) =
0 for every v ∈ S~p(Ω, T ,F,Q). If the continuity assumptions involved in the
definition of A are violated, as is the case, for example, in an elliptic transmission
problem, the DGFEM has to be modified accordingly.

7. Projection Operators and Inverse Inequalities

7.1. L2-Orthogonal Projection Operator. Let û ∈ L2(Î), with Î ≡ (−1, 1).
We define the L2-orthogonal projection π̂p on Î in a standard fashion by means of
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truncated Legendre series (see, e.g., [27]). Also, we denote by Φ1(p, s) and Φ2(p, s)
the quantities

(10) Φ1(p, s) :=
(

Γ(p− s + 1)
Γ(p + s + 1)

) 1
2

and Φ2(p, s) :=
Φ1(p, s)√
p(p + 1)

,

respectively, with p, s real numbers such that 0 ≤ s ≤ p and Γ(·) being the Gamma
function; we also adopt the standard convention Γ(1) = 0! = 1. We remark on
the asymptotic behaviour of Φ1(p, s): making use of Stirling’s formula we obtain
Φ1(p, s) ≤ C(s)p−s, for p ≥ 1, with 0 ≤ s ≤ p and C(s) denoting a generic constant
depending on s. We recall the following approximation result (Theorem 3.11 in
[27]).

Lemma 7.1. Let û ∈ Hk+1(Î), k ≥ 0; then, for every integer s such that 0 ≤ s ≤
min{p + 1, k + 1}, the following estimate holds:
(11) ‖û− π̂pû‖Î ≤ Φ1(p + 1, s)‖û(s)‖Î .

Next, we recall a result concerning the estimation of the approximation error of
the L2-projection on the boundary (Lemma 3.5 in [18]).

Lemma 7.2. Let û ∈ Hk+1(Î) for some integer k ≥ 0; then, for 0 ≤ t ≤ min{p, k},
p ≥ 0, we have

(12) |(û− π̂pû)(±1)| ≤ Φ1(p, t)√
2p + 1

‖û(t+1)‖Î .

Also, we shall make use of the following “commutation error” bound. For a
proof we refer to [12]. A result of this form in several space dimensions (but with
unspecified constants) can be found in [4] (Lemma 2.3).

Lemma 7.3. Let û ∈ Hk+1(Î), k ≥ 0, and let π̂pû ∈ Pp(Î) be its L2-projection
with p ≥ 0; then

‖π̂pû
′ − (π̂pû)′‖Î ≤ CL2

p Φ1(p, s)‖û(s+1)‖Î ,(13)

for any 0 ≤ s ≤ min{p, k}, with CL2

0 = 1, and CL2

p = (2p + 2)
1
2 , for p ≥ 1.

Moreover,

‖û′ − (π̂pû)′‖Î ≤ (1 + CL2

p )Φ1(p, s)‖û(s+1)‖Î ,(14)

for any 0 ≤ s ≤ min{p, k}.
We extend the notion of the L2-orthogonal projection operator to two dimen-

sions. Let κ̂ ≡ (−1, 1)2. Then the L2-orthogonal projection with composite poly-
nomial degree vector ~p = (p1, p2), is defined by

Π̂~p = π̂1
p1

π̂2
p2

:= (π̂1
p1
⊗ I) ◦ (I ⊗ π̂2

p2
),

where the superscripts 1, 2 indicate the directions in which the one-dimensional
projections are applied.

We derive error estimates for functions defined on unions of diffeomorphic images
of axiparallel rectangular domains. The domains of our interest will be elements
of a given subdivision T of the computational domain Ω, admitting the properties
stated in Section 3. We shall not require any shape-regularity hypotheses of the
form

(15) C−1 ≤ Rκ̃/rκ̃ ≤ C,

for κ̃, where Rκ̃, rκ̃ denote the radii of the circumcircle and inscribed circle of κ̃,
respectively. Indeed, instead of working with the diameter, hκ := diam(κ), of the
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element κ as a measure of the meshsize, we derive bounds on the approximation
error in terms of the elemental directional magnitudes hκ

1 and hκ
2 .

Definition 7.4. Let ũ : κ̃ → R and u : κ → R and assume that there exist mappings
Fκ : κ̂ → κ̃, Qκ : κ̃ → κ as above. We define the L2-projection operator Π̃~p on κ̃,
with ~p = (p1, p2) being the composite polynomial degree vector, by the relation

Π̃~pũ := (Π̂~p(ũ ◦ Fκ)) ◦ F−1
κ , for ũ ∈ L2(κ̃),

where, as before, Π̂~p denotes the L2-orthogonal projection onto the reference ele-
ment κ̂. Moreover, we define the L2-orthogonal projection operator Π~p on κ, with
~p = (p1, p2), by

Π~pu := (Π̃~p(u ◦Qκ)) ◦Q−1
κ , for u ∈ L2(κ).

We introduce some notation which we shall use in the approximation estimates
below. Let JQκ

=
(
(JQκ

)ij

)
i,j=1,2

denote the Jacobian of Qκ. We then define, for
i, j = 1, 2:

Cκ := ‖detJQκ
‖

1
2
L∞(κ̃) , C ′κ := ‖(det JQκ

)−1‖
1
2
L∞(κ̃) , Cij

κ := ‖(JQκ
)ij‖L∞(κ̃),

J i
Qκ

:=
(
(JQκ)2ii + (JQκ)2ij

) 1
2 for i 6= j, Ci

∂κ := ‖J i
Qκ
‖L∞(∂κ̃i).(16)

Lemma 7.5. Let u ∈ Hk+1(κ), for k ≥ 1, and let Qκ be a Ck+1-diffeomorphism;
then, for ũ := u ◦Qκ, ~p = (p1, p2) and p1, p2 ≥ 1, we have

(17) (Cκ)−1‖u−Π~pu‖κ ≤ M0
κ :=

2∑

i=1

Φ2(pi, si)
(

hi

2

)si+1

‖∂̃si+1
i ũ‖κ̃,

and

(18) ‖∂i(u−Π~pu)‖κ ≤ C1
κ,iM

1
κ,i + C2

κ,iM
1
κ,j ,

with

(19) M1
κ,i := 4pi

1
2 Φ1(pi, si)

(
hi

2

)si

‖∂̃si+1
i ũ‖κ̃ + Φ1(pj , sj)

(
hj

2

)sj

‖∂̃sj

j ∂̃iũ‖κ̃,

where i, j = 1, 2, i 6= j, 0 ≤ si ≤ min{pi, k}, for i = 1, 2, ∂̃i is the partial derivative
in x̃i-direction in the x̃1x̃2-plane, and

C1
κ,i :=

{
1, if Qκ = id,√

2Cjj
κ C ′κ, otherwise

, C2
κ,i :=

{
0, if Qκ = id,√

2Cji
κ C ′κ, otherwise

.

Proof. For (17), we have

‖u−Π~pu‖κ ≤ Cκ‖ũ− Π̃~pũ‖κ̃ ≤ Cκ

(
h1

2
h2

2

)1
2

‖û− Π̂~pû‖κ̂,

where û := ũ ◦ Fκ. Making use of the bound

(20) ‖û− Π̂~pû‖κ̂ ≤
2∑

i=1

Φ1(pi + 1, ti)‖∂̂ti
i û‖κ̂,

with 0 ≤ ti ≤ min{pi + 1, k + 1}, whose proof can be found, e.g., in [18], noting
that Φ1(pi + 1, ti) ≤ Φ2(pi, si) for ti = si + 1, and scaling the right-hand side back
to κ̃, we obtain the result.

For (18), a change of variables yields

‖∂i(u−Π~pu)‖κ ≤ C1
κ,i‖∂̃i(ũ− Π̃~pũ)‖κ̃ + C2

κ,i‖∂̃j(ũ− Π̃~pũ)‖κ̃

≤ C1
κ,i

(
hj

hi

)1
2

‖∂̂i(û− Π̂~pû)‖κ̂ + C2
κ,i

(
hi

hj

)1
2

‖∂̂j(û− Π̂~pû)‖κ̂,
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with i, j = 1, 2, i 6= j, where ∂̂i has the obvious meaning. Without loss of generality,
let i = 1; then

‖∂̂1(û− Π̂~pû)‖κ̂ ≤ ‖∂̂1û− Π̂~p(∂̂1û)‖κ̂ + ‖Π̂~p(∂̂1û)− ∂̂1Π̂~pû‖κ̂.

Using (20), the first term on the right-hand side can be bounded as follows:

‖∂̂1û− Π̂~p(∂̂1û)‖κ̂ ≤ Φ1(p1 + 1, t1)‖∂̂t1+1
1 û‖κ̂ + Φ1(p2 + 1, q2)‖∂̂q2

2 ∂̂1û‖κ̂

with 0 ≤ q2 ≤ min{p2 + 1, k}, 0 ≤ t1 ≤ min{p1, k}. Also,

‖Π̂~p(∂̂1û)− ∂̂1Π̂~pû‖κ̂ = ‖π̂2
p2

(π̂1
p1

(∂̂1û)− ∂̂1π̂
1
p1

û)‖κ̂ ≤ CL2

p1
Φ1(p1, t1)‖∂̂t1+1

1 û‖κ̂;

in the equality, we used the commutativity of ∂̂1 with π̂2
p2

, and in the inequality we
used the boundedness of π̂2

p2
, as well as (13) and Φ1(p1 + 1, t1) ≤ Φ1(p1, t1). Thus,

(21) ‖∂̂i(û− Π̂~pû)‖κ̂ ≤ (1 + CL2

pi
)Φ1(pi, ti)‖∂̂ti+1

i û‖κ̂ + Φ1(pj + 1, qj)‖∂̂qj

j ∂̂iû‖κ̂,

and the result follows, by scaling back to κ̃. ¤

Remark 7.6. Here and in the subsequent discussion, we prefer to keep in the
anisotropic bounds norms of derivatives of ũ on κ̃ rather than norms of derivatives
of u on κ, as we then obtain sharper bounds which indicate the different features of
u in the actual directions of anisotropy.

Lemma 7.7. Let u ∈ Hk+1(κ), with k ≥ 0, and let Qκ be a Ck+1-diffeomorphism;
then, on defining ∂κ̂1 := (−1, 1) × {±1}, ∂κ̂2 := {±1} × (−1, 1), ∂κ̃i := Fκ(∂κ̂i)
and ∂κi := Qκ(∂κ̃i), for i = 1, 2, we have

(Ci
∂κ)−1‖u−Π~pu‖∂κi ≤ M0

∂κ,i := (2pj)−
1
2 Φ1(pj , sj)

(
hj

2

)sj+
1
2

‖∂̃sj+1
j ũ‖κ̃

+
√

2p
− 1

2
i Φ1(pi, si)

(
hi

hj

)1
2
(

hi

2

)si+
1
2

‖∂̃si+1
i ũ‖κ̃

+
√

2(p−
1
2

i + p
− 1

2
j )Φ1(pi, si)

(
hj

2

)1
2
(

hi

2

)si

‖∂̃si
i ∂̃j ũ‖κ̃,

with i, j = 1, 2, i 6= j, 0 ≤ si ≤ min{pi, k}, pi ≥ 1, for i = 1, 2, ũ = u ◦Qκ and Ci
∂κ

as in (16).

Proof. For a complete proof we refer to [12] (Lemma 3.8, p. 49, and Lemma 3.17,
p. 56). The proof there follows the ideas of the proof of Lemma 3.6 in [18] which is
the corresponding result when ~p = (p, p). Here we only comment that the crucial
ingredient of the proof is the use of the trace inequality

(22) ‖u‖∂κ̂i
≤ ‖u‖κ̂ + 2‖u‖

1
2
κ̂ ‖∂̂ju‖

1
2
κ̂ ,

which refines the trace inequality used therein; we then apply (22) with u = û −
Π̂~pû. ¤

The above estimates hold also for ~p ∈ {(0, 0), (0, 1), (1, 0)}, but these cases were
not included in the bounds for simplicity of the exposition.

Next, we derive bounds on the H1-norm of the approximation error on the
boundary. We shall make use of the following inverse inequality [12].

Lemma 7.8. Let v ∈ Q~p(κ̂) with ~p = (p1, p2) and let wi ∈ C(¯̂κ) be such that wi is
constant in the direction of xj, for i, j = 1, 2, i 6= j; then,

(23) ‖wiv‖∂κ̂i ≤ (pj + 1)‖wiv‖κ̂.
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Lemma 7.9. Let u ∈ Hk+1(κ), with k ≥ 1, and let Qκ be a Ck+1-diffeomorphism;
then the following error estimates hold:

‖∂i(u−Π~pu)‖∂κi ≤ C1,i
∂κ,iM

1
∂κ,i + C2,i

∂κ,iM
2
∂κ,i,(24)

‖∂j(u−Π~pu)‖∂κi
≤ C1,i

∂κ,jM
2
∂κ,i + C2,i

∂κ,jM
1
∂κ,i,(25)

with

M1
∂κ,i := 4

√
3piΦ1(pi, si)

(
hi

2

)si− 1
2
((

hi

hj

)1
2

‖∂̃si+1
i ũ‖κ̃

+
(
p
− 1

2
i + p

− 1
2

j

)(
hj

hi

)1
2

‖∂̃si
i ∂̃j ũ‖κ̃

)

+
(15pj

28

) 1
2
Φ1(pj , sj)

(
hj

2

)sj− 1
2

‖∂̃sj

j ∂̃iũ‖κ̃,(26)

for i, j = 1, 2, i 6= j, 0 ≤ si ≤ min{pi, k}, pi ≥ 1, i = 1, 2, and

M2
∂κ,i := (pj + 1)

(
5p

1
2
j Φ1(pj , sj)

(
hj

2

)sj− 1
2

‖∂̃sj+1
j ũ‖κ̃

+Φ1(pi, si)
(

hi

hj

)1
2
(

hi

2

)si− 1
2

‖∂̃si
i ∂̃j ũ‖κ̃

)
,(27)

for 1 ≤ si ≤ min{pi, k}, and for l = 1, 2,

C1,l
∂κ,i :=

{
1, if Qκ = id,√

2Cl
∂κCjj

κ (C ′κ)2, otherwise
, C2,l

∂κ,i :=
{

0, if Qκ = id,√
2Cl

∂κCji
κ (C ′κ)2, otherwise

.

Proof. Let i = 1; for i = 2 the proof is analogous. For the proof of (24), we first
use the chain rule and then we apply a change of variables (cf. the proof of Lemma
7.5) to obtain

‖∂i(u−Π~pu)‖∂κi ≤ C1,i
∂κ,i‖∂̃i(ũ− Π̃~pũ)‖∂κ̃i + C2,i

∂κ,i‖∂̃j(ũ− Π̃~pũ)‖∂κ̃i

= C1,i
∂κ,i

(
2
hi

)1
2

‖∂̂i(û− Π̂~pû)‖∂κ̂i +

(
2h2

j

hi

)1
2

C2,i
∂κ,i‖∂̂j(û− Π̂~pû)‖∂κ̂i .(28)

To bound ‖∂̂i(û− Π̂~pû)‖∂κ̂i , we proceed as follows. Without loss of generality we
assume that i = 1. We have, respectively,

‖∂̂1(û− Π̂~pû)‖∂κ̂1 = ‖∂̂1û− π̂2
p2

(∂̂1π̂
1
p1

û)‖∂κ̂1

≤ ‖∂̂1û− π̂2
p2

(∂̂1û)‖∂κ̂1 + ‖π̂2
p2

(∂̂1û− ∂̂1π̂
1
p1

û)‖∂κ̂1

≤ ‖∂̂1û− π̂2
p2

(∂̂1û)‖∂κ̂1 + ‖∂̂1û− ∂̂1π̂
1
p1

û‖∂κ̂1

+‖(∂̂1û− ∂̂1π̂
1
p1

û)− π̂2
p2

(∂̂1û− ∂̂1π̂
1
p1

û)‖∂κ̂1 .(29)

The first and the third terms on the right-hand side of (29) can be bounded using
(12) for t = t2 and t = 0 respectively. For the second term on the right-hand side of
(29), we use the trace inequality (22) and, observing that ∂̂2π̂

1
p1

= π̂1
p1

∂̂2, and using
Cauchy’s inequality in the form 2βγ ≤ β2/c + cγ2, with c = ((pi + 1)

1
2 − 1)−1, we

deduce that

‖∂̂1û− ∂̂1π̂
1
p1

û‖∂κ̂1 ≤ (c−1 + 1)‖∂̂1û− ∂̂1π̂
1
p1

û‖κ̂ + c‖∂̂1(∂̂2û)− ∂̂1π̂
1
p1

(∂̂2û)‖κ̂.
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Hence, we deduce that

‖∂̂1(û− Π̂~pû)‖∂κ̂1 ≤ Φ1(p2, t2)√
2p2 + 1

‖∂̂t2+1
2 ∂̂1û‖κ̂ +

1√
2p2 + 1

‖∂̂1(∂̂2û)− ∂̂1π̂
1
p1

(∂̂2û)‖κ̂

+(c−1 + 1)‖∂̂1û− ∂̂1π̂
1
p1

û‖κ̂ + c‖∂̂1(∂̂2û)− ∂̂1π̂
1
p1

(∂̂2û)‖κ̂;

an application of (14) to the last three terms on the right-hand side of the last
inequality yields

‖∂̂i(û− Π̂~pû)‖∂̂κ̂i
≤Φ1(pj , tj)√

2pj + 1
‖∂̂tj+1

j ∂̂iû‖κ̂ + (pi + 1)
1
2 (1 + CL2

pi
)Φ1(pi, si)‖∂̂si+1

i û‖κ̂

+
(
((pi + 1)

1
2 − 1)−1 + (2pj + 1)−

1
2

)
(1 + CL2

pi
)Φ1(pi, ti)‖∂̂ti+1

i ∂̂j û‖κ̂,(30)

for i = 1 and j = 2, where 0 ≤ ti, qi ≤ min{pi, k − 1} and 0 ≤ si ≤ min{pi, k} and
0 ≤ ri ≤ min{pi + 1, k}; the proof for i = 2 and j = 1 follows analogously.

To bound ‖∂̂2(û− Π̂~pû)‖∂κ̂1 , we have:

‖∂̂2(û− Π̂~pû)‖∂κ̂1 = ‖∂̂2û− π̂1
p1

(∂̂2π̂
2
p2

û)‖∂κ̂1

≤ ‖∂̂2û− π̂2
p2

(∂̂2û)‖∂κ̂1 + ‖π̂2
p2

∂̂2û− π̂1
p1

(π̂2
p2

∂̂2û)‖∂κ̂1

+‖π̂1
p1

(π̂2
p2

∂̂2û− ∂̂2π̂
2
p2

û)‖∂κ̂1

≤ ‖∂̂2û− π̂2
p2

(∂̂2û)‖∂κ̂1 + (p2 + 1)‖π̂2
p2

∂̂2û− π̂1
p1

(π̂2
p2

∂̂2û)‖κ̂

+(p2 + 1)‖π̂1
p1

(π̂2
p2

∂̂2û− ∂̂2π̂
2
p2

û)‖κ̂,(31)

with the last inequality emerging from applying (23), after noting that the quantities
inside the norms of the last two terms on the right-hand side are polynomials in the
x̂2-direction. The first term on the right-hand side of (31) can be bounded directly
using (12). For the second term we have

‖π̂2
p2

∂̂2û− π̂1
p1

(π̂2
p2

∂̂2û)‖κ̂ ≤ Φ1(pi + 1, ri)‖π̂2
p2

∂̂
ri
1 ∂̂2û‖κ̂ ≤ Φ1(pi + 1, ri)‖∂̂ri

1 ∂̂2û‖κ̂.

The last term on the right-hand side of (31), is bounded by first using the bound-
edness of the L2-orthogonal projection and subsequently by applying (13), yielding

‖∂̂j(û− Π̂~pû)‖∂̂κ̂i
≤ Φ1(pj , qj)√

2pj + 1
‖∂̂qj+2

j û‖κ̂ + (pj + 1)Φ1(pi + 1, ri)‖∂̂ri
i ∂̂j û‖κ̂

+(pj + 1)CL2

pj
Φ1(pj , sj)‖∂̂sj+1

j û‖κ̂,(32)

for i = 1 and j = 2, where 0 ≤ ti, qi ≤ min{pi, k − 1} and 0 ≤ si ≤ min{pi, k} and
0 ≤ ri ≤ min{pi + 1, k}; the proof for i = 2 and j = 1 follows analogously. Now,
choosing ti = si − 1, for i = 1, 2, in (30), using the relation

Φ1(pj , sj − 1)√
2pj + 1

≤
(15pj

28

) 1
2
Φ1(pj , sj),

for 1 ≤ sj ≤ pj , and scaling back to κ̃ we obtain (24). Also, setting qi = si − 1,
ri = si in (32), and scaling back to κ̃, (25) follows. ¤

Remark 7.10. Setting p1 = p2 and using Stirling’s formula, as above, one can
easily see that the bounds (18) and (24), (25) are optimal in the meshsize h but
suboptimal in the polynomial degree p by half an order of p, and by a whole order
of p, respectively. Similar bounds were derived in [4], for shape-regular domains.
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7.2. H1-Projection Operator. The p-suboptimality of the approximation bounds
for the error of the L2-projection noted in Remark 7.10 means that this projection
operator is not particularly suitable for use in our error analysis of the hp-DGFEM
when diffusion is present in the problem.

Motivated by [13], we shall also consider the H1-projection operator which will
be required in the error analysis of the hp-DGFEM for reaction-diffusion problems.

Definition 7.11. In one dimension, we define the H1-projection operator
λ̂p : H1(Î) → Pp(Î), p ≥ 1,

by setting, for û ∈ H1(Î),

(λ̂pû)(x) :=
∫ x

−1

π̂p−1(û′)(η)dη + û(−1), x ∈ Î = (−1, 1),

with π̂p−1 the L2-projection operator onto Pp−1(Î). In analogy with Definition
7.4 we define the operators Λ̃~p and Λ~p, both with the obvious meanings (see also
Definition 6.10 in [13]).

As the corresponding bounds on the approximation error of the H1-projection
operator on the reference element and on the reference element boundary, along with
their proofs, are included in [13] (Section 6.1), here we shall only present the bounds
on general (possibly anisotropic) elements, thus extending the error estimates from
Section 6.2 of [13] to the anisotropic setting. For the sake of brevity, for those of the
results below which are straightforward extensions of the corresponding anisotropic
result from [13] only a sketch of the proof is included.

Lemma 7.12. Let κ be as above, let u ∈ H̃k+1(κ), for k ≥ 0, and let Qκ be a
Ck+2-diffeomorphism; then, the following error estimates hold:

(Cκ)−1‖u− Λ~pu‖κ ≤ Ñ0
κ :=

2∑

i=1

Φ2(pi, si)
(

hi

2

)si+1

‖∂̃si+1
i ũ‖κ̃

+ min
i∈{1,2}

{
Φ2(pi, 0)Φ2(pj , sj)

hi

2

(
hj

2

)sj+1

‖∂̃sj+1
j ∂̃iũ‖κ̃

}
,(33)

and
(34) ‖∂i(u− Λ~pu)‖κ ≤ C1

κ,iÑ
1
κ,i + C2

κ,iÑ
1
κ,j ,

with

(35) Ñ1
κ,i := Φ1(pi, si)

(
hi

2

)si

‖∂̃si+1
i ũ‖κ̃ + Φ2(pj , sj)

(
hj

2

)sj+1

‖∂̃sj+1
j ∂̃iũ‖κ̃,

where i, j = 1, 2, i 6= j, 0 ≤ si ≤ min{pi, k}, pi ≥ 1, for i = 1, 2, and Cκ, C1
κ,i, C

2
κ,i

are as defined in Lemma 7.5.
If u ∈ Hk+1(κ), for k ≥ 1, then the bounds (33) and (34) hold, with

N0
κ :=

2∑

i=1

Φ2(pi, si)
(

hi

2

)si+1

‖∂̃si+1
i ũ‖κ̃

+ min
i∈{1,2}

{
Φ2(pi, 0)Φ1(pj , sj)

hi

2

(
hj

2

)sj

‖∂̃sj

j ∂̃iũ‖κ̃

}
,(36)

and

(37) N1
κ,i := Φ1(pi, si)

(
hi

2

)si

‖∂̃si+1
i ũ‖κ̃ + Φ1(pj , sj)

(
hj

2

)sj

‖∂̃sj

j ∂̃iũ‖κ̃,

replacing Ñ0
κ and Ñ1

κ,i respectively, where 1 ≤ si ≤ min{pi, k} and pi ≥ 1, for
i = 1, 2.
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Proof. The proof follows in a straightforward fashion combining the bounds in
Lemma 6.7 of [13], together with the scaling argument presented in the proof of
Lemma 7.5 above. ¤

Next, we present bounds on the approximation error on the boundary of κ.

Lemma 7.13. Let u ∈ H̃k+1(κ), with k ≥ 0, and let Qκ be a Ck+2-diffeomorphism;
then
(38) ‖u− Λ~pu‖∂κi

≤ Ci
∂κÑ0

∂κ,i,

with

(39) Ñ0
∂κ,i := 2Φ2(pi, si)

(
hi

2

)si+
1
2
((

hi

hj

)1
2

‖∂̃si+1
i ũ‖κ̃ +

(h1h2)
2

1
2

‖∂̃si+1
i ∂̃j ũ‖κ̃

)
,

where i, j = 1, 2, i 6= j, 0 ≤ si ≤ min{pi, k}, for pi ≥ 1, i = 1, 2.
Now, let u ∈ Hk+1(κ), with k ≥ 1; then (38) holds, with

(40) N0
∂κ,i :=

√
2p
− 1

2
i Φ1(pi, si)

(
hi

2

)si+
1
2
((

hi

hj

)1
2

‖∂̃si+1
i ũ‖κ̃ +

(
hj

hi

)1
2

‖∂̃si
i ∂̃j ũ‖κ̃

)
,

replacing Ñ0
∂κ,i, for 1 ≤ si ≤ min{pi, k}, pi ≥ 1 for i = 1, 2.

Proof. The proof follows in a straightforward fashion combining the bounds in
Lemma 6.8 of [13], together with the anisotropic scaling argument described above.

¤

Remark 7.14. Making use of Stirling’s formula, we can see that, working on
augmented Sobolev spaces, we have enhanced convergence in the polynomial degree
p by half an order of p. This is in line with our results in [13] for the case of
shape-regular meshes.

Finally, we present bounds for the H1-approximation on the element boundary.

Lemma 7.15. Let u ∈ H̃k+1(κ), k ≥ 1, and let Qκ be a Ck+1-diffeomorphism;
then

‖∂i(u− Λ~pu)‖∂κi ≤ C1,i
∂κ,iÑ

1
∂κ,i + C2,i

∂κ,iÑ
2
∂κ,i,(41)

‖∂j(u− Λ~pu)‖∂κi ≤ C1,i
∂κ,jÑ

2
∂κ,i + C2,i

∂κ,jÑ
1
∂κ,i,(42)

with

Ñ1
∂κ,i := 2Φ1(pi, si)

(
hi

2

)si− 1
2
((

hi

hj

)1
2

‖∂̃si+1
i ũ‖κ̃ +

(h1h2)
2

1
2

‖∂̃si+1
i ∂̃j ũ‖κ̃

)
,

Ñ2
∂κ,i :=

√
2p
− 1

2
i Φ1(pi, si)

(
hi

2

)si+
1
2
((

hi

hj

)1
2

‖∂̃si+1
i ∂̃j ũ‖κ̃ +

(
hj

hi

)1
2

‖∂̃si
i ∂̃2

j ũ‖κ̃

)

+ 2p
1
2
j Φ1(pj , sj)

(
hj

2

)sj− 1
2
(
‖∂̃sj+1

j ũ‖κ̃ +
hi

2
Φ2(pi, 0)‖∂̃sj+1

j ∂̃iũ‖κ̃

)
,

where i, j = 1, 2, i 6= j, 1 ≤ si ≤ min{pi, k}, pi ≥ 1, i = 1, 2, and C1,l
∂κ,i and C2,l

∂κ,i,
l = 1, 2, are as in Lemma 7.9 above.

Now, let u ∈ Hk+1(κ), with k ≥ 2; then (41) and (42) hold with Ñ1
∂κ,i replaced

by N1
∂κ,i with

(43) N1
∂κ,i = (2pi)

1
2 Φ1(pi, si)

(
hi

2

)si− 1
2
((

hi

hj

)1
2

‖∂̃si+1
i ũ‖κ̃ +

(
hj

hi

)1
2

‖∂̃si
i ∂̃j ũ‖κ̃

)
,

with i, j = 1, 2, i 6= j, 1 ≤ si ≤ min{pi, k}, i = 1, 2, and Ñ2
∂κ,i replaced by N2

∂κ,i
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N2
∂κ,i = 2p

1
2
i Φ1(pi, si)

(
hi

2

)si− 1
2
((

hi

hj

)1
2

‖∂̃si
i ∂̃j ũ‖κ̃ +

(
hj

hi

)1
2

‖∂̃si−1
i ∂̃2

j ũ‖κ̃

)

+(2pj)
1
2 Φ1(pj , sj)

(
hj

2

)sj− 1
2
(
‖∂̃sj+1

j ũ‖κ̃ + 2pj
hi

hj
Φ2(pi, 0)‖∂̃sj

j ∂̃iũ‖κ̃

)
,(44)

with i, j = 1, 2, i 6= j, 2 ≤ si ≤ min{pi, k}, pi ≥ 2 for i = 1, 2.

Proof. The proof follows in a straightforward fashion combining the bounds in
Lemma 6.9 of [13], together with the scaling argument presented in the proof of
Lemma 7.9 above. ¤

Remark 7.16. The approximation estimates for the H1-projection operator are
optimal both in h and in p in each of the norms considered here.

7.3. Exponential Convergence Estimates. With the aid of the following lemma,
we shall be able to prove p-exponential bounds for the L2- and H1-projection op-
erators.

Lemma 7.17. Let u : κ̃ → R have an analytic extension to an open neighbourhood
of ¯̃κ. Let, also, p, s be positive numbers such that 0 ≤ n ≤ s := αp + n ≤ p, with
0 < α < 1; then the following bound holds:

(45) Φ1(p, s)‖∂̃s+1
i ∂̃m

j ũ‖κ̃ ≤ Cup
1
2 min{3,n+ 5

2}e−rp
(
meas2(κ̃)

) 1
2 ,

where r, Cu > 0 are constants that depend on n, u, 0 ≤ m ≤ n, with i, j ∈ {1, 2} for
i 6= j, and measn(X) denotes the n-dimensional Lebesgue measure of the domain
X.

For a proof, see [12], or Remark 3.9 in [17] for a similar argument.

7.4. Inverse Inequalities. In the error analysis in Section 8, we shall be inter-
ested in applying inverse inequalities to functions of the form |√a∇v|, where a
denotes the diffusion tensor from (1) and v ∈ Q~p(κ) with ~p = (p1, p2). We shall say
that the tensor a has the inverse property if an inverse inequality of the form

(46) ‖√a∇v‖∂κi ≤ Cinvpjh
− 1

2
j ‖√a∇v‖κ,

holds, for all v ∈ Q~p(κ), with i, j = 1, 2, i 6= j, ~p = (pi, p2), p1, p2 ≥ 1, where Cinv

is a positive constant independent of v, pj and hj . We consider some examples. If
(
√

a ◦Qκ) ∈ [Q~q(κ)]2×2 for every κ ∈ T , for some (uniformly bounded, as we refine
the mesh) composite polynomial degree ~q := (~q : κ ∈ T ) then (46) holds. If, on
axiparallel elements, a is of the form

a(x1, x2) =
(

a1(x2)v1(x1) 0
0 a2(x1)v2(x2)

)
,

where a1, a2 are arbitrary element-wise bounded functions and v1, v2 are element-
wise polynomial functions, then (46) holds. This family includes the Grušin-type
operators considered below, whose diffusion tensor is of the form a(x1, x2) :=
diag(1, λ2(x1)), with λ a bounded and Lipschitz-continuous function [14] (cf. also
[24]). Finally, if a is positive definite and

0 < c−1
a ≤ ‖ |√a|F ‖L∞(∂κ)‖ |(

√
a)−1|F ‖L∞(κ) ≤ ca,

uniformly on every κ ∈ T , where by | · |F we denote the Frobenius norm of a matrix,
then (46) holds with Cinv =

√
8ca.
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8. Error Analysis

We define the energy norm |‖·|‖ by

|‖w|‖2 :=
∑

κ∈T

(
‖√a∇w‖2κ + ‖c0w‖2κ +

1
2
‖b0w

+‖2∂−κ∩(ΓD∪Γ−) +
1
2
‖b0w

+‖2∂+κ∩Γ∂

+
1
2
‖b0(w+ − w−)‖2∂−κ\Γ∂

)
+

∫

ΓD

σw2ds +
∫

Γint

σ[w]2ds,

where b0 :=
√
|b · µ|, with µ on ∂κ denoting the outward normal to ∂κ, c0(x) :=

(c(x) − 1
2∇ · b(x))1/2 (whose radicand is, in a standard fashion, assumed to be

nonnegative), and σ is a positive function on ΓD ∪ Γint.
We introduce some more notation. We decompose ED into two parts E1

D and
E2
D containing those element edges that are images of the reference element edges

parallel to the x̂1- and x̂2-axes respectively. Also, we shall denote the entries of a
by a11 = a1, a22 = a2 and a12 = a21 = a3, for brevity. For ω ⊂ Ω̄, we define

(47) aω
i := ‖ai‖

1
2
L∞(ω), i ∈ {1, 2, 3}, cω := ‖c‖

1
2
L∞(ω), and ae

i,nor = ‖√an‖L∞(e),

where n denotes the normal vector to the edge e ∈ Ej
D ∪ Ej

int, for i, j = 1, 2, i 6= j.
Note that ae

i,nor = ae
i for axiparallel elements. Also, we define

bω
0 := ‖(b0)2‖

1
2
L∞(ω), bω

i := ‖(bi)2‖
1
2
L∞(ω), i = 1, 2.

We assume that

(48) b · ∇T vh ∈ S~p(Ω, T ,F,Q) ∀vh ∈ S~p(Ω, T ,F,Q).

The necessity of the condition (48) will be commented on below.

Lemma 8.1. Let Ω be a (curvilinear) polygonal domain, T a subdivision of Ω into
(possibly anisotropic) elements, constructed as in Section 3, and assume that the
diffusion tensor a admits the inverse property. We assign to every edge e ∈ E the
positive real number σe such that

σe ≥
{

0, if θ = 1;

Cσ〈 (a
e
j,norpj)

2

hj
〉e, if θ = −1,

for Cσ sufficiently large constant, depending on the constants Cinv|κ and Cinv|κ′ of
the elements κ and κ′ with e ⊂ κ̄∩ κ̄′, respectively (cf. (46)). Then, assuming that
w ∈ H1(Ω, T ), we have

|‖w|‖ ≤ CθB(w, w),

for Cθ := min{1, 1− θ}, with θ = {−1, 1}.
Proof. The proof is an extension of the corresponding proof for shape-regular el-
ements [25, 18]. The main difference lies in the use of the anisotropic inverse
inequality (46) (see [12] for details). ¤

The crucial importance in this choice of σ when θ = −1 (symmetric version of
the DGFEM) will be highlighted also in the numerical experiments.

We first present the general error bound for reaction-diffusion problems, i.e.,
when b ≡ ~0. We decompose the error u − uDG, where u denotes the analytical
solution, as u−uDG = η + ξ where η := u−ΛT~p u, ξ := ΛT~p u−uDG, with the broken
H1-projection operator ΛT~p defined element-wise by (ΛT~p u)|κ := Λ~pκ

(u|κ), with ~p
as in Definition 5.1 and Λ~pκ

denoting the H1-projection operator on the element κ.
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Theorem 8.2. Let Ω be a (curvilinear) polygonal domain, T a subdivision of Ω
into (possibly anisotropic) elements, constructed as in Section 3, and assume that
the diffusion tensor a admits the inverse property. We assign to every edge e ∈ E
the positive real number σe defined as in Lemma 8.1. Then, assuming that u ∈
A ∩ H̃k+1(Ω, T ), k :=

(
kκ : κ ∈ T )

with kκ ≥ 1, κ ∈ T , the solution uDG ∈
S~p(Ω, T ,F,Q) obeys the error bound

|‖u− uDG|‖ ≤ Cθ

∑

κ∈T

2∑

i=1

{ (
2
√

2aκ
i (C1

κ,iÑ
1
κ,i + C2

κ,iÑ
1
κ,j) + cκCκÑ0

κ

)

+
∑

e⊂∂κi

{
ze

(
〈Cinv

(ae
jpj)2

hj
〉

1
2
e + 2σ

1
2
e

)
Ci

∂κÑ0
∂κ,i(49)

+
√

2
〈ae

j,nor〉e
σ

1
2
e

(
(〈ae

i 〉eC1,i
∂κ,i + 〈ae

j〉eC2,i
∂κ,j)Ñ

1
∂κ,i

+(〈ae
i 〉eC2,i

∂κ,i + 〈ae
j〉eC1,i

∂κ,j)Ñ
2
∂κ,i

)}}
,

where Ñ0
κ , Ñ1

κ,i, Ñ
0
∂κ,i, Ñ

1
∂κ,i and Ñ2

∂κ,i are as in Section 7.2, with i, j = 1, 2, i 6= j,
and ze is a “switch” taking the value 0 when the projection ΛT~p u is continuous
across the interface e, and 1 otherwise. We have also adopted the convention that
the outer trace of a quantity on a boundary edge is equal to its inner trace.

Moreover, if u ∈ A ∩ Hk+1(Ω, T ) with kκ ≥ 2, κ ∈ T , the solution uDG ∈
S~p(Ω, T ,F,Q) obeys the error bound (49), with N0

κ , N1
κ,i, N

0
∂κ,i, N

1
∂κ,i and N2

∂κ,i

replacing Ñ0
κ , Ñ1

κ,i, Ñ
0
∂κ,i, Ñ

1
∂κ,i and Ñ2

∂κ,i, respectively.

Proof. We have

(50) |‖u− uDG|‖ ≤ |‖η|‖+ |‖ξ|‖.
We now bound |‖ξ|‖ by a collection of norms of η. First, we observe that ξ ∈
S~p(Ω, T ,F,Q); the Galerkin orthogonality property

B(u− uDG, ξ) = 0

then implies that

(51) |‖ξ|‖2 ≤ CθB(ξ, ξ) = B((u− uDG)− η, ξ) = −B(η, ξ).

We shall now bound the terms appearing in (51), starting with∣∣∣∣∣
∑

κ∈T

∫

κ

a∇η · ∇ξdx

∣∣∣∣∣ ≤
(∑

κ∈T

∫

κ

|√a∇η|2dx

) 1
2

(∑

κ∈T

∫

κ

|√a∇ξ|2dx

) 1
2

≤ |‖ξ|‖
(∑

κ∈T
‖√a∇η‖2κ

) 1
2

≤ |‖ξ|‖
(

2∑

i=1

∑

κ∈T
2(aκ

i )2‖∂iη‖2κ
) 1

2

,(52)

making use of the discrete and continuous versions of the Cauchy–Schwarz inequal-
ities. Similarly,

(53)

∣∣∣∣∣
∑

κ∈T

∫

κ

cηξdx

∣∣∣∣∣ ≤ |‖ξ|‖
(∑

κ∈T

∫

κ

cη2dx

) 1
2

≤ |‖ξ|‖
(∑

κ∈T
c2
κ‖η‖2κ

) 1
2

.

Also,
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∣∣∣∣∣
∫

Γi
D

η((a∇ξ) · µ)ds

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

e∈Ei
D

∫

e

√
γi

e(η
√

aµ) · (√a∇ξ)
1√
γi

e

ds

∣∣∣∣∣∣

≤
∑

e∈Ei
D

(∫

e

γi
e|η
√

aµ|2ds

) 1
2

(∫

e

|√a∇ξ|2 1
γi

e

ds

) 1
2

≤ Cinv|‖ξ|‖
( ∑

e∈Ei
D

e⊂κ̄

(ae
j,norp

κ
j )2

hκ
j

‖η‖2e
) 1

2

,(54)

with i, j = 1, 2, i 6= j, where, in the last inequality we have applied to the second
integral the inverse inequality (46), and chosen γi

e := (pκ
j )2/hκ

j , for e ⊂ κ̄, with Cinv

an appropriate constant. Next, we have

∣∣∣∣
∫

ΓD

((a∇η) · µ)ξds

∣∣∣∣ ≤
∑

e∈ED

∫

e

1√
σ
|∇η · (aµ)|√σ|ξ| ds

≤
( ∑

e∈ED
σ−1

e ‖(aµ) · ∇η‖2e
) 1

2
( ∑

e∈ED
‖√σξ‖2e

) 1
2

≤ |‖ξ|‖
( ∑

e∈ED
σ−1

e ‖(aµ) · ∇η‖2e
) 1

2

,(55)

with σe := σ|e > 0 to be defined below.
Similarly, we shall bound the terms involving integrals over the interior element

edges. We have

∣∣∣∣∣
∫

Γi
int

[η]〈(a∇ξ) · ν〉ds

∣∣∣∣∣ ≤ 1
2

∑

e∈Ei
int

∫

e

|[η](
√

aν)|κ|
√

τ i
κ,e

1√
τ i
κ,e

|(√a∇ξ)|κ|ds

+
1
2

∑

e∈Ei
int

∫

e

|[η](
√

aν)|κ′ |
√

τ i
κ′,e

1√
τ i
κ′,e

|(√a∇ξ)|κ′ |ds

≤
(∑

κ∈T
‖√a∇ξ‖2κ

) 1
2


 ∑

e∈Ei
int

〈Cinv

(ae
jpj)2

hj
〉e‖[η]‖2e




1
2

≤ |‖ξ|‖

 ∑

e∈Ei
int

〈Cinv

(ae
jpj)2

hj
〉e‖[η]‖2e




1
2

,(56)

where by κ, κ′ we denote the two (generic) elements sharing the side e, Cinv an
appropriate constant, and we have chosen τ i

κ,e := (pκ
j )2/hκ

j and τ i
κ′,e := (pκ′

j )2/hκ′
j ,

i, j = 1, 2, i 6= j. Next, we have
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∣∣∣∣
∫

Γint

[ξ]〈(a∇η) · ν〉ds

∣∣∣∣ =

∣∣∣∣∣
∑

e∈Eint

∫

e

√
σ[ξ]

1√
σ
〈(aν) · ∇η〉ds

∣∣∣∣∣

≤
( ∑

e∈Eint

∫

e

σ[ξ]2ds

) 1
2


 ∑

e∈E1
int

∫

e

σ−1〈(aν) · ∇η〉ds




1
2

≤ |‖ξ|‖
( ∑

e∈Eint

σ−1
e ‖〈(aν) · ∇η〉‖2e

) 1
2

.(57)

Now, bounding the two remaining terms, we have∣∣∣∣
∫

ΓD

σηξds +
∫

Γint

σ[η][ξ]ds

∣∣∣∣ ≤ |‖ξ|‖
{(∑

e∈ED
σe‖η‖2e

) 1
2
+

( ∑

e∈Eint

σe‖[η]‖2e
) 1

2

}
.

Collecting the bounds established above, and applying the identity
( ∑

n α2
n

) 1
2 ≤∑

n αn for αn ≥ 0, we obtain

|‖ξ|‖ ≤ Cθ

2∑

i=1

{ ∑

κ∈T

(√
2aκ

i ‖∂iη‖κ +
cκ

2
‖η‖κ

)

+
∑

e∈Ei
D

e⊂κ̄

( (
Cinv

(ae
j,norp

κ
j )2

hκ
j

)1
2

‖η‖e + σ
− 1

2
e ‖(aν) · ∇η‖e + σ

1
2
e ‖η‖e

)
(58)

+
∑

e∈Ei
int

(
〈Cinv

(ae
j,norpj)2

hj
〉

1
2
e ‖[η]‖e + σ

− 1
2

e ‖〈(aν) · ∇η〉‖e + σ
1
2
e ‖[η]‖e

)}
,

for i, j = 1, 2, i 6= j, where every σe := σ|e > 0 is associated with the (inter)face
e ∈ E .

Finally, combining (58) with (50), and using the bound
‖〈(aν) · ∇η〉‖e ≤ ‖〈|√aν||√a∇η|〉‖e ≤ 〈ae

j,nor〉e〈‖
√

a∇η‖e〉e,
the result follows. ¤

Remark 8.3. The bound (58) is an extension to the anisotropic setting of the
bound appearing in Lemma 4.3 of [18], and the argument here is analogous; special
care had to be taken, however, to respect the direction-wise features of both the
boundary-value problem itself (explicit representation of each term appearing in the
diffusion tensor a, which is relevant for problems with anisotropic or degenerate
diffusion), and the (possibly) anisotropic choice of the discretisation parameters.
The explicit representation of these direction-wise features will be our main concern
in the subsequent discussion.

The error bound (49) does not add much to our understanding since it involves
terms that may in general tend to infinity as hκ

1 , hκ
2 → 0 and/or pκ

1 , pκ
2 → ∞.

Furthermore, the terms involving [η] in (58) may introduce a coupling between the
quantities h1, h2, p1 and p2 for neighbouring elements. Therefore, in order to obtain
more helpful bounds, we shall make various assumptions on the quantities involved.

The utility of the “switch” ze for e ∈ E will become more clear when we consider
special cases of the above result. In particular, when the image of a function under
the broken H1-projection operator ΛT~p is continuous across an element interface
e, we have that [η]e = 0 and, therefore, terms involving [η]e are not required to
be further bounded; so we “switch them off”. The image of a function under the
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H1-projection operator is continuous across an element interface e, if, for example,
polynomials of the same degree, say p, are used (in the direction normal to the
direction of e) in the finite element space and e does not contain any hanging
nodes, and/or if e is a boundary face where Dirichlet boundary conditions are
applied, with boundary datum that is an edge-wise polynomial of degree p or less
(cf. Lemma 6.7 in [13]).

In the subsequent results, we have chosen to derive bounds for axiparallel ani-
sotropic meshes, i.e., when the diffeomorphisms Qκ ≡ id, for κ ∈ T , since the
advantages of the use of anisotropic elements become quite apparent in this case,
without obscuring the key ideas by a complicated notation. For general meshes,
the bound in Theorem 8.2 cannot be further simplified, unless additional assump-
tions are made on the variation of the discretisation parameters involved. We stress
however that, given such assumptions, general bounds are by all means possible to
obtain.

We begin by setting up the admissible finite element spaces for our next result.
First, we assume that the polynomial degrees are anisotropic, with a directionally
bounded local variation condition, i.e., there exist ρi such that ρ−1

i ≤ pκ
i /pκ′

i ≤ ρi,
i = 1, 2, for all pairs of neighbouring elements κ, κ′ ∈ T . A similar condition
is required for the meshsizes. In particular, we assume that there exist positive
constants δi such that δ−1

i ≤ hκ
i /hκ′

i ≤ δi, i = 1, 2, for all pairs of neighbouring
elements κ, κ′ ∈ T .

Corollary 8.4. Let Ω be an axiparallel polygonal domain, T a subdivision of Ω into
axiparallel elements, satisfying the bounded local variation properties stated above.
We assign to each edge e ∈ E the positive real number σe, defined by

σe := Cσ,i

(ae
j)

2(pκ
j )m

hκ
j

for e ∈ E i
D, e ⊂ κ̄, and σe := Cσ,i〈

(ae
j)

2(pj)m

hj
〉e for e ∈ E i

int,

where m ∈ {1, 2}, Cσ = 1 if θ = 1, and m = 2, Cσ = Cσ(Cinv, ρj , δj) if θ = −1
(see [12] for a detailed description of the dependence of Cσ on the parameters,
or [16] for the corresponding argument on shape-regular meshes), for i, j = 1, 2,
i 6= j. Then, assuming that u ∈ A ∩ H̃k+1(Ω, T ) with kκ ≥ 1, κ ∈ T , the solution
uDG ∈ S~p(Ω, T ,F,Q) obeys the error bound

(59) |‖u− uDG|‖ ≤
∑

κ∈T

2∑

i=1

Cκ,iΦ1(pκ
i , sκ

i )
(

hκ
i

2

)sκ
i

N i
aug,κ|u|H̃sκ+1(κ),i,

where

N i
aug,κ := ακ

i + ακ
j

(
(pκ

i )−1 + (pκ
i (pκ

j )m)−
1
2 + ze

pκ
j

pκ
i

hκ
i

hκ
j

)
+

hκ
i

2pκ
i

cκ

with 1 ≤ sκ
i ≤ min{pκ

i , kκ}, ακ
i being the average of aκ

i on all the elements neigh-
bouring κ, including κ itself, cκ as in (47), Cκ,i = Cκ,i(Cinv, ρj , δj) a generic con-
stant, and ze as above.

Moreover, if u ∈ A∩Hk+1(Ω, T ) with kκ ≥ 2, κ ∈ T , uDG obeys the error bound

(60) |‖u− uDG|‖ ≤
∑

κ∈T

2∑

i=1

Cκ,iΦ1(pκ
i , sκ

i )
(

hκ
i

2

)sκ
i

N i
sta,κ|u|∗Hsκ+1(κ),i,

with 1 ≤ sκ
i ≤ min{pκ

i , kκ},

N i
sta,κ := ακ

i

(
1+

(
pκ

i

pκ
j

)1
2

(pκ
j )

1−m
2

)
+ακ

j

(
ze(pκ

j )
1
2

(
pκ

j

pκ
i

)1
2 hκ

i

hκ
j

+
(

pκ
i

pκ
j

)1
2

(pκ
j )

1−m
2

)
+

hκ
i

2pκ
i

cκ,
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and

|u|∗Hs(κ),i :=
(
‖∂s

i u‖2κ+ max
r=0,1,2

{
1,

(
hκ

j

hκ
i

)2(
pκ

i

pκ
j

)r}
‖∂s−1

i ∂ju‖2κ+
(

hκ
j

hκ
i

)2

‖∂s−2
i ∂2

j u‖2κ
)1

2

.

Proof. The proof is a direct consequence of the combination of the bound (49) with
the approximation estimates presented in Section 7.2. ¤

Remark 8.5. Making use of Stirling’s formula, we can see that the bound (59) is
hp-optimal due to the additional regularity offered by the use of augmented Sobolev
spaces. This phenomenon was first described in [13], in the case of shape-regular
quadrilateral elements. Half an order of p, however, is lost when the solution belongs
element-wise to a standard Sobolev space, as (60) reveals.

Another interesting special case, on axiparallel meshes, is when the finite element
space involves a directionally uniform polynomial degree, i.e., we assume pκ

1 = p1

and pκ
2 = p2 constant for all κ ∈ T ; note that, unlike the previous theorem, we do

not assume any bounded local variation in the meshsize.

Corollary 8.6. Let Ω be an axiparallel polygonal domain, T a subdivision of Ω into
axiparallel elements (possibly shape-irregular) with directionally uniform polynomial
degree, not containing any hanging nodes. We assign to each edge e ∈ E the positive
real number

σe := Cσ,i

(ae
j)

2(pj)m

hκ
j

, e ∈ E i
D, e ⊂ κ̄ and σe := Cσ,i

〈ae
j〉2e(pj)m

min{hκ
j , hκ′

j }
, e ∈ E i

int, e ⊂ κ̄∩κ̄′,

where m ∈ {1, 2}, Cσ,i = 1 if θ = 1, and m = 2, Cσ,i = C(Cinv, ρj , δj) if θ = −1
(see [12] for detailed description of the dependence of Cσ on the parameters, or [16]
for the corresponding argument on shape-regular meshes), for i, j = 1, 2, i 6= j.
Then, assuming that u ∈ A and that it is analytic on an open neighbourhood of
every element κ ∈ T , the solution uDG ∈ S(p1,p2)(Ω, T ,F) obeys the error bound

(61) |‖u− uDG|‖ ≤
2∑

i=1

∑

κ∈T
e⊂∂κi∩ΓD

Cκ
ue−(rκ

i − 3
2 )pi

(hκ
i

2

)sκ
i

M i
∞,κ,e(meas2(κ))

1
2 ,

with
M i
∞,κ,e := ακ

i +
hκ

i

2pi

(
ακ

j (1 + ze
pj

hκ
j

) + cκ

)
,

where pi ≥ 1, ακ
i and cκ as in Corollary 8.4, Cκ

u , rκ
i , for κ ∈ T , are constants

depending on u and ze as above (note ze ≡ 0 if e ⊂ Γint). If, additionally, there
exist dκ

i > 1, i = 1, 2, such that

(62) ‖∂m
1 ∂n

2 u‖L∞(κ) ≤ C(dκ
1 )m(dκ

2 )n, m, n = 0, 1, 2, . . . ,

then the error bound can be improved to

(63) |‖u− uDG|‖2 ≤ C
∑

κ∈T

2∑

i=1

(
hκ

i dκ
i e

4pi

)pi

Mi
∞,κ,e(meas2(κ))

1
2 ,

with

Mi
∞,κ,e := ακ

i dκ
i

(
1 +

hκ
j dκ

j

2p
m/2
i

)
+ ακ

j dκ
j

(
hκ

i dκ
i

2pi
+ ze

pjh
κ
i dκ

i

pihκ
j dκ

j

(
1 +

hκ
j dκ

j

2

))

+cκ
hκ

i dκ
i

2pi

(
1 +

hκ
j dκ

j

2pj

)
.(64)
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Proof. For (61), we insert the bounds presented in Section 7.2 (exploiting the ad-
ditional regularity) into (49) and we apply Lemma 7.17.

For (63), we apply Stirling’s formula to Φ1(pi, pi), to obtain

Φ1(pi, pi) = (Γ(2pi + 1))−1 ≤ (2π)−
1
4 (2pi)−pi− 1

4 epi

= (4π)−
1
4 (2pi)−pi

(
e1− log pi

4pi

)pi

≤ (4π)−
1
4 (2pi)−piepi .

On substituting the last relation into (49) and using (62), the result follows. ¤

Remark 8.7. The above result can be applied when the solution to the boundary-
value problem exhibits boundary and/or interior layers. Indeed, asymptotic analysis
indicates (and proves in certain cases, see [21, 26] and the references therein, for
details) that solutions to such problems satisfy assumption (62).

Now, we present the corresponding results for equations (1) with non-negative
characteristic form, admitting b 6= ~0 in general.

Theorem 8.8. Consider the setting of Theorem 8.2; then,

|‖u− uDG|‖ ≤ Cθ

∑

κ∈T

2∑

i=1

{(
2
√

2aκ
i (C1

κ,iM
1
κ,i + C2

κ,iM
1
κ,j) +

1
2
cκ
2CκM0

κ

)

+
∑

e⊂∂κi

{(
ze

(
〈Cinv

(ae
jpj)2

hj
〉

1
2
e + 2σ

1
2
e

)
+

(
1 +

√
2

2

)
be
0

)
Ci

∂κM0
∂κ,i

+
√

2
〈ae

j,nor〉e
σ

1
2
e

(
(〈ae

i 〉eC1,i
∂κ,i + 〈ae

j〉eC2,i
∂κ,j)M

1
∂κ,i(65)

+(〈ae
i 〉eC2,i

∂κ,i + 〈ae
j〉eC1,i

∂κ,j)M
2
∂κ,i

)}}
,

with M0
κ ,M1

κ,i,M
0
∂κ,i,M

1
∂κ,i, M2

∂κ,i as in Section 7.1, and cκ
2 := (1 + ‖(c − ∇ ·

b)/(c0)2‖
1
2
L∞(κ))‖(c0)2‖

1
2
L∞(κ) when c0|κ > 0 and cκ

2 := cκ when c0|κ = 0.

The complete proof can be found in [12]. For the diffusion part, the proof
is entirely analogous to the proof of Theorem 8.2. For the advection part, the
argument is an extension of the one presented in [18] to the anisotropic setting. As
in [18], we have made use of the L2-projection operator as interpolant in this case,
as it yields hp-optimal bounds for the convection part of the discretisation. Note,
however, that the bound for the component of the error due to the discretisation
of diffusion is suboptimal in p by half an order of p (cf. the corresponding results
on shape-regular elements in [18]).

Corollary 8.9. Let Ω be an axiparallel polygonal domain, T a subdivision of Ω
into axiparallel elements, satisfying the bounded local variation properties discussed
above. We assign to each edge e ∈ E the positive real number σe, defined as in
Corollary 8.4, with m = 2. Then, assuming that u ∈ A ∩Hk+1(Ω, T ) with kκ ≥ 1,
κ ∈ T , uDG ∈ S~p(Ω, T ,F,Q) obeys the error bound

(66) |‖u− uDG|‖ ≤
∑

κ∈T

2∑

i=1

Cκ,iΦ1(pκ
i , sκ

i )
(

hκ
i

2

)sκ
i

N i
L2,κ|u|∗Hsκ+1(κ),i,
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(b) hp-convergence for λ = 0.9.

Figure 2. Example 1. The mesh and hp-convergence history. In
figure (a) l = min{1/2, λpε}.

with 1 ≤ sκ
i ≤ min{pκ

i , kκ}, Cκ,i as before, and

N i
L2,κ := ακ

i

(
(pκ

i )
1
2 +

pκ
i

pκ
j

)
+ ακ

j

(
(pκ

i )
1
2
hκ

i

hκ
j

+ (pκ
i )−

1
2

)

+
(

hκ
i

2pκ
i

)1
2
(

bκ
i + bκ

j

(
hκ

i

hκ
j

)1
2
)

+
hκ

i

2pκ
i

cκ
2 .

If the assumption (48) is violated, then we can still obtain error bounds, at the
cost of losing another half an order of p in the convergence rates (see [12] for details).

Remark 8.10. We present an application of the above result to the (standard)
advection-diffusion problem

−ε∆u + b · ∇u = f,

with (possibly mixed) boundary conditions of the form (3). For simplicity of the
presentation, assume that sκ

i = kκ for i = 1, 2 and that pκ
1 = pκ

2 = pκ. Making use
of Stirling’s formula and simplifying the constant terms, we obtain the error bound

|‖u− uDG|‖ ≤ C
∑

κ∈T

2∑

i=1

(
hκ

i

pκ

)kκ
(

εp
1
2
κ

(
1 +

hκ
i

hκ
j

)

+
(

hκ
i

pκ

)1
2
(

bκ
i + bκ

j

(
hκ

i

hκ
j

)1
2
))

|u|∗Hsκ+1(κ),i,(67)

indicating that, for an efficient and accurate approximation, appropriate balance of
the data of the equation and of the hp-mesh parameters should be sought.

9. Numerical Experiments

9.1. Example 1. Let Ω := (−1, 1)2 and consider the equation

(68) −ε∆u + u = f in Ω,

subject to a homogeneous Dirichlet boundary condition; f is chosen so that

(69) u(x1, x2) =
(

1− cosh(x1/
√

ε)
cosh(1/

√
ε)

)(
1− cosh(x2/

√
ε)

cosh(1/
√

ε)

)
.
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(a) Sensitivity w.r.t. λ for ε = 10−3.

0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

λ=1   
λ=0.9 
λ=0.8 
λ=0.71

p

|‖u
−

u
D

G
|‖

(b) Sensitivity w.r.t. λ for ε = 10−5.

Figure 3. Example 3. Sensitivity with respect to the choice of λ
for ε = 10−3 and ε = 10−5.

The solution exhibits a boundary-layer of thickness O(
√

ε) near ∂Ω. In order to
resolve this behaviour we shall use a 9-element mesh, as shown in Figure 9.1(a),
where the small element edges have length l := min{1/2, λpε}, λ is a user-defined
parameter and p is the polynomial degree used in the elemental basis (cf. [28, 21]).

We observe robust exponential convergence, when applying the hp-DGFEM
(with θ = 1) on the 9-element mesh, as the polynomial degree is increased; in
Figure 9.1(b) we can see the error measured in the DG-norm plotted against the
polynomial degree p for ε = 10−3 and ε = 10−5 with λ = 0.9.

In order to test the sensitivity of the method with respect to the choice of the
parameter λ, we solved the problem for ε = 10−3 and ε = 10−5 and various values
of λ. The results, shown in Figure 3, indicate that the method is fairly insensitive
to the choice of λ as long as λ is chosen to be near 1. We achieve the best results
when λ is around 0.9, as opposed to the results presented in [28] for the conforming
hp-finite element method, where λ = 0.71 was the best choice.

Let us now see how this example fits into the analysis presented in the previous
section. The analytical solution u satisfies (62) on every element of the considered 9-
element-mesh. A simple calculation reveals that M∞,κ,e ≤ C, with C independent
of ε, for all 9 elements κ. Therefore, using the 9-element-mesh the bound (63)
is independent of ε, which explains the robustness of the exponential convergence
observed.

9.2. Example 2. We consider the Dirichlet boundary-value problem

−ux1x1 − 16x6
1ux2x2 = f in Ω ≡ (−1, 1)2,

u = 0 on ∂Ω,(70)

with f is chosen so that the analytical solution is

(71) u(x1, x2) = (1− x2
1)(1− x2

2)(|x1|8 + x2
2)

1/4.

This Grušin-type model problem is due to Franchi & Tesi [11], where for p = 1 fixed
a slow sub-linear algebraic convergence rate was reported as h → 0. The purpose
of this example is to show that the pessimistic scenario of [11] can be considerably
improved upon. Note that the analytical solution does not belong (globally) to
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(a) uniform (b) grading with δ = 0.5 (c) grading with δ = 0.171 . . .

Figure 4. Example 2. The three meshes used in the numerical experiment.
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H1(Ω) due to a singularity of the gradient at the origin; nevertheless, it is analytic
in Ω̄\{(0, 0)}.

We shall employ a mesh sequence, inspired by one-dimensional problems with
solutions that are analytic everywhere except at one point. We use a geometrically
graded mesh, grading towards the singularity and we increase appropriately the
polynomial degree on every element; this is described in [15].

Therefore, a geometrically graded mesh accumulating towards the line x2 = 0 on
both sides is employed in the x2-direction. The grading factor δ is chosen to be the
optimal one for the one-dimensional problem and has the value δ = (

√
2 − 1)2 =

0.171 . . . . For the grading in the x1-direction three different choices are considered:
(1) uniform refinement;
(2) geometrically graded refinement towards x1 = 0 from both sides with grad-

ing factor δ = 0.5;
(3) geometrically graded refinement towards x1 = 0 from both sides with grad-

ing factor δ = (
√

2− 1)2 = 0.171 . . . .
The resulting meshes for these three choices are shown in Figure 4.
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The hp-refinement path is the following: We start with 2 elements in each di-
rection and polynomial degree p = 1. The next step is to add 2 elements in each
direction and increase the polynomial degree to p = 2 uniformly; we then add 2
more elements in each coordinate direction and raise the polynomial degree to p = 3
uniformly, and so on. In Figure 5 we can see the convergence history (for θ = 1)
of this refinement strategy. The convergence appears to be exponential, at least
for the cases of uniform refinement in the x1-direction and a geometrically graded
mesh with grading factor δ = 0.5 in the x1-direction, as they appear to be straight
lines in a linear-log coordinate system. If the mesh in the x1-direction is refined
geometrically with grading factor δ = 0.171 . . . , convergence is slower as, in this
case, the main contributions to the error come from the large elements situated
in the corners, which are larger than the corresponding elements in the other two
refinement strategies.

Comparing our results with the numerical experiments described in [11] we can
see that it is indeed possible to attain substantially faster convergence rates than
the ones proved and observed numerically by using continuous piecewise linear
finite elements therein. Motivated by our experimental observations, we conjecture
that the convergence using any of the refinement strategies described above will be
exponential.

9.3. Example 3. For b = (1, 1)T and 0 < ε ¿ 1, we consider the singularly
perturbed convection-diffusion equation

−ε∆u + b · ∇u = f for (x1, x2) ∈ (0, 1)2,

subject to a Dirichlet boundary condition, which, along with the forcing function
f , is chosen so that the analytical solution is

u(x1, x2) = x1 + x2(1− x1) +
e−

1
ε − e−

(1−x1)(1−x2)
ε

1− e−
1
ε

.

This problem was considered in [18] (Example 3) and it is inspired by a one-
dimensional problem taken from [22]. Note that the theory developed above in-
cludes this case, as here c0 = 0 on Ω̄.

In this numerical experiment, the stability, the accuracy, and the robustness
with respect to ε of the hp-DGFEM are tested. The solution exhibits boundary
layer behaviour along x1 = 1 and x2 = 1, and the layers become steeper as ε → 0.
Motivated by this behaviour, the meshes are constructed by geometrical refinement
towards the boundary layers, with grading factor δ = 0.5, and are parametrized by
nε denoting the number of (mesh-)points in the x1- and x2-directions (cf. Figure 6.8
in [18]). Following [18] we perform numerical experiments for ε = 10−1, 10−3, 10−5,
with nε = 9, 15, 21, respectively.

The numerical results in [18], are performed with a choice of the discontinuity-
penalisation parameter σ that came from the error analysis for shape-regular ele-
ments presented in that paper. In particular, σ was chosen in [18] as

σ̃(m) :=
〈aep

m
i 〉e

hi
,

for e ∈ E i, i,m = 1, 2.
Here, we reproduce the numerical results of [18] and we perform further experi-

ments with σ chosen as in our analysis, namely

σ(m) =
〈aep

m
j 〉e

hj
,
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ε p σ(2) , θ = −1 It. σ̃(2) , θ = −1 It. σ(2), θ = 1 It. σ̃(2), θ = 1 It.

1 0.10144 110 0.46401 2460 0.10151 40 0.10418 40
2 0.1643E-01 97 failed > 104 0.1581E-01 57 0.2050E-01 56
3 0.2551E-02 122 failed > 104 0.2514E-02 64 0.2598E-02 60

10−5 4 0.4178E-03 119 failed > 104 0.4124E-03 71 0.5013E-03 70
5 0.6765E-04 133 failed > 104 0.6673E-04 71 0.6920E-04 77
6 0.1130E-04 135 failed > 104 0.1122E-04 76 0.1299E-04 87
7 0.1875E-05 137 failed > 104 0.1855E-05 70 0.1939E-05 93
8 0.3107E-06 142 failed > 104 0.3088E-06 74 0.3463E-06 98

1 0.10088 68 failed > 104 0.10088 27 0.10299 29
2 0.1646E-01 80 failed > 104 0.1581E-01 37 0.2035E-01 39
3 0.2551E-02 97 failed > 104 0.2514E-02 42 0.2587E-02 47

10−3 4 0.4207E-03 96 failed > 104 0.4143E-03 49 0.4990E-03 55
5 0.6772E-04 110 failed > 104 0.6684E-04 52 0.6914E-04 61
6 0.1118E-04 106 failed > 104 0.1108E-04 56 0.1272E-04 69
7 0.1847E-05 116 failed > 104 0.1827E-05 58 0.1889E-05 74
8 0.3133E-06 112 failed > 104 0.3112E-06 60 0.3449E-06 81

1 0.9909E-01 50 0.10484 113 0.9976E-01 18 0.9962E-01 21
2 0.1544E-01 65 0.1534E-01 831 0.1517E-01 29 0.1645E-01 31
3 0.2380E-02 77 0.2383E-02 238 0.2337E-02 35 0.2352E-02 38

10−1 4 0.3627E-03 83 0.3626E-03 119 0.3637E-03 38 0.3735E-03 44
5 0.5642E-04 92 0.5628E-04 118 0.5615E-04 42 0.5642E-04 47
6 0.8458E-05 92 0.8433E-05 117 0.8517E-05 44 0.8608E-05 51
7 0.1215E-05 98 0.1210E-05 131 0.1219E-05 49 0.1224E-05 52
8 0.1605E-06 96 0.1598E-06 210 0.1616E-06 51 0.1624E-06 55

Table 1. Example 3. Convergence rates in the ‖ · ‖∗-norm un-
der p-enrichment for various values of ε and different choices of
penalisation σ.

for e ∈ E i, i, j, m = 1, 2, i 6= j. The results from these experiments for m = 2 are
listed in Table 1: the error is measured in the following (σ-independent) norm

‖v‖∗ =

(∑

κ∈T
‖√a∇v‖2κ + ‖c0v‖2κ

) 1
2

,

σ(2) and σ̃(2) stand for the choice of discontinuity-penalisation parameter, θ =
−1 and θ = 1 denote the symmetric and the non-symmetric versions DGFEM,
respectively, and “It.” stands for the number of GMRES(20) iterations needed in
the solution of the linear system, using a block-Jacobi preconditioner.

For the symmetric version DGFEM (θ = −1), the choice of the discontinuity-
penalisation parameter as σ(2) is crucial for the stability of the method. Indeed,
when the discontinuity-penalisation parameter is chosen as σ̃(2), the stiffness matrix
appears to be very ill conditioned or even singular. Hence, the importance of the
new recipe for the discontinuity-penalisation parameter is not only theoretical (as
it enables us to prove coercivity), but is also manifested numerically.

On the other hand, the choice of discontinuity-penalisation parameter is irrele-
vant for the stability of the non-symmetric version DGFEM (θ = 1), as the method
is coercive for any σ ≥ 0. Nevertheless, we observe that the results produced using
σ(2) are slightly better compared to the ones using σ̃. This is still true when the
error in measured in the energy norm or when m = 1 is used; for brevity, these
results are omitted (see [12] for details). When ε = 10−1 and ε = 10−3 the number
of GMRES iterations and the approximation error are consistently smaller with
σ(2) than with σ̃(2). The same is true for ε = 10−5 for p ≥ 5; for 1 ≤ p ≤ 4 the
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number of GMRES iterations with σ(2) is either the same or marginally larger than
with σ̃(2), but then the resulting approximation error is always smaller.

Hence, choosing the discontinuity-penalisation parameter as advocated in this
work, we observe a crucial improvement on the stability of the symmetric version
DGFEM on anisotropic hp-meshes and a slight reduction in the computational
cost at no loss in accuracy for the non-symmetric version DGFEM. Indeed, in
most cases we looked at, we observed improved accuracy as well as reduction in
the computational cost with the choice of the discontinuity-penalisation parameter
proposed herein, when compared to the choice that was made in [18] where shape-
regular meshes were assumed.

The results of the calculations indicate exponential convergence (cf. also Fig-
ure 6.9 in [18]). Furthermore, with this mesh sequence, the rate of exponential
convergence is independent of ε.
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[23] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwen-
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