UNIFORM CONVERGENCE OF HERMITE INTERPOLATION OF HIGHER ORDER*1)

Yongping Feng[†] Wenming He

(Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Science, Chinese Academy of Sciences, P. O. Box 2719, Beijing, 100080, China)

Abstract

In this paper the uniform convergence of Hermite-Fejér interpolation and Grünwald type theorem of higher order on an arbitrary system of nodes are presented.

Key words: Hermite-Fejér interpolation, convergence, Hermit interpolation.

1. Introduction

Let us assume $n, n \geq 2, m_{kn}, k = 1, 2, 3, ..., n$, be integers and triangular matrix $X = \{x_{1n}, x_{2n}, ..., x_{nn}\}$, where

$$1 = x_{0n} \ge x_{1n} > x_{2n} > \dots > x_{nn} \ge x_{n+1,n} = -1.$$

Let $\mathcal{N}_n = \sum_{k=1}^n m_{kn} - 1$, $m = \max_{n \geq 2, 1 \leq k \leq n} m_{kn} < +\infty$, $\mathbf{N}_1 = \{1, 3, 5, ...\}$, $\mathbf{N}_2 = \{2, 4, 6, ...\}$ and $\mathbf{N}_0 = \mathbf{N}_2 \bigcup \{0\}$. For simplicity we denote \mathcal{N}_n as \mathcal{N} . In the following discussion we replace $x_{kn}, m_{kn}, k = 1, 2, ..., n$ with $x_k, m_k, k = 1, 2, ..., n$. Denoted by $\mathbf{P}_{\mathcal{N}}$ the set of polynomials of degree at most \mathcal{N} and by A_{jk} the fundamental polynomials for Hermite interpolation of higher order, then we have $A_{jk} \in \mathbf{P}_{\mathcal{N}}$ satisfy

$$A_{jk}^{(p)}(x_q) = \delta_{jp}\delta_{kq}, \quad p = 0, 1, ..., m_q - 1, \quad j = 0, 1, ..., m_k - 1, \quad q, k = 1, 2, ..., n.$$
 (1.1)

For $f \in C^r[-1,1]$, $0 \le r \le m-1$, the unique truncated Hermite interpolatory polynomial is given by

$$H_{nmr}(f,x) = \sum_{i=0}^{r} \sum_{k=1}^{n} f^{(i)}(x_k) A_{ik}(x),$$
(1.2)

here let $A_{jk} = 0$ if $j \ge m_k$. In particular, when r = 0 and r = m - 1 H_{nm0} and $H_{nm,m-1}$ are denoted by H_{nm} and H_{nm}^* respectively. We recognize that H_{n1} is the classical Lagrange interpolation and H_{n2} the classical Hermite-Fejér interpolation. H_{nmr} is called Lagrange type interpolation for odd m_k , k = 1, 2, ..., n, and Hermite-Fejér type interpolation for even m_k , k = 1, 2, ..., n, respectively.

^{*} Received July 1, 2000.

¹⁾ Project 2921200 Supported by National Natural Science Foundation of China.

[†] Email address: fyp@indig04.cc.ac.cn.

For giving the explicit expression of $A_{jk}(x)$ we let

$$L_k(x) = \prod_{q=1, q \neq k}^n \left(\frac{x - x_q}{x_k - x_q}\right)^{m_q}, \quad k = 1, 2, ..., n,$$

$$b_{vk} = \frac{1}{v!} \left[\frac{1}{L_k(x)}\right]_{x = x_k}^{(v)}, \quad v = 0, 1, ..., m_k - 1, \quad k = 1, 2, ..., n,$$

$$B_{jk}(x) = \sum_{v=0}^{m_k - j - 1} b_{vk}(x - x_k)^v, \quad j = 0, 1, ..., m_k - 1, \quad k = 1, 2, ..., n.$$

Then by [6] it has

$$A_{jk}(x) = \frac{1}{j!}(x - x_k)^j B_{jk}(x) L_k(x), \quad 0 \le j \le m_k, \quad 1 \le k \le n.$$
 (1.3)

More let

$$d_k = \max\{|x_k - x_{k+1}|, |x_k - x_{k-1}|\}, \quad k = 1, 2, ..., n,$$

$$D_n = \max_{1 \le k \le n} d_k, \quad ||P||_j := \max_{1 \le l \le j} ||P^{(l)}||,$$

$$R_{nm}(f, x) := |H_{nm}(f, x) - f(x)|,$$

$$r_{nm}(x) := R_{nm}(f_1, x) + R_{nm}(f_2, x), \quad f_i = x^i, i = 0, 1, 2, ...$$

$$S_{nm}(x) := \sum_{k=1}^n |(x - x_k) A_{0k}(x)|.$$

In what follows we denote by c, c_1 , ..., positive constants independent of variables and indices, unless otherwise indicated; their value may be different occurrences even in subsequent formulas.

2. Main Result

In [4], Y. G. Shi has proved an important theorem about fundamental polynomials A_{jk} , B_{jk} as following:

Theorem A ([4, Theorem 2.1]). If for a fixed n, $m_k - j$ is odd and $j < i \le m_k - 1$ then

$$B_{jk}(x) \ge c \left| \frac{x - x_k}{d_k} \right|^{i-j} |B_{ik}(x)|, \quad x \in \Re, \quad 1 \le k \le n,$$
 (2.1)

and

$$|A_{ik}(x)| \le c_1 d_k^{i-j} |A_{jk}(x)|, \quad x \in \Re, \quad 1 \le k \le n,$$
 (2.2)

hold, where c and c_1 are positive constants depending only on m.

More the estimate of $R_{nm}(P,x)$ for all polynomials for the case of $m_k \equiv m, k = 1, 2, ..., n$ is given, that is the following theorem:

Theorem B ([4, Theorem 4.1]). Let $m_k \equiv m$ be an even integer. Then for any $P \in P_N$

$$R_{nm}(P,x) \le c||P||_m \left\{ r_{nm}(x) + \frac{||r_{nm}|| \ln^{10}[n(1+||r_{nm}||)]}{n} \right\}, \tag{2.3}$$

where c depends only on m. Further more, if

$$||H_{nm}|| = \left\| \sum_{k=1}^{n} |A_{0k}| \right\| = O(1)$$
 (2.4)

holds and

$$\lim_{n \to \infty} ||H_{nm}(f) - f|| = 0 \tag{2.5}$$

holds for $f = f_i$, i = 1, 2, then (2.5) holds for every $f \in C[-1, 1]$.

Theorem C ([5, Lemma 2.1]). Assume that $m_k \geq 3$ then we have

$$B_{m_k-3,k}(x) \ge \frac{1}{2} B_{m_k-1,k}(x) = \frac{1}{2}, \quad x \in \Re, \quad k = 1, 2, ..., n,$$
 (2.6)

$$B_{m_k-3,k}(x) \ge |B_{m_k-2,k}(x)|, \quad x \in \Re, \quad k = 1, 2, ..., n,$$
 (2.7)

and

$$|A_{m_k-1,k}(x)| \le c|(x-x_k)^2 A_{m_k-3,k}(x)|, \tag{2.8}$$

$$|A_{m_k-2,k}(x)| \le c|(x-x_k)A_{m_k-3,k}(x)|. \tag{2.9}$$

Developing and modifying their ideas we can give the condition of uniform convergence for even integers m_k , k = 1, 2, ..., n. The main result in this section is the following theorem.

Theorem 1. Let m_k , k = 1, 2, ..., n, $m \ge 4$, be even integers. Then for any $P \in P_N$

$$R_{nm}(P,x) \le c ||P||_m \left\{ \sum_{i=1}^{m-1} R_{nm}(f_i,x) \right\}.$$
 (2.10)

Further more, if (2.4) holds and (2.5) holds for $f = f_i$, i = 1, 2, ..., m-1, then (2.5) holds for every $f \in C[-1, 1]$, where c depends only on m.

First let us prove some needed lemmas. Similarly as [4, Lemma 2.1] we have following lemma.

Lemma 1. For $A_{jk}(x)$ we have

$$i! \sum_{k=1}^{n} \sum_{j=1}^{m_k - 1} \frac{(-1)^{j+1}}{(i-j)!} (x - x_k)^{i-j} A_{jk}(x) = \sum_{k=1}^{n} (x - x_k)^i A_{0k}(x).$$
 (2.11)

Lemma 2. Let m_k , $1 \le k \le n$, be even integers, then for $A_{0k}(x)$, it has

$$\left| \sum_{k=1}^{n} (x - x_k)^i A_{0k}(x) \right| \le C \sum_{k=1}^{i} R_{nm}(f_k, x), \tag{2.12}$$

where C is a positive const depending only on m.

Proof. By means of $R_{nm}(f,x)$ and [4, (4.12)] it has

$$\sum_{k=1}^{n} A_{0k} = 1,$$

$$\left| \sum_{k=1}^{n} (x - x_k) A_{0k}(x) \right| = \left| x - \sum_{k=1}^{n} x_k A_{0k}(x) \right| = R_{nm}(f_1, x),$$

$$\left| \sum_{k=1}^{n} (x - x_k)^2 A_{0k}(x) \right| \le 2R_{nm}(f_1, x) + R_{nm}(f_2, x).$$

148 Y. FENG AND W. HE

By
$$(x - x_k)^i = \sum_{j=0}^i (-1)^j {i \choose j} x^{i-j} x_k^j = \sum_{j=1}^i (-1)^{j-1} {i \choose j} x^{i-j} (x^j - x_k^j)$$
, we have
$$\left| \sum_{k=1}^n (x - x_k)^i A_{0k}(x) \right| = \left| \sum_{j=1}^i (-1)^{j-1} {i \choose j} x^{i-j} \sum_{k=1}^n (x^j - x_k^j) A_{0k}(x) \right|$$
$$\leq \sum_{j=1}^i {i \choose j} |x^{i-j}| R_{nm}(f_j, x) \leq c \sum_{j=1}^i R_{nm}(f_j, x). \quad \Box$$

Lemma 3. Let m_k , $1 \le k \le n$, be even integers, then for $A_{jk}(x)$

$$\left| \sum_{i=1}^{j-1} \sum_{k=1}^{n} \frac{(-1)^{i}}{(j-i)!} (x - x_{k})^{j-i} A_{ik}(x) \right| \le c \sum_{k=1}^{n} (x - x_{k}) A_{1k}(x)$$
(2.13)

holds, where c is a positive constant depending only on m.

Proof. By Theorem A it has

$$\sum_{k=1}^{n} |(x - x_k)^l A_{jk}(x)| \le 2^{l-1} \sum_{k=1}^{n} |(x - x_k) A_{jk}(x)|$$
$$= 2^{l-j-2} \sum_{k=1}^{n} (x - x_k) A_{1k}(x),$$

thus

$$\left| \sum_{i=1}^{j-1} \sum_{k=1}^{n} \frac{(-1)^{i}}{(j-i)!} (x-x_{k})^{j-i} A_{ik}(x) \right| \leq \sum_{i=1}^{j-1} \left| \sum_{k=1}^{n} \frac{(-1)^{i}}{(j-i)!} (x-x_{k})^{j-i} A_{ik}(x) \right|$$

$$\leq \sum_{i=1}^{j-1} \frac{2^{j-2}}{(j-i)!} \sum_{k=1}^{n} (x-x_{k}) A_{1k}(x) \leq c \sum_{k=1}^{n} (x-x_{k}) A_{1k}(x). \quad \Box$$

Now Let us prove the Theorem 1. By means of definition of $R_{nm}(f,x)$ we have

$$R_{nm}(P,x) = \left| \sum_{k=1}^{n} \sum_{j=1}^{m_k - 1} P^{(j)}(x_k) A_{jk}(x) \right|,$$

so $R_{nm}(P,x) \leq \sum_{j=1}^{m-1} |\sum_{k=1}^n P^{(j)}(x_k) A_{jk}(x)| := \sum_{j=1}^{m-1} S_j$. Now let us estimate term S_j for j < m-1 and j=m-1, respectively. In the first case by mean theorem of derivatives it has

$$S_{j} = \left| \sum_{k=1}^{n} P^{(j)}(x_{k}) A_{jk}(x) \right|$$

$$= \left| \sum_{k=1}^{n} \left\{ P^{(j)}(x) - (P^{(j)}(x) - P^{(j)}(x_{k})) \right\} A_{jk}(x) \right|$$

$$\leq \left| \sum_{k=1}^{n} P^{(j)}(x) A_{jk}(x) \right| + \left| \sum_{k=1}^{n} P^{(j+1)}(\xi_{k})(x - x_{k}) A_{jk}(x) \right|$$

$$\leq ||P||_{m} \left| \sum_{k=1}^{n} A_{jk}(x) \right| + \left| \sum_{k=1}^{n} P^{(j+1)}(\xi_{k})(x - x_{k}) A_{jk}(x) \right|.$$

For term $|\sum_{k=1}^{n} A_{jk}(x)|$, by Lemma 1

$$\left| \sum_{k=1}^{n} A_{jk}(x) \right| = \left| \sum_{i=0}^{j-1} \frac{(-1)^{i}}{(j-i)!} (x - x_{k})^{j-i} A_{ik}(x) \right|,$$

thus by Lemma 2 and Lemma 3 we have

$$\left| \sum_{k=1}^{n} A_{jk}(x) \right| \le c \left\{ \sum_{k=1}^{n} |(x - x_k) A_{1k}(x)| + \sum_{i=0}^{j} R_{nm}(f_i, x) \right\}.$$
 (2.14)

In the second case by Theorem A and Theorem C we have

$$\left| \sum_{k=1}^{n} P^{(m-1)}(x_k) A_{m-1,k}(x) \right| \le c \|P\|_m \sum_{k=1}^{n} |(x - x_k)^2 A_{m-3,k}(x)| \le c \|P\|_m r_{nm}(x).$$

Then by Banach Theorem we have the result . \Box

3. Grünwald Type Theorem

In [7] P. Vértesi has proved a theorem of Grünwald type for Hermite-Fejér interpolation of higher order, which is a generalization of [1] given by G. Grünwald for $m_k \equiv m$.

Theroem D ([7, Theorem 2.3]). Let $m_k \equiv m$ be even integers, I_{1n} and I_{2n} be two disjoint subsets of the set $\{1, 2, 3, ..., n\}$ with $I_{1n} \bigcup I_{2n} = \{1, 2, ..., n\}$. If for fixed positive numbers ρ_2 and n_0

$$\begin{split} B_{0k}(x) &\geq \rho_2 |B_{jk}(x)|, \quad |x| \leq 1, \quad k \in I_{1n}, \quad j = 1, 2, ..., m - 1, \quad n \geq n_0, \\ \lim_{n \to \infty} \left\| \sum_{k \in I_{2n}} |x - x_k|^{\delta} |A_{0k}(x)| \right\| &= 0, \quad \delta > 0, \\ \left\| \sum_{k \in I_{2n}} |A_{0k}(x)| \right\| &\leq C < \infty, \\ \lim_{n \to \infty} \left\| \sum_{k \in I_{2n}} |A_{jk}(x)| \right\| &= 0, \quad j = 1, 2, ..., m - 1, \\ \left\| \sum_{k \in I_{2n}} |B_{jk}(x) l_k^m(x)| \right\| &\leq C, \quad j = 1, 2, ..., m - 1, \end{split}$$

then (2.5) holds for all $f \in C[-1,1]$, here $l_k(x) = \prod_{q=1,q \neq k}^n \frac{x-x_q}{x_k-x_q}$.

The main aim of this section is to improve the above theorem as follows

Theorem 2. Let m_k , $1 \le k \le n$, be even integers, I_{1n} and I_{2n} be two disjoint subsets of

the set $\{1,2,3,...,n\}$ with $I_{1n} \bigcup I_{2n} = \{1,2,...,n\}$. If for fixed positive numbers ρ and n_0 ,

$$B_{0k}(x) \ge \rho |B_{jk}(x)|, \quad |x| \le 1, \quad k \in I_{1n}, \quad j = 1, 2, ..., m_k - 1, \quad n \ge n_0,$$
 (3.1)

$$\lim_{n \to \infty} \left\| \sum_{k \in I_{2n}} |(x - x_k) A_{0k}(x)| \right\| = 0, \tag{3.2}$$

$$\left\| \sum_{k \in I_{2n}} |A_{0k}(x)| \right\| \le C_1 < \infty, \tag{3.3}$$

$$\lim_{n \to \infty} \left\| \sum_{k \in I_{2n}} |A_{1k}(x)| \right\| = 0, \tag{3.4}$$

$$\left\| \sum_{k \in I_{2n}} |B_{jk}(x)L_k(x)| \right\| \le C_2 < +\infty, \quad j = 1, 2, ..., m_k - 1,$$
(3.5)

then (2.5) holds for all $f \in C[-1, 1]$.

Before proving this theorem we give some lemmas and statements.

Lemma 4. Let m_k , $1 \le k \le n$, be even integers. If

$$\left\| \sum_{k=1}^{n} \sum_{j=0}^{m_k - 1} |A_{jk}| \right\| = O(1), \tag{3.6}$$

holds, then

$$\lim_{n \to +\infty} ||H_{nm}^*(f, X) - f|| = 0 \tag{3.7}$$

holds for every $f \in C^{m-1}[-1,1]$.

Proof. The proof is same as [7]. $\forall \varepsilon$ there exists a polynomial P(x) for which

$$|f(x) - P(x)| < \varepsilon$$
, $|f'(x) - P'(x)| < \varepsilon$, ..., $|f^{(m-1)}(x) - P^{(m-1)}(x)| < \varepsilon$,

and

$$P(x) = \sum_{k=1}^{n} \sum_{j=0}^{m_k - 1} P^{(j)}(x_k) A_{jk}(x),$$

then it has

$$|H_{nm}^{*}(f) - f| = |H_{nm}^{*}(f - P) + P - f|$$

$$\leq |H_{nm}^{*}(f - P)| + \varepsilon$$

$$\leq \sum_{k=1}^{n} \sum_{j=0}^{m_{k}-1} |f^{(j)}(x_{k}) - P^{(j)}(x_{k})| |A_{jk}(x)| + \varepsilon$$

$$\leq O(1)\varepsilon$$

and we obtain the result. \Box

More let us verify a very simple relation as [7, Theorem 1].

Lemma 5. If

$$\left\| \sum_{k=1}^{n} |A_{0k}(x)| \right\| = C = O(1), \quad n = 1, 2, ...,$$
(3.8)

and

$$\left\| \sum_{k=1}^{n} \sum_{j=1}^{m_k - 1} |A_{jk}(x)| \right\| = o(1), \quad n = 1, 2, ...,$$
(3.9)

hold, then (2.5) holds for all $f \in C[-1,1]$.

Proof. If P(x) is a fixed polynomial with $||f - P|| < \varepsilon/C$ and $||P^{(j)}|| \le M$, $1 \le j \le m - 1$, then

$$|H_{nm}(f,x) - f(x)| \le |H_{nm}(f,x) - P(x)| + |P(x) - f(x)|$$

$$\le \sum_{k=1}^{n} |f(x_k) - P(x_k)| |A_{0k}(x)| + \sum_{k=1}^{n} \sum_{j=1}^{m_k - 1} |P^{(j)}(x_k)| |A_{jk}(x)| + \varepsilon/C$$

$$\le \varepsilon/C \sum_{k=1}^{n} |A_{0k}(x)| + M \sum_{k=1}^{n} \sum_{j=1}^{m_k - 1} |A_{jk}(x)| + \varepsilon \le 3\varepsilon,$$

if n is big enough . \square

Statement 1. Let $V_k(\eta; x) = \sum_{j=0}^{m_k-1} (-1)^j {\eta \choose j} B_{jk}(x)$. For $k \in I_{1n}$, Let us choose η , where $0 < \eta < 1$ such that $|{\eta \choose j}| < \frac{\rho}{2(m-1)}$, j = 1, 2, ..., m-1. Then

$$V_k(\eta; x) \ge \frac{1}{2}\rho |B_{jk}(x)|.$$
 (3.10)

Proof. By (3.1)

$$V_{k}(\eta; x) \geq B_{0k}(x) - \sum_{j=1}^{m_{k}-1} \left| \binom{\eta}{j} B_{jk}(x) \right|$$

$$\geq B_{0k}(x) - \frac{1}{2(m-1)} \sum_{j=1}^{m_{k}-1} \rho |B_{jk}(x)|$$

$$\geq B_{0k}(x) - \frac{1}{2} B_{0k}(x) \geq \frac{1}{2} \rho |B_{jk}(x)|.$$

Statement 2. For this matrix X it has

$$\sum_{k \in I_{1}} A_{0k}(x) \le C_1 + 1 < +\infty, \tag{3.11}$$

$$S_0 = \sum_{k=1}^n |A_{0k}(x)| \le 2C_1 + 1 < +\infty.$$
(3.12)

Proof. By

$$1 = \sum_{k=1}^{n} A_{0k}(x), \quad but$$
$$\sum_{k=1}^{n} |A_{0k}(x)| \le \sum_{k=1}^{n} A_{0k}(x) + 2 \sum_{k \in I_{2n}} |A_{0k}(x)|,$$

we have $\left|\sum_{k\in I_{1n}} A_{0k}(x)\right| \leq C_1 + 1$, and the other is obvious.

Statement 3. For this matrix X it has

$$T := \sum_{k=1}^{n} \sum_{j=0}^{m_k - 1} |A_{jk}(x)| = O(1).$$
(3.13)

Proof. For $A_{1k}(x)$, by Theorem A,

$$\sum_{k \in I_{1n}} |A_{1k}(x)| \le \frac{2}{\rho} \sum_{k \in I_{1n}} |A_{0k}(x)| \le \frac{2C_1 + 2}{\rho},$$

Let $T_1 := \sum_{k=1}^n |A_{0k}(x)|$ then we have

$$\sum_{k=1}^{n} \sum_{j=0}^{m_{k}-1} |A_{jk}(x)| = \sum_{k \in I_{1n}} \sum_{j=0}^{m_{k}-1} |A_{jk}(x)| + \sum_{k \in I_{2n}} \sum_{j=0}^{m_{k}-1} |A_{jk}(x)|$$

$$\leq T_{1} + \sum_{k \in I_{1n}} \sum_{j=1}^{m_{k}-1} |A_{jk}(x)| + \sum_{k \in I_{2n}} \sum_{j=1}^{m_{k}-1} |A_{jk}(x)|$$

$$\leq T_{1} + \sum_{k \in I_{1n}} \sum_{j=1}^{m_{k}-1} C^{*} d_{k}^{j-1} |A_{1k}(x)| + \sum_{k \in I_{2n}} \sum_{j=1}^{m_{k}-1} C^{*} d_{k}^{j-1} |A_{1k}(x)|$$

$$\leq T_{1} + C^{*} 2^{m} \sum_{k \in I_{1n}} |A_{1k}(x)| + C^{*} 2^{m} \sum_{k \in I_{2n}} |A_{1k}(x)|$$

$$\leq T_{1} + C^{*} 2^{m} \frac{2C_{1} + 1}{\rho} = O(1).$$

Now let us prove the Theorem 2.

Let $n \ge n_0$ and a be an arbitrary point in [-1,1] such that $a \ne x_k$, k = 1, 2, ..., n, put

$$g(x) = \begin{cases} 0, & \text{if } x \in [-1, a], \\ (x - a)^{\eta}, & \text{if } x \in [a, 1], \quad \eta \in (0, 1]. \end{cases}$$
 (3.14)

Additional we define following function for t = 1, 2, ..., n,

$$g_{t}(x) = \begin{cases} 0, & \text{if } x \in [-1, a], \\ \sum_{j=0}^{m-1} C_{jt}(x-a)^{\eta+m-1+j}, & \text{if } x \in [a, a+\frac{1}{t}], \\ (x-a)^{\eta}, & \text{if } x \in [a+\frac{1}{t}, 1], & \eta \in (0, 1]. \end{cases}$$
(3.15)

Where C_{jt} are choosen so that $g_t \in C^{m-1}[-1,1]$ and this yields

$$\sum_{j=0}^{m-1} C_{jt} \binom{\eta+m+j-1}{k} k! t^{k-\eta-m+1-j} = \binom{\eta}{k} k! t^{k-\eta}, \quad k = 0, 1, 2, ..., m-1,$$

that is to say

$$\sum_{j=0}^{m-1} C_{jt} \binom{\eta+m+j-1}{k} t^{1-m-j} = \binom{\eta}{k}, \quad k = 0, 1, 2, ..., m-1.$$
 (3.16)

The system of equations with unknowns C_{jt} , j=1,2,...,m-1, must have a unique solution since the system of function $\{(x-a)^{\eta+m+j-1}\}_{j=0}^{m-1}$ is an extended Chebyshev systems [2, pp. 9], with application solving (3.16) with unknowns $C_{jt}t^{1-m-j}$, j=1,2,...,m-1, we get the value of $C_{jt}t^{1-m-j}$ which is independent of t, thus $|C_{jt}t^{1-m-j}|=O(1)$.

That is to say

$$|C_{jt}| = O(t^{m-1+j}), \quad j = 1, 2, ..., m-1.$$
 (3.17)

Now we notice that on [-1,a] and $[a+\frac{1}{t},1]$, $g(x)-g_t(x)=0$ and on [a,a+1/t)

$$|g(x) - g_t(x)| = \left| \sum_{j=0}^{m-1} C_{jt} (x - a)^{\eta + m + j - 1} - (x - a)^{\eta} \right|$$

$$\leq \sum_{j=0}^{m-1} \left| C_{jt} t^{-\eta - m - j + 1} + t^{-\eta} \right| = O(t^{-\eta}),$$

so

$$\lim_{n \to \infty} ||g_t - g|| = 0. {(3.18)}$$

It is easy to see that the convergence is uniform on [-1, a].

By Lemma 4 for fixed t it has

$$\lim_{n \to \infty} ||H_{nm}^*(g_t) - g_t|| = 0. {(3.19)}$$

It is to see that the convergence is also uniform on [-1,a]. Now we choose t so large that

$$|g_t(x) - g(x)| < \frac{\varepsilon}{3} \frac{1}{2C_1 + 1}, \quad x \in [-1, 1].$$
 (3.20)

$$\left| \binom{\eta}{j} t^{-\eta} \right| \le \frac{\rho}{6m} \frac{1}{C(C_1 + C_2\rho + 1)} \varepsilon. \tag{3.21}$$

For this t, choosing $n_1 \geq n_0$ so large that while $n \geq n_1$ we have

$$|H_{nm}^*(g_t, a)| = |H_{nm}^*(g_t, a) - g_t(a)| < \frac{\varepsilon}{3}.$$

In this case it has

$$\begin{aligned} |H_{nm}^*(g,a)| &= |H_{nm}^*(g,a) - g(a)| \\ &= |H_{nm}^*(g - g_t, a) + H_{nm}^*(g_t, a)| \le |H_{nm}^*(g - g_t, a)| + \frac{\varepsilon}{3}, \end{aligned}$$

for term $|H_{nm}^*(g-g_t,a)|$ we have

$$\begin{aligned} |H_{nm}^{*}(g-g_{t},a)| &= \left| \sum_{k=1}^{n} \sum_{j=0}^{m_{k}-1} \left[g^{(j)}(x_{k}) - g_{t}^{(j)}(x_{k}) \right] \frac{1}{j!} B_{jk}(a) (a - x_{k})^{j} L_{k}(a) \right| \\ &\leq \left| \sum_{k=1}^{n} \left[g(x_{k}) - g_{t}(x_{k}) \right] B_{0k}(a) L_{k}(a) \right| \\ &+ \left| \sum_{k=1}^{n} \sum_{j=1}^{m_{k}-1} \left[g^{(j)}(x_{k}) - g_{t}^{(j)}(x_{k}) \right] \frac{1}{j!} B_{jk}(a) (a - x_{k})^{j} L_{k}(a) \right| \\ &\leq \frac{\varepsilon}{3} + \left| \sum_{k=1}^{n} \sum_{j=1}^{m_{k}-1} \left[g^{(j)}(x_{k}) - g_{t}^{(j)}(x_{k}) \right] \frac{1}{j!} B_{jk}(a) (a - x_{k})^{j} L_{k}(a) \right|, \end{aligned}$$

154 Y. FENG AND W. HE

Let us estimate $S_2 =: \left| \sum_{k=1}^n \sum_{j=1}^{m_k-1} \left[g^{(j)}(x_k) - g_t^{(j)}(x_k) \right] \frac{1}{j!} B_{jk}(a) (a - x_k)^j L_k(a) \right|$. First by the definition of g(x) and $g_t(x)$, (3.16) we obtain

$$S_{2} = \left| \sum_{\substack{a < x_{k} < a + \frac{1}{t} \\ k \in I_{1n}}} \sum_{j=1}^{m_{k}-1} \left[g^{(j)}(x_{k}) - g_{t}^{(j)}(x_{k}) \right] \frac{1}{j!} B_{jk}(a)(a - x_{k})^{j} L_{k}(a) \right|$$

$$\leq \sum_{\substack{a < x_{k} < a + \frac{1}{t} \\ k \in I_{1n}}} \sum_{j=1}^{m_{k}-1} \left| \left[\binom{\eta}{j} - \sum_{l=0}^{m-1} C_{lt} \binom{\eta + m + l - 1}{j} (x_{k} - a)^{m-1 + l} \right] B_{jk}(a) L_{k}(a)(a - x_{k})^{\eta} \right|$$

$$\leq C \sum_{\substack{a < x_{k} < a + \frac{1}{t} \\ k \in I_{1n}}} \sum_{j=1}^{m_{k}-1} \left| 2 \binom{\eta}{j} t^{-\eta} B_{jk}(a) L_{k}(a) \right|$$

$$+ C \sum_{\substack{a < x_{k} < a + \frac{1}{t} \\ k \in I_{2n}}} \sum_{j=1}^{m_{k}-1} \left| 2 \binom{\eta}{j} t^{-\eta} B_{jk}(a) L_{k}(a) \right| := C\{S_{21} + S_{22}\},$$

For S_{21} and S_{22} by Theorem A and (3.5)

$$\begin{split} S_{21} &\leq 2C \sum_{\substack{a < x_k < a + \frac{1}{t} \\ k \in I_{1n}}} \sum_{j=1}^{m_k - 1} |\binom{\eta}{j} t^{-\eta}| \frac{|B_{0k}(a)L_k(a)|}{\rho} \\ &\leq 2Cm \sum_{\substack{a < x_k < a + \frac{1}{t} \\ k \in I_{1n}}} |\binom{\eta}{j} t^{-\eta}| \frac{|A_{0k}(a)|}{\rho} \leq \frac{2mC(C_1 + 1)}{\rho} \left|\binom{\eta}{j} t^{-\eta}\right|, \\ S_{22} &= 2C \sum_{\substack{a < x_k < a + \frac{1}{t} \\ k \in I_{2n}}} \sum_{j=1}^{m_k - 1} \left|\binom{\eta}{j} t^{-\eta}\right| |B_{jk}(a)L_k(a)| \leq 2mCC_2 \left|\binom{\eta}{j} t^{-\eta}\right|, \end{split}$$

If t is properly chosen we have $S_{21} + S_{22} < \frac{\varepsilon}{3}$.

By means of these estimats we have

$$|H_{nm}^*(g-g_t,a)| \le \frac{2}{3}\varepsilon,$$

then it has

$$|H_{nm}^*(g,a)| < \varepsilon. \tag{3.22}$$

So by Statement 1 and definition of g(x) we have

$$\left| \sum_{x_k > a} V_k(\eta; a) (x_k - a)^{\eta} L_k(a) \right| < \varepsilon, \tag{3.23}$$

where we suppose that $x_k \neq a$, $1 \leq k \leq n$. But if $x_k = a$, then the corresponding terms in the sum (3.23) vanish. So we have $|\sum_{x_k \geq a} ...| < \varepsilon$ uniformly in $a, -1 \leq a \leq 0$. Using the function

$$g^*(x) = \begin{cases} (a-x)^{\eta}, & x \in [-1, a], \\ 0, & x \in [a, 1]. \end{cases}$$

with $0 \le a \le 1$, we similarly get relation

$$\left| \sum_{x_k \le a} V_k(\eta; a) (a - x_k)^{\eta} L_k(a) \right| < \varepsilon$$

uniformly in $a, 0 \le a \le 1$, a.e., summarizing we have

$$\lim_{n \to \infty} \left\| \sum_{k=1}^{n} V_k(\eta; x) |x - x_k|^{\eta} L_k(x) \right\| = 0.$$
 (3.24)

Put

$$S := \left| \sum_{k=1}^{n} V_k(\eta; x) | x - x_k|^{\eta} L_k(x) \right| \le \left| \sum_{k \in I_{1n}} \dots \right| + \left| \sum_{k \in I_{2n}} \dots \right| := S_3 + S_4,$$

where S_4 can be writen as

$$S_4 \le \sum_{k \in I_{2n}} |x - x_k|^{\eta} |B_{0k}(x)| L_k(x) + \sum_{j=1}^{m-1} |(\eta)_j| \sum_{k \in I_{2n}} |x - x_k|^{\eta} \left| \frac{1}{j!} B_{jk}(x) \right| L_k(x) := S_5 + S_6.$$

For S_5 by (3.3), (3.2) and Hölder inequality we have

$$\begin{split} & \sum_{k \in I_2} |x - x_k|^{\eta} |B_{0k}(x)| L_k(x) \\ & = \sum_{k \in I_2} \left\{ |x - x_k| |B_{0k}(x)| L_k(x) \right\}^{\eta} \left\{ |B_{0k}(x)| L_k(x) \right\}^{1 - \eta} \\ & \leq \left\{ \sum_{k \in I_2} |x - x_k| |A_{0k}(x)| \right\}^{\eta} \left\{ \sum_{k \in I_2} |B_{0k}(x)| L_k(x) \right\}^{1 - \eta} = o(1), \end{split}$$

Now let us estimate S_6 . For arbitrary fixed $j, 1 \le j \le m-1$, here $(\eta)_j = \eta(\eta-1)...(\eta-j+1)$, let $p = j/\eta, q = j/(j-\eta)$, using Theorem A, (3.4), (3.5) and Hölder inequality

$$\begin{split} & \sum_{k \in I_{2n}} |(\eta)_{j}| |x - x_{k}|^{\eta} \left| \frac{1}{j!} B_{jk}(x) L_{k}(x) \right| \\ & = \sum_{k \in I_{2n}} |(\eta)_{j}| \left\{ \left| \frac{1}{j!} B_{jk}(x) L_{k}(x) \right|^{1/p} |x - x_{k}|^{\eta} \right\} \left\{ \left| \frac{1}{j!} B_{jk}(x) L_{k}(x) \right|^{1/q} \right\} \\ & \leq c |(\eta)_{j}| \left\{ \sum_{k \in I_{2n}} |A_{1k}(x)| \right\}^{1/p} \left\{ \sum_{k \in I_{2n}} |B_{1k}(x) L_{k}(x)| \right\}^{1/q} = o(1). \end{split}$$

So applying (3.24), we get $S_3 = o(1)$ uniformly in x.

$$\lim_{n \to \infty} \left\| \sum_{k \in I_{1n}} V_k(\eta; x) |x - x_k|^{\eta} L_k(x) \right\| = o(1). \tag{3.25}$$

By $|x-x_i|=2|\frac{x-x_i}{2}| \le 2|\frac{x-x_i}{2}|^{\eta}=2^{1-\eta}|x-x_i|^{\eta}$ we obtain

$$\lim_{n \to \infty} \left\| \sum_{k \in I_{1n}} V_k(\eta; x) | x - x_k | L_k(x) \right\| = 0.$$
 (3.26)

So by Statement 1 it has

$$\lim_{n \to \infty} \left\| \sum_{k \in I_{1n}} |A_{jk}| \right\| = 0, \quad j = 1, 2, ..., m_k - 1.$$
(3.27)

Then by (3.4) and Theorem A we have

$$\lim_{n \to \infty} \left\| \sum_{k=1}^{n} |A_{jk}| \right\| = 0, \quad j = 1, 2, ..., m - 1.$$

By Lemma 5 and Statement 3 shows that (2.5) holds for all polynomials and also for every $f \in C[-1,1]$ by Weierstrass theorem. \square

Acknowledgements: We would like to express our thanks to Professor Yingguang Shi for his endless ruggestions concerning this work and Professor Junzhi Cui for his valuable remarks for this paper.

References

- [1] G. Grűnwald, On the theory of interpolation. Acta Math. Hungar., 75(1942), 219-245.
- [2] S. Karlin and W. J. Studden, *Tchebycheff Systems with Applications in Analysis and Statistics*, Wiley-Interscience, New York, 1966.
- [3] Y. G. Shi, Mean convergence of truncated Hermite interpolation on an arbitrary system of nodes, *Acta Math. Hungar.*, **76**(1997), 45-58.
- [4] Y. G. Shi, On Hermite interpolation, J. Approx. Theory., 105(2000), 49-86.
- [5] Y. G. Shi, Mean convergence of Lagarange type interpolation on an arbitrary system of nodes, Submitted to Acta Math. Appl. Sinica.
- [6] J. Szabados, On the order of magnitude of fundamental polynomials of Hermite interpolation, Acta Math. Hungar., 61(1993), 357-368.
- [7] P. Vértesi, Practically *q*-Normal point systems, Acta Math. Hungar., **67**(1995), 251-277.